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Abstract. Reconciliation is a well-known method for studying the evo-
lution of a gene family through speciation, duplication, and loss. Unfortu-
nately, the inferred history strongly depends on the considered gene tree
for the gene family, as a few misplaced leaves can lead to a completely
different history, possibly with significantly more duplications and losses.
It is therefore essential to develop methods that are able to preprocess
and correct gene trees prior to reconciliation. In this paper, we consider
a combinatorial problem, known as the Minimum Leaf Removal problem,
that has been proposed to remove errors from a gene tree by deleting
some of its leaves. We prove that the problem is APX-hard, even in the
restricted case of a gene family with at most two copies per genome. On
the positive side, we present fixed-parameter algorithms where the pa-
rameters are the size of the solution (minimum number of leaf removals)
and the number of genomes containing multiple gene copies.

1 Introduction

The evolution of genomes is determined by a combination of micro-evolutionary
events affecting their sequences, and macro-evolutionary events, involving rear-
rangement and content-modifying operations, affecting their overall gene content
and organization. Among content-modifying operations, duplication is a funda-
mental process in the evolution of species, and a major source of gene innovation
[24,14]. The consequence of duplications is that genes are not present in one, but
in many copies, in the genome. In parallel to duplications, gene losses appear
generally to maintain a minimum number of functional gene copies [5,10,11,20].
Using a local similarity search tool such as BLAST [2], genes can be clustered
by sequence homology into gene families . From a conceptual evolutionary point
of view, homologous gene copies originate from the same ancestral gene.

Understanding the evolution of gene families through duplication and loss
is fundamental for many reasons. In particular, it allows distinguishing between
two classes of gene homologs [21]: orthologs which are copies in different species
that arose by speciation at their most recent point of origin, and paralogs which
are gene copies in the same genome or in two different genomes that arose



from a duplication at their most recent point of origin. While orthologs are,
in essence, instances of the ‘same gene’ in different species, paralogs represent
different copies of the ancestor that are likely to have independently evolved
and diverged in their function. Consequently, identifying the “true” orthology
relationship between genes is fundamental for functional annotation of genes, as
well as phylogenetic inference and comparative genomics purposes.

Based on a micro-evolutionary model for sequences, a gene tree T that best
explains the data can be constructed for a given gene family, by using a classical
phylogenetic method. When a species tree S reflecting the speciation history
of the genomes is known, then the macro-evolutionary events that gave rise to
the data can be inferred by using a method known as Reconciliation. It consists
in “embedding” T into S, and interpreting the disagreement between the two
trees as a footprint of the evolution of the gene family through duplication and
loss. This concept was pioneered by Goodman [15] and then widely accepted,
utilized, and improved [3,6,7,8,10,13,26,28,29,30]. When no preliminary knowl-
edge on the species tree is given, a natural problem, known as the species tree
inference problem, is to infer, from a set of gene trees, a species tree leading to
a parsimonious evolution scenario [4,8,22].

A major problem in the application of gene tree reconciliation is its high
sensitivity to error-prone gene trees. Indeed, a few misplaced leaves can lead to
a completely different history, possibly with significantly more duplications and
losses [19,29]. Typically bootstrapping values are used as a measure of confidence
in each edge of a phylogeny. How should the weak edges of a gene tree be handled?
This problem has been addressed in [9,13,16] by exploring the space of gene trees
obtained from the original one by performing rearrangements (such as NNIs)
around weakly-supported edges and select the tree giving rise to the minimum
duplications and losses. A different strategy that has been recently adopted for
preprocessing a gene tree T prior to reconciliation or species tree inference, is
to “remove” misplaced leaves (gene copies). Criteria for identifying such leaves
were given in [8]. The duplication nodes of T with respect to a species tree S can
be subdivided into apparent and non-apparent duplication (NAD) nodes, where
the latter class has been flagged as potentially resulting from the misplacement
of leaves in the gene tree. The reason is that each one of the NAD nodes reflects a
phylogenetic contradiction with the species tree that is not due to the presence
of duplicated gene copies. In [12], algorithmic results have been presented for
the problem of removing, from a given gene tree, the minimum number of leaves
leading to a tree without any NAD node (the Minimum Leaf Removal Problem).
An exact polynomial-time algorithm has been described for two special classes
of gene trees, and a polynomial-time heuristic with no guarantee of optimality,
has been presented for the general case.

In this paper, we study the theoretical complexity of the Minimum Leaf Re-

moval Problem. More precisely, we show in Section 3 that the problem is APX-
hard, by reduction from the Minimum Vertex Cover problem on Cubic graph [1].
We then turn our attention in Section 4 to finding tractable versions of the prob-
lem under some biological meaningful parameterizations. The goal is to identify



parameters that are small in practice, and to constraint the exponential explosion
only to these parameters. We identify two fixed-parameter tractable versions of
the problem and present exact polynomial-time algorithms constrained by: (1)
the size of the solution (minimum number of leaf removal) and (2) the number
of genomes containing multiple gene copies (paralogs). We begin in the next
section by introducing the concepts and notations used in the rest of the paper.
Due to space limitations some of the proofs are omitted.

2 Preliminary Definitions

2.1 Trees

Let Γ = {1, 2, · · · , γ} be a set of integers representing γ different species (genomes).
We consider two kinds of rooted binary trees leaf-labelled by the elements of Γ :
a species tree S is a tree where each element of Γ labels at most one leaf, while
a gene tree T is a tree where each element of Γ may label more than one leaf
(Figure 1 (a) and (b)). A gene tree represents a gene family, where each leaf
labelled x represents a gene copy located on genome x.

Given a tree U , we denote by L(U) the set of its leaves and by V (U) the set of
its nodes. Given an internal node x of U , we denote by xl and xr respectively, the
left and right child of x, by U(x) the subtree of U rooted at x, and by Γ (U(x)) the
set of leaf-labels of U(x). If there is no ambiguity on the tree being considered,
we denote C(x) = Γ (U(x)); C(x) is called the cluster of x. An ancestor of a node
x of U is any node on the path from the root of U to x.

Given a tree U , a leaf removal consists in removing a given leaf l of U , and
suppressing the resulting degree two node (that is the parent of l). If a tree U ′ is
obtained from a tree U through a sequence of leaf removals, then U ′ is included
in U . On the other hand a subtree insertion in U consists in creating a new
node x on a branch (a, b) (joining node a to node b, b being the child of a),
making b the left child of x, setting the parent of x to a, and grafting the subtree
being inserted as the second child of x (create an edge from x to the root of the
subtree). An extension of U is a tree obtained from U through a sequence of
subtree insertions.

2.2 Reconciliation

Usually, the gene tree T obtained for a given gene family is different from the
species tree S. Roughly speaking, a reconciliation between T and S is an exten-
sion R(T, S) of T that is “consistent” with S, i.e. reflects the same phylogeny.
A rigorous definition can be found in [8,12]. A history of duplications and losses
can immediately be inferred from such a reconciliation. Different algorithms have
been developed for recovering a reconciliation minimizing a duplication and/or
loss cost [6,13,17,18,22,25,27,8], most of them based on a method called LCA
mapping.

The LCA mapping between a gene tree T and a species tree S, denoted by
lcaT,S , maps every node x of T to the Lowest Common Ancestor (LCA) of C(x)
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Fig. 1. (a) A species tree S for Γ = {1, 2, 3, 4}. The three internal nodes of S are
named A, B and C; (b) A gene tree T . A leaf label g indicates a gene copy in genome
g. Internal nodes are labelled according to the LCA mapping between T and S. Flagged
nodes are duplication nodes of T with respect to S; (c) A reconciliation R(T,S) of T

and S. Dotted lines represent subtree insertions. This reconciliation reflects a history
of the gene family with two gene duplications preceding the first speciation event, and
4 losses.

in S. Formally, lcaT,S(x) = y, where y is the node of S that has the minimum
cluster such that C(x) ⊆ C(y). A duplication occurs in a node x of T (or x is a
duplication), if x and at least one of its children are mapped by lcaT,S in the
same node y of the species tree S. If x is not a duplication node, then x is a
speciation (Figure 1).

2.3 Duplication Nodes and MD-trees

The notations of this section are those used in [8,12]. Let x be a node of a gene
tree T verifying C(xl)∩ C(xr) 6= ∅. Then, for any species tree S, x is guaranteed
to be a duplication node. Such a node x is called an Apparent Duplication node
(AD node for short). Given a species tree S, a duplication node x which is not
an AD node is called a Non-Apparent Duplication node (NAD node for short).
A gene tree T is MD-consistent (MD holds for “Minimum Duplication”) with a
species tree S if and only if each node of T is either a speciation or an AD node.

As explained in [12], NAD nodes point to disagreement between a gene tree
T and a species tree S that are not due to the presence of repeated leaf labels, i.e.
duplicated gene copies (see Figure 1.(b)). It has therefore been suggested, and
supported by simulations in [8], that NAD nodes may point at gene copies that
are erroneously placed in the gene tree. It has to be noticed that a misplaced
gene in a gene tree T does not necessarily lead to a NAD node. In other words,
NAD nodes can only point to a subset of misplaced leaves. However, in the
context of reconciliation, the damage caused by a misplaced leaf leading to a
NAD node is to significantly increase the real duplication and/or loss cost of the
tree. Following these observations, the Minimum Leaf Removal Problem, given
bellow, has been considered in [12] for error-correction in gene trees.

Problem 1 Minimum Leaf Removal Problem[MinLeafRem]
Input: A gene tree T and a species tree S, both leaf-labelled by Γ .
Output: A tree T ∗ MD-consistent with S such that T ∗ is obtained from T by a
minimum number of leaf removals.



3 Hardness of Minimum Leaf Removal

In this section we consider the computational (and approximation) complexity
of the MinLeafRem problem. We show that MinLeafRem is APX-hard, even in
the restricted case that each label is associated with at most two leaves of T .
We denote this restriction of the problem by MinLeafRem(2).

We prove that MinLeafRem(2) is APX-hard, by giving an L-reduction from
the Minimum Vertex Cover Problem on Cubic graphs (MVCC is known to
be APX-hard [1]).

Problem 2 Minimum Vertex Cover Problem on Cubic graphs[MVCC]
Input: A cubic graph G = (V, E) where V = {v1, . . . , vn} is the set of vertices
and E the set of edges of G (in a cubic graph, each vertex has degree 3) .
Output: A minimum cardinality set V ′ ⊆ V , such that for each edge ei,j =
{vi, vj} ∈ E, at least one of vi, vj belongs to V ′.

Let G = (V, E) be an instance of MVCC. We define an instance of Min-
LeafRem associated with G, consisting of a gene tree T and a species tree S,
both leaf-labelled by Γ , defined as follows, where t = 4|V | + |E| + 1:

Γ ={vi,l : vi ∈ V, 1 ≤ l ≤ 4} ∪ {vj
i : vi ∈ V, {vi, vj} ∈ E} ∪ {ei,j : {vi, vj} ∈ E} ∪

{zi : 1 ≤ i ≤ t} ∪ {α}.

We denote Z = {zi : 1 ≤ i ≤ t}. Let U be a tree, which is either the gene
tree T , the species tree S, or a tree included in T with a leaf labelled by α. We
define the spine of U as the path from the root of U to the unique leaf of U

labelled by α.
Next, we define an ordering on the edges E of G. Consider the edges {vi, vj},

with i < j, and {vh, vk}, with h < k, then {vi, vj} < {vh, vk}, iff i ≤ h, and
j < k if i = h. Denote with {vp, vq} the last edge in such ordering of E.

The gene tree T is defined as in Fig. 2. It contains the following kinds of
subtrees: (1) a subtree Tvi

, for each vertex vi ∈ V ; (2) a subtree Teij
and a leaf

ei,j , for each edge ei,j = {vi, vj} ∈ E; (3) a tree TZ , which is a caterpillar tree
of size t with leaves uniquely leaf-labelled by the set Z. Notice that the order in
which the subtrees Teij

and the leaf ei,j appear in T , depends on the order of
the corresponding edges of E.

The species tree S is defined in Fig. 3. It contains the three following kinds
of subtrees : (1) a subtree Svi

, for each vertex vi ∈ V ; (2) a single leaf labelled
by ei,j, for each edge ei,j = {vi, vj} ∈ E; (3) a tree SZ , which is a caterpillar
tree of size t uniquely leaf-labelled by the set Z.

It is easy to see that S is a species tree uniquely leaf-labelled by Γ , and that
T is a gene tree where each label in Γ is associated with at most two leaves of
T . The following properties of T are directly deduced from the construction of
T .

Remark 1 The root of TZ and all its ancestors are mapped (by the LCA map-
ping) to the root r of S. Consequently, all TZ ancestors are duplication nodes.
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Fig. 2. The gene tree T , and the subtrees Tvi
, TZ and Teij

of T . Notice that i < j,
hence Tvj

is closer to the root than Tvi
. Notice that a SPEC node is a speciation node.

Moreover, we deduce from the non-empty intersection of the left and right leaf
sets that all these nodes are AD nodes.

Remark 2 For each ei,j ∈ E, the root of Tei,j
is a NAD node. Indeed, it is

mapped to the same node of S than its left child, and it does not contain any
duplicated leaf-label.

Moreover, as each subtree Tvi
contains NAD nodes, any solution of Min-

LeafRem over instance (T, S) is obtained by removing appropriate leaves from
each Tvi

. The following results give more details on the required removals.

Remark 3 Let vi be a vertex of G. Then: (1) the subtree of Tvi
obtained by

removing the leaves with labels v
j
i , vh

i , vk
i is MD-consistent with Svi

; (2) the
subtree of Tvi

obtained by removing the leaves with labels vi,1, vi,2, vi,3, vi,4 is
MD-consistent with Svi

.
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Lemma 1 Let vi be a vertex of G. Then: (1) in a solution of MinLeafRem(2)
over instance (T, S) at least three leaves are removed from Tvi

; (2) a solution of
MinLeafRem(2) over instance (T, S) that contains a leaf of Tvi

with a label in
{vj

i , v
h
i , vk

i }, contains at most three leaves of Tvi
.

It follows from Remark 3 and Lemma 1 that a solution of MinLeafRem(2)
over instance (T, S) is obtained by removing leaves from each Tvi

in essentially
two possible ways: either remove the four leaves {vi,1, vi,2, vi,3, vi,4}, or remove

the three leaves {vj
i , v

h
i , vk

i }. We will relate the former case to the vertex vi

being included in a vertex cover V ′ of G, and the latter case to the vertex vi not
included in V ′ (Lemma 4 and Lemma 5). We first give two preliminary lemmas.

Lemma 2 Each solution of MinLeafRem(2) over instance (T, S) is obtained by
removing at least one leaf from Teij

, for each ei,j ∈ E.

Proof. Direct corollary of Remark 2.

The following lemma will be used to show that the caterpillar tree TZ is kept
in a solution of MinLeafRem(2).



Lemma 3 There is no optimal solution of MinLeafRem(2) over instance (T, S)
that is obtained by removing less than 4|V |+ |E|+ 1 leaves, one of them being a
leaf of TZ .

Proof. Let T ∗ be a solution of MinLeafRem over instance (T, S) obtained from T

by removing less than 4|V |+|E|+1 leaves. Notice that, since |Z| = 4|V |+|E|+1,
at least one leaf with a label in the set Z must be in T ∗. Assume that a leaf with
label zh is removed from T ∗. It is easy to see that inserting this leaf in T ∗ does
not affect other nodes of T ∗, that is the insertion of the leaf with label zh does
not cause any AD node to become a NAD node.

We are now ready to show the two main technical results of the reduction.

Lemma 4 Let G = (V, E) be an instance of MVCC and let (T, S) be the cor-
responding instance of MinLeafRem(2). Then, starting from a vertex cover V ′

of G, we can compute in polynomial time a solution of MinLeafRem(2) over
instance (T, S) that is obtained by removing 3|V | + |V ′| + |E| leaves from T .

Proof. (Sketch) Let V ′ ⊆ V be a vertex cover of G = (V, E). Then we define
a solution T ∗ by removing some leaves of the subtrees of T . We will denote by
T ∗

vi
the subtree of T ∗ obtained from Tvi

, and by T ∗
ei,j

the subtree of T ∗ obtained
from Teij

. The solution T ∗ is defined as follows:

– for each vi ∈ V ′, remove from the subtree Tvi
the set of leaves labelled

by {vi,1, vi,2, vi,3, vi,4} (hence the subtree T ∗
vi

has its leaf-set labelled by

{vj
i , v

h
i , vk

i });
– for each vi ∈ V \ V ′, remove from the subtree Tvi

the set of leaves la-
belled by {vj

i , v
h
i , vk

i } (hence the subtree T ∗
vi

has its leaf-set labelled by
{vi,1, vi,2, vi,3, vi,4});

– for each {vi, vj} ∈ E, if vi ∈ V ′, then remove from Teij
the leaf labelled by

vi
j (hence the subtree T ∗

ei,j
has its leaf-set labelled by {ei,j, v

j
i }), else remove

from Teij
the leaf labelled by v

j
i (hence the subtree T ∗

ei,j
has its leaf-set

labelled by {ei,j , v
i
j}).

It is easy to see that the tree T ∗ is MD-consistent with S and that it is
obtained by removing 3|V | + |E| + |V ′| leaves from T .

Lemma 5 Let G = (V, E) be an instance of MVCC and let (T, S) be the
corresponding instance of MinLeafRem(2). Then starting from a solution of
MinLeafRem(2) over instance (T, S) that is obtained by removing at most 3|V |+
|E| + c leaves from T , with 1 ≤ c ≤ |V |, we can compute in polynomial time a
vertex cover V ′ of G such that |V ′| ≤ c.

Proof. (Sketch) Let T ∗ be a solution of MinLeafRem(2) over instance (T, S)
obtained by removing at most 3|V | + |E| + c leaves from T , with 1 ≤ c ≤ |V |.
Let T ∗

vi
, with vi ∈ V , be the subtree of T ∗ obtained from Tvi

after removing



appropriate leaves. Let T ∗
ei,j

, with {vi, vj} ∈ E, be the subtree of T ∗ obtained
from Teij

after removing appropriate leaves.

We can show (using Remark 3 and Lemma 1) that T ∗
vi

, for each vi ∈ V , must

be leaf-labelled either by the set {vj
i , v

h
i , vk

i }, or by the set {vi,1, vi,2, vi,3, vi,4}.
Moreover, by Lemma 3, T ∗ contains all the leaves with labels in Z.

On the other hand, using Lemma 2, we can prove that T ∗
ei,j

must contain the
leaf labelled by ei,j (otherwise the parent of the leaf labelled by ei,j on the spine
of T , which is an AD node in T , becomes a NAD node) and exactly one leaf with
label in {vj

i , v
i
j} (otherwise the parent of the subtree Tei,j

on the spine of T , which
is an AD node in T , becomes a NAD node). Moreover, if T ∗

ei,j
contains a leaf

labelled by v
j
i , then T ∗

vi
must be leaf-labelled by the set {vj

i , v
h
i , vk

i } (otherwise
the parent of the subtree Tei,j

on the spine of T becomes a NAD node), while if
T ∗

ei,j
contains a leaf labelled by vi

j , then Tvj
is leaf-labelled by the set {vi

j, v
x
j , v

y
j }

(same reason as above).

It follows that the set

V ′ = {vi : T ∗
vi

is leaf-labelled by {vj
i , v

h
i , vk

i } }

is a vertex cover of G of minimum size, as for each edge ei,j ∈ E, exactly one of
vi and vj is contained in V ′. It is easy to see that |V ′| ≤ c.

Theorem 1 MinLeafRem(2) is APX-hard.

Proof. It follows from Lemma 4 and from Lemma 5, that we have designed an
L-reduction from MVCC to MinLeafRem(2). Since MVCC is APX-hard [1], it
follows that also MinLeafRem(2) is APX-hard.

4 Fixed-Parameter Algorithms

Since the MinLeafRem problem is APX-hard, it is interesting to see if the prob-
lem becomes tractable under some biological meaningful parameterizations (for
an introduction to parameterized complexity see [23]). In this section we focus on
the two following parameterizations: (1) the size of the solution of MinLeafRem
(that is the number of leaves removed from T in order to obtain a tree MD-
consistent with S), and (2) the number of labels in Γ associated with multiple
leaves of T (i.e. the number of genomes containing multiple gene copies). We
will give two fixed-parameter algorithms for MinLeafRem under these two pa-
rameterizations.

Notice that a third natural parameter would be the maximum number of
leaves in T associated with a single label of Γ (i.e. the maximum number of gene
copies in a given genome). However, we have already proved in the last section
that the MinLeafRem problem is already APX-hard when each label has at most
two occurrences in the gene tree T .



4.1 MinLeafRem Parameterized by the Number of Leaves Removed

In this section, we investigate the parameterized complexity of MinLeafRem,
when the problem is parameterized by the size of the solution, that is the number
of leaves removed from T . We present a fixed-parameter algorithm that is based
on the depth-bounded search tree technique. Denote by c the size of the solution,
that is the number of leaves that have to be removed from T in order to get a
tree T ∗ which is MD-consistent with the species tree S.

If T does not contain NAD nodes, then T is MD-consistent with S and it
requires no leaf removal. Hence in what follows we assume that T contains at
least one NAD node.

Now, consider a NAD node v of T . Let s be the node of S where v is mapped.
Since v is a NAD node, it follows that at least one of its children, denoted as vl

and vr, is mapped by lcaT,S in s. Assume w.l.o.g. that vl is mapped in s, that is
lcaT,S(vl) = s. Denote by sl and sr the left child and the right child respectively
of s. Since lcaT,S(vl) = s, it follows that C(vl) ⊆ C(s), C(vl)∩C(sl) = X1 6= ∅ and
C(vl) ∩ C(sr) = X2 6= ∅. It follows that either the leaves of T (vl) having labels
in X1, or the leaves of T (vl) having labels in X2, or the leaves of T (vr) must be
deleted from T . We formally prove this property in the following lemma.

Lemma 6 Let v be a NAD node of a gene tree T , and let vl, vr be the children
of v, such that lcaT,S(v) = lcaT,S(vl) = s. Let sl, sr be the children of s. Then,
there is no subtree included in T that is MD-consistent with S and that contains
a leaf of T (vl) with a label in X1 = C(vl) ∩ C(sl), a leaf of T (vl) with a label in
X2 = C(vl) ∩ C(sr), and a leaf of T (vr).

Due to Lemma 6, we can design a fixed-parameter algorithm for MinLeafRem
parameterized by c as follows. Let Dup(T ) = 〈v1, . . . , vz〉 be the ordered list
of NAD nodes of T in a breadth-first visit of T . The algorithm at each step
chooses the first node v1 of Dup(T ). Let lcaT,S(v1) = s, and let sl and sr be
the two children of s. Consider a child v1

x, with v1
x ∈ {v1

l , v1
r}, of v1 that is

mapped in s, and let v1
x̄ be the other child of v1. Let C(v1

x) ∩ C(sl) = X1 6= ∅,
C(v1

x) ∩ C(sr) = X2 6= ∅.
Now, the algorithm branches in the following cases:

1. Remove the leaves of T (v1
x) with label in X1 from L(T ) and suppress the

resulting degree two nodes;
2. Remove the leaves of T (v1

x) with label in in X2 from L(T ) and suppress the
resulting degree two nodes;

3. Remove the subtree T (v1
x̄) from T , and suppress the resulting degree two

node.

After the branching, the algorithm outputs a subtree T ′ of T . Then the lca
mapping lcaT ′,S between T ′ and S is computed (in polynomial time), and the
ordered list Dup(T ′) of NAD nodes of T ′ is computed (again in polynomial time).
The algorithm stops either when it finds a subtree T ′ of T that is MD-consistent
with S, or when there is no subtree included in T that can be obtained with c

leaf removals.



Theorem 2 The algorithm computes if there exists a solution of size at most c

for MinLeafRem in time O(3cpoly (|V (T )|, |V (S)|)).

Proof. The correctness of the algorithm follows from Lemma 6.
Now, we focus on the time complexity of the algorithm. At each step the

algorithm branches in three possible cases, and for each of these cases at least
one leaf is removed. As the depth of the search tree is bounded by c, the size of
the search tree is bounded by 3c. Since after each branching we require at most
time O(poly (|V (T )||V (S)|)) to compute T ′, lcaT ′,S , and Dup(T ′), it follows that
the overall time complexity of the algorithm is O(3cpoly (|V (T )||V (S)|))).

4.2 MinLeafRem Parameterized by the Number of Labels with

Multiple Copies

In this section we give a fixed-parameter algorithm for MinLeafRem, when the
parameter is the number of labels associated with multiple leaves of T . Denote
by ΓD ⊆ Γ , the subset of labels associated with multiple leaves of T .

Let x be a node of T , having children xl, xr, and let y be a node of S, with
children yl, yr. Given Γ ′

D ⊆ ΓD, we define M [T (x), S(y), Γ ′
D] as the minimum

number of leaves that have to be removed to obtain a tree T ′ included in T (x)
such that (1) T ′ is MD-consistent with S(y) and (2) the subset Γ ′

D ⊆ Γ (T ′). We
can compute M [T (x), S(y), Γ ′

D] applying the following recurrence:

M [T (x), S(y), Γ ′
D] = min

Γ ′

1,D⊆Γ ′

D,

Γ ′

2,D⊆Γ ′

D,

Γ ′

1,D∪Γ ′

2,D=Γ ′

D















































































M [T (xl), S(yl), Γ
′
1,D] + M [T (xr), S(yr), Γ

′
2,D]

if Γ ′
1,D ∩ Γ ′

2,D = ∅,

M [T (xl), S(yr), Γ
′
1,D] + M [T (xr), S(yl), Γ

′
2,D]

if Γ ′
1,D ∩ Γ ′

2,D = ∅,

M [T (xl), S(y), Γ ′
1,D] + M [T (xr), S(y), Γ ′

2,D]

if Γ ′
1,D ∩ Γ ′

2,D 6= ∅

M [T (xl), S(y), Γ ′
D] + |L(T (xr))|

M [T (xr), S(y), Γ ′
D] + |L(T (xl))|

M [T (x), S(yl), Γ
′
D]

M [T (x), S(yr), Γ
′
D]

(1)
Now, we define the basic cases of the recurrence, when each of T (x) and S(y)
is a single leaf, with Γ (T (x)) = λG and Γ (S(y)) = λS . If λG = λS , then
M [T (x), S(y), Γ ′

D] = 0 if Γ ′
D = {λG}, M [T (x), S(y), Γ ′

D] = 0 if Γ ′
D = ∅, else

M [T (x), S(y), Γ ′
D] = +∞. If λG 6= λS , then M [T (x), S(y), Γ ′

D] = 1 if Γ ′
D = ∅,

else M [T (x), S(y), Γ ′
D] = +∞.

The correctness of Recurrence 1, is proved in the following lemma.

Lemma 7 Let T be a gene tree, let S be a species tree, and let ΓD ⊆ Γ be the
set of labels associated with multiple leaves of T . Let x be a node of T and y be a
node of S, and consider a subset Γ ′

D ⊆ ΓD. Then M [T (x), S(y), Γ ′
D] = c if and



only if there exists a tree T ′ included in T (x) such that (i) T ′ is MD-consistent
with S(y); (ii) T ′ is obtained by removing c leaves; (iii) Γ ′

D ⊆ Γ (T ′).

Theorem 3 Given a gene tree T and a species tree S, let ΓD ⊆ Γ be the set of
labels associated with multiple leaves of T . Then an optimal solution of MinLeaf
over instance (T, S) can be computed in time O(4|ΓD |poly(|V (T )||V (S)|)).

Proof. By Lemma 7 a solution of of MinLeaf over instance (T, S), is obtained
looking for the minimum of the values M [T (rT ), S(rS), Γ ′

D], for each Γ ′
D ⊆ ΓD,

where rT (rS respectively) is the root of T (S respectively).

Now, we prove in the following that the time complexity of the algorithm
is O(4|ΓD | poly(|V (T )||V (S)|)). It is easy to see that the time complexity to
compute Recurrence 1 is dominated by case 3. The entries M [T (x), S(y), Γ ′

D]
are O(2|ΓD ||V (T )||V (S)|)). For each pair of nodes x ∈ V (T ), y ∈ V (S), we
have to consider O(4|ΓD |) possible combinations. Indeed, the number of subsets
Γ ′

1,D, Γ ′
2,D ⊆ Γ ′

D, with Γ ′
D = Γ ′

1,D ∪ Γ ′
2,D, is 4|ΓD|, since we have to consider

all possible subsets Γ ′
D of ΓD and, for each subset Γ ′

D, we have to consider
all possible subsets Γ ′

1,D, Γ ′
2,D ⊆ Γ ′

D, with Γ ′
D = Γ ′

1,D ∪ Γ ′
2,D. It follows that

we have to consider 4|ΓD| combinations, since there are 4|ΓD| possible ways to
split set ΓD into four disjoint subsets (in this case the subsets are ΓD \ Γ ′

D,
Γ ′

1,D \ Γ ′
2,D, Γ ′

2,D \ Γ ′
1,D, and Γ ′

1,D ∩ Γ ′
2,D). For each combination, the recursion

can be computed in constant time.

Finding the minimum value in the entries M [T (rG), S(rS), Γ ′
D] requires time

O(2|ΓD ||V (T )||V (S)|), hence the overall time complexity to find an optimal so-
lution of MinLeafRem over instance (T, S), is O(4|ΓD |poly(|V (T )||V (S)|)).

5 Conclusion

We presented complexity results and gave two parameter tractable versions of
the Minimum Leaf Removal Problem. This problem has been shown to be a nat-
ural one to consider for preprocessing gene trees prior to reconciliation [8]. Even
though the problem is proved to be APX-hard, a polynomial-time heuristic,
showing a good performance on simulated data sets, has already been devel-
oped [12]. The fixed-parameter algorithms presented in this paper nicely com-
plement those in [12].

In the case of species tree inference, it has been shown in [8] that deciding
whether a gene tree T is an MD-tree, i.e. a tree that is MD-consistent with at
least one species tree, can be done in polynomial time and space, as well as
computing a parsimonious species tree. In the case of a tree T being not an MD-
tree, a natural extension of the Minimum Leaf Removal Problem would be to
find the minimum number of leaves that have to be removed from a given gene
tree T in order for T to be an MD-tree. Having appropriate solutions for this
problem would give natural ways for correcting gene trees prior to species tree
inference. We are presently studying the theoretical complexity of this problem.



Acknowledgements

We thank Krister M. Swenson for his careful reading of the proofs, and his
advices on notations and presentation of the paper.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237(1–2), 123–134 (2000)

2. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. J.Mol.Biol. 215(3), 403-410 (1990)

3. Arvestad, L., Berglung, A.C., Lagergren, J., Sennblad, B.: Gene tree reconstruction
and orthology analysis based on an integrated model for duplications and sequence
evolution. In: Gusfield, D. (ed.) RECOMB 2004. pp. 326–335. ACM, New York
(2004)

4. Blin, G., Bonizzoni, P., Dondi, R., Rizzi, R., Sikora, F.: Complexity insights of
the minimum duplication problem. In: Bieliková, M., Friedrich, G., Gottlob, G.,
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