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Abstract. Most genome rearrangement studies are based on the as-
sumption that the compared genomes contain unique gene copies. This
is clearly unsuitable for species with duplicated genes or when local align-
ment tools provide many ambiguous hits for the same gene. In this paper,
we compare different measures of order conservation to select, among a
gene family, the pair of copies in two genomes that best reflects the
common ancestor. Specifically, we present algorithms to identify ances-
tral homologs, or exemplars [1], by maximizing synteny blocks between
genomes. Using simulated data, we validate our approach and show the
merits of using a conservative approach when making such assignments.

1 Introduction

Identifying homologous regions between genomes is important, not only for
genome annotation and the discovery of new functional regions, but also for the
study of evolutionary relationships between species. Once orthologous genes have
been identified, the genome rearrangement approach infers divergence history in
terms of global mutations, involving the displacement of chromosomal segments
of various sizes. The major focus has been to infer the most economical scenario
of elementary operations transforming one linear order of genes into another.
In this context, inversion (or “reversal”) has been the most studied rearrange-
ment event [2, 3, 4, 5, 6], followed by transpositions [7, 8, 9] and translocations
[10, 11, 12]. All these studies are based on the assumption that each gene appears
exactly once in each genome, which is clearly an oversimplification for divergent
species containing paralogous and orthologous gene copies scattered across the
genome. Moreover, even for small genomes (viruses, bacteria, organelles) where
the hypothesis of no paralogy may be appropriate, the assumption of a one to
one correspondance between genes assumes a perfect annotation step. However,
in may cases, the similarity scores given by the local alignment tools (such as
BLAST or FASTA) are too ambiguous to conclude to a homology, and using
different parameters and cut-off values may lead to different sets of orthologs.
The approach to identify homology described above only relies on local mu-
tations; it neglects the genomic context of each gene copy which might provide
additional information. For example, if two chromosomes are represented by the
two gene orders “badc” and “badceaf”, the two first a are more likely to be
the two copies derived from the common ancestor, as they are preserving the



gene order context in the two chromosomes. Sankoff [1] was the first to test this
idea with the exemplar approach. The underlying hypothesis is that in a set of
homologs, there commonly exists a gene that best reflects the original position
of the gene family ancestor. The basic concept of Sankoff’s algorithm is to re-
move all but one member of each gene family in each of the two genomes being
compared, so as to minimize the breakpoint or the reversal distance. Context
conservation has also been used in the annotation of bacterial genomes [13] to
choose, among a set of BLASTP best hits, the true ancestral copies, also called
positional homologs. We now want to extend these ideas to other measures of
gene order conservation such as conserved and common intervals [14, 15, 16, 17].
These alternatives measures generalize the breakpoint distance and similarly al-
low to compare a set of genomes. Moreover, they allow to study global genome
evolution without focusing on a specific rearrangement model.

In this paper, we use the common and conserved interval criteria to identify
the ancestral homologs. Generalizing the fact that gene copies that are sur-
rounded by the same genes in different genomes are more likely to be the true
ancestral copies, we identify ancestral homologs by maximizing blocks of synteny
between genomes. In Section 2, we review some gene order measures and their
use for genome rearrangement with gene families. In Section 3, we describe our
method and present algorithms for ancestral homolog assignment. In Section 4,
we analyze the permformance of our method using simulated data and show the
effect of homolog assignment on the induced rearrangement distance.

2 Related work

In the rest of this paper, a gene family a will refer to all homologs (orthologs
and paralogs) of a gene a among a set of genomes. Paralogs are copies inside the
same genome that have evolved by duplication, while orthologs are copies among
different genomes that have evolved by speciation. A genome will be considered
single chromosomal and represented as a linear order of signed genes, where
the sign represents the transcriptional orientation of the gene. A chromosomal
segment [a,b] is just the subsequence surrounded by the two genes a and b.

2.1 Genome rearrangement with gene families

Gene orders can be compared according to a variety of criteria. The breakpoint
distance between two genomes G and H measures the number of pairs of genes
a,b that are adjacent in one genome (contains the segment ‘a b’) but not in
the other (contains neither ‘a b’ nor ‘—b —a’). Rearrangement distances mea-
sure the minimal number of genome rearrangements (inversions, transpositions,
translocations- - -) necessary to transform one order of genes into another.

Most work on rearrangement has been restricted to the comparison of genomes
with no gene copies. A method that does takes into account duplications, but
requires that the number of copies is the same in both genomes, has been pre-
sented by Tang and Moret [18]. Their approach relied on a straightforward enu-
meration of all possible assignments of homologs between two genomes. More



recently, Chen et al. [19] gave an NP-hard result for this problem under the
reversal distance and presented an efficient heuristic based on a maximal cycle
decomposition of the Hannenhalli and Pevzner breakpoint graph [10, 3]. Both of
these studies are based on an evolutionary model assuming that all copies were
present in the common ancestor and no duplication occurred after speciation
(Fig. 1a). In many context, this assumption may be questionable.

Another approach relaxing the copy number constraint has been considered
by Sankoff [1]. The exemplar approach consists in deleting, from each gene family,
all copies except one in each of the compared genomes G and H, so that the
two resulting permutations have the minimal breakpoint or reversal distance.
The underlying evolutionary model is that the most recent common ancestor
F of genomes G and H has single gene copies (Fig. 1b). After divergence, the
gene a in F can be duplicated many times in the two lineages leading to G
and H, and appear anywhere in the genomes. Each genome is then subject
to rearrangement events. After rearrangements, the direct descendent of a in
G and H will have been displaced less frequently than the other gene copies.
Even though finding the positional homologs (called ezemplars in [1]) has been
shown NP-hard [20], Sankoff [1] developed a branch-and-bound algorithm that
has been shown practical enough on simulated data. More recently, Nguyen et.
al. [21] developed a more efficient divide-and-conquere approach.

The preceding model is based on the hypothesis of a unique ancestral copy
for each gene family. However, in the more general case of an ancestral genome
containing paralogs, for each gene family, not only one but many pairs of an-
cestral homologs have to be found (Fig. 1c). The exemplar approach can also
be applied to this model. Indeed, by running the algorithm n times, n homolog
assignments are made for the same gene family. Recently, Blin et. al [22] gave an
NP-hard result and proposed a branch-and-bound exact algorithm to compute
the breakpoint distance under this model.
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Fig. 1. (a) Evolutionary model considered in [19]; using the breakpoint distance, the
chosen homologs are the one underlined by the same number in both genomes. (b)
Model considered in [1]; using the breakpoint distance, the chosen exemplar are the
underlined ones. (c) General model with duplications occurring before and after spe-
ciation; using the breakpoint distance and running the exemplar algorithm twice, the
chosen homologs are the one underlined by the same number in both genomes.



2.2 Synteny blocks

The drawback of considering a rearrangement distance to compare genomes is the
strong underlying model assuming evolution by one or two specific rearrangement
events. A simpler measure of order conservation (synteny) is the breakpoint
distance. Other more general measures of synteny have been proposed in the
genome rearrangement literature [14, 16, 17] and are now being reviewed.

Conserved blocks The notion of conserved intervals or blocks that has been
introduced in [14] is identical to the notion of a subpermutation introduced in
the Hannenhalli and Pevzner theory [10]. It is defined for genomes with single
gene copies as follows.

Definition 1. Given two genomes G and H, a conserved block is defined by two
signed genes a and b and a set of unsigned genes U such that, in each genome,
there exists a segment of the form S = [a,b] or S = [-b, —a], and the set of
unsigned genes appearing between the two endpoints is U (Fig. 2a). Such a
conserved block will be denoted [a, U, b].
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Fig. 2. The blocks of G and H, for H being the identity permutation abcdefghij. (a)
Rectangles represent conserved blocks. For example, rectangle 1 represents the block
[a,U,c] with U = {b}. Bold rectangles are minimal blocks (not containing any other
block); (b) Common blocks. For example, rectangle 1 represents the common block
{a,b,c}. Bold rectangles are commuting blocks (either contained or have an empty
intersection with any other block).

For genomes with gene copies, the problem of finding a pairing of gene copies
that maximizes the number of conserved blocks (i.e. minimizing the conserved
block distance) has been recently shown to be NP-complete [15].

Common blocks Even though conserved blocks have been shown useful for
the genome rearrangement studies, the endpoint constraint contained in the
definition is not directly linked to a specific biological mechanism. The notion of
a common block introduced in [16] relaxes this constraint.

Definition 2. Let G and H be two genomes on the gene set {c1,---,c,}. A
subset C of {c1,--,c,} is a common block of G and H iff G (respec. H) has a
segment which unsigned gene content is exactly C.

Common blocks have been considered as an additional criteria to improve
the realism of genome rearrangement scenarios [17, 16].



3 Maximizing the blocks

Following the assumption that the true descendents of an ancestral gene in two
genomes are the copies that have been less rearranged, the objective is to find
a pairing of gene copies that maximizes gene order conservation. We use two
measures of order conservation: the total number of conserved or common blocks.

There is a number of reasons to maximize the number of synteny blocks.
First, the more blocks we can construct among a set of genomes, the farther
they are from random permutations. Indeed, random orders would potentially
contain no trace of gene order conservation, and have a single synteny block per
genome. Second, they generalize the breakpoint criteria used in previous ances-
tral homolog assignment methods [1, 18, 19, 13]. Third, in contrast with rear-
rangement distances, they allow to model and compare, not only two genomes,
but a set of genomes. Finally, although conserved blocks are not directly linked
to a specific rearrangement event, they represent the components of the Han-
nenhalli and Pevzner graph [3, 10], and as such, are related to reversals.

It is preferable to measure similarity using the total number of blocks instead
of the number of minimal or commuting blocks mostly because two overlapping
blocks denote a better conservation than two disjoint blocks. Taking minimal
blocks or commuting blocks alone does not reflect this difference. In contrast,
maximizing the total number of blocks creates a bias towards overlapping blocks
and tend to favour small local rearrangements, which is justified by a variety of
biological and theoretical studies [23, 24].

3.1 Blocks for genomes with gene families

A homolog assignment is a procedure that connects, from each gene family, two
particular gene copies, one from each genome. We generalize the notion of blocks
(conserved or common) to two sequences containing gene copies as follows.

Definition 3. Let G be a genome on the gene family set {c1,---,¢p}. An in-
dividual common or conserved block of G is any subset C of {c1,---,c,} that
can be obtained from any segment S = [¢;,,¢;] of G and any homolog assign-
ment, where ¢;, (respec. ¢;;) is a member of the gene family ¢; (respec. ¢;). An
individual conserved block is defined by its endpoints c;, c; and the gene subset
U contained between these endpoints. Given two genomes G and H with pos-
sible gene copies, a common (respec. conserved) block is an individual common
(respec. conserved) block of both G and H.

For example, {a,b,c, f} is an individual common block of the genome G in
Fig. 3 obtained by choosing the copy fi from the gene family f. It is also an
individual common block of H obtained by choosing the copy ds in the gene
family d. Therefore, it is a common block of G and H. On the other hand, G
contains two individual conserved blocks ending with a and ¢, depending on
whether f; is the copy chosen from the gene family f, or not (Fig. 3.(1)). In the
former case the block is By, ending with a,c¢ and defined by U = {b, f}; in the



latter case, the block is By ending with a,c¢ and defined by U = {b}. B; is a
conserved block of G and H, as it is also an individual conserved block of H
(by choosing ¢, d2 and any of the two copies by or by) (Fig. 3.(2)). B, is also a
conserved block of G and H, as it is an individual block of H (by choosing by
and ¢;). However blocks By and B, are incompatible in H as they require two
different homolog assignments for the gene family ¢ (Fig. 3.(3)).
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Fig. 3. Maximizing the nb. of conserved blocks for the genomes G and H with seven
gene families represented by a,b,c,d, e, f, g. (1) Finding individual conserved blocks in
G; (2) Finding conserved blocks; (3) Maximizing the compatible conserved blocks.

Our method will consist of three steps: 1) find all individual blocks of G and
H respectively, 2) find the common or conserved blocks by superimposing the
individual blocks of G and H and 3) select a maximal number of compatible
conserved or common blocks. The method used at steps 2 and 3 is identical
for common and conserved blocks. However, step 1 is slightly different for the
two criteria. We will present the method for conserved blocks, and indicate the
differences for common blocks. More details on the algorithms and proofs of
theorems will appear in the full version of this abstract.

3.2 Finding individual conserved blocks

For each genome and each pair {a,b} representing two gene families, we com-
pute all individual conserved blocks [a, U, b] by traversing the genome once, and
constructing a tree-like structure 7, (Fig. 4a,b). The initial node is denoted by
&. At the end of the construction, a terminal node t represents an individual
block [a, U, b] defined by the set U of labels in the path from & to ¢t. As a block is
not affected by the order of its elements between its two endpoints, for efficiency
purposes we maintain a lexicographical order for each path in the tree.

During the tree construction, in addition to be terminal or not, each node is
either marked or unmarked. The marked nodes correspond to partial individual
blocks that can potentially form individual blocks later if a gene b is uncountered.

At the begining, 7, is restricted to a marked initial node é. The segment
surrounded by the first copy of a and the last copy of b is then traversed from left
to right. For each gene S; in this segment, if S; = a, we mark the initial state; if
S; = b, all marked states become terminal; otherwise, the tree 7, s is incremented
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Fig. 4. The trees obtained for the pair {a,c} for (a): genome G, and (b): genome H,
first introduced in Fig. 3. Marked states are denoted by a ’*’; and terminal states are
boxed. Superimposing trees (a) and (b) gives the tree (c), which represents the common
blocks [a, c] of G and H: the one containing b, and the one containing {b, f}.

by Algorithm Add-Node (Fig. 5). For simplicity, we do not distinguish between
a node and its label. Moreover, the lexicographical order of node refers to the
lexicographical order of the sequence of labels in the path from & to node.

Finally, a terminal path denotes a path from & to a terminal node. A non-
terminal path denotes any path from & or a terminal node to a leaf, that do not
contain any terminal node.

Theorem 4. [a,U,b] is an individual conserved block of G if and only if U is
the set of node’s labels of a unique terminal path of To .

Complexity For each of the n? gene pairs {a,b}, where n is the number of
genes, each genome G and H is traversed once. For each pair {a,b} and each
position ¢ (from 1 to the size m of the genome), the ith character G; of G has
to be added to the current tree 7, ;. This requires to traverse the tree once, and
potentially perform subtree copies. Therefore, the worst time complexity of the
algorithm is in O(2n?m.S), where S is the size of the largest tree. In practice,
subtree copies can be time consuming for large trees, making the algorithm
unapplicable for large data. But, an easy way to circumvent this problem is to
fix a tree depth threshold limiting the search to blocks of bounded length. We
will show in Section 4.1 that using any reasonable tree depth threshold provides
similar levels of accuracy.

Common blocks: In the case of common blocks, there are three main differ-
ences: 1) we construct a unique tree for each genome (unstead of constructing a
tree for each pair {a, b} and each genome), 2) the initial state @ is always marked
and 3) all tree-states are terminal.

3.3 Finding all conserved blocks

The conserved blocks [a,U,b] of G and H are obtained by superimposing the

two trees 7, and T, corresponding to G and H respectively (Fig. 4c).

Theorem 5. [a,U,b] is a common block of G and H if and only if U is the set
of node’s labels of a terminal path common to 7;Gb and be.



Algorithm Add-Node (S;i, 75,5)
1. For each node in lexicographical order Do
If node = S;
Mark node;
Else If node < S; and node is marked
If node has a child labeled S;
Mark this child;
Else
Create a node new labeled S;, and an edge from node to new;
9. Mark new;

PN DO W

10. End If

11. Else If node > S;

12. nodePrec = node’s father; P = subtree rooted by nodePrec;
13. If nodePrec does not have a child labeled S;

14. Create node new labeled S;, and an edge from nodePrec to new;
15. End If

16. Attach P to the child of nodePrec labeled S;;

17. End If

18. If node > S;

19. Skip all nodes of the subtree rooted by node

20. End If

21. End For

22. If S; represents a single gene

23. Remove all non-terminal paths that do not contain S;;

24. Unmark the nodes in all terminal paths that do not contain S;;
25. Unmark all the ancestors of the S; nodes;

26. End If

Fig. 5. Updating the tree 7T, after reading the next gene S; in the largest segment of
genome G surrounded by the gene families a and b.

Notice that not all gene families are contained in conserved blocks. Conse-
quently some gene families that have not retain sufficient positional context in
both genomes may not be “resolved” with our approach. For example, the tree
of Fig. 4c do not contain nodes for gene families d and c.

3.4 Maximizing compatible blocks

As illustrated in Fig. 3¢, different blocks are obtained by different constraints
that may be contradictory. In order to find compatible blocks, the constraints
attached to each block have to be computed during the construction of individual
trees. This is done with no additional complexity cost, by just labeling node
marks, and keeping in a table all constraints attached to each mark. As soon as
an endpoint is encountered, all marks become terminal and are reported with
their constraints (Fig. 6).

Finally, after superimposing the two genomes’s trees and amalgamating the
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Fig. 6. Terminal states of the tree in Fig. 4b. The table represents states constraints:
1s are variables that have to be chosen, and Os those that have to be avoided. Empty
squares mean no constraints for the corresponding variables. State T} is irrelevent and
has to be removed in a subsequent step, as b1 and b2 can not be avoided simultaneously.

corresponding constraints at each terminal state, a set of clauses representing
all conserved blocks is obtained. Maximizing the number of compatible blocks is
then reduced to a problem related to the extensively studied maximum satisfia-
bility (MAX-SAT). It is stated as follows: given a boolean formula in cunjunctive
normal form (CNF), find a truth assignment satisfying a maximum number of its
clauses. Even though the MAX-SAT problem is NP-complete, it is well charac-
terized, and many efficient heuristics have been developed. However, the clauses
representing our blocks are not in CNF. Therefore, no direct MAX-SAT solver
can be used in this case. We developed an appropriate heuristic based on the
general method classically used to solve MAX-SAT problems: 1) Set an initial
solution (variable assignment) and evaluate the clauses; 2) Explore a neighbor-
hood of the initial solution, reevaluate the clauses and keep the best solution; 3)
Stop at convergence or after a fixed number of iterations.

4 Experimental results

We used simulated data to assess the performance of the synteny blocks criteria
to assign ancestral homologs. The data is generated as follows. Starting from a
genome G with 100 distinct symbols representing 100 gene families, we obtain
a second genome H by performing k rearrangements on G, and then randomly
adding pg gene copies in G and py gene copies in H at random positions. These
copies may represent artifacts of an alignment tool. We simulated 5 different
instances for each triplet (k,pg,pm), for k € {10,20,30,---,90}, pc € {0,10}
and pg € {10,20}. We considered two rearrangement models: 1) inversions,
transposition and inverted transpositions of size [ following a Poisson distribution
Py (1) with A = 0.8, to favour rearrangements of short segments (ALL) and 2)
inversions of random size only (INV). We then run the algorithms and considered



the number of correct homolog assignments (resolved) and false predictions.

4.1 Impact of tree depth threshold

As explained in Section 3.2, in order to obtain an efficient time algorithm, we
use a heuristic that constructs individual trees not exceeding a given tree depth
threshold. Fig. 7 shows the results obtained for tree depth thresholds 5 and 10,
using the evolutionary model ALL. For both common and conserved blocks, there
is almost no tree depth effect on the quality of the results. In general, depth 10
provides slightly more resolved genes, but also slightly more false predictions.
This result validates the fact that restricting the search to blocks of limited size
is sufficient to capture the genomic context information.
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Fig. 7. Tree depth effect, for depth 5 (D5) and depth 10 (D10), on homolog assignment
using: (a) the conserved block and (b) the common block criterion.

4.2 Comparing synteny blocks and breakpoint distance criteria

We have compared the blocks criteria with the breakpoint distance criteria us-
ing the exemplar method developed in [21]. Fig. 8a shows the results obtained
for the evolutionary model ALL. In general, the conserved and common blocks
criteria allow to correctly resolve less genes than the exemplar method. How-
ever, the number of false predictions is notably reduced with our approaches.
Comparing the two blocks criteria, common blocks correctly resolve more genes,
while conserved blocks give less false predictions. We further compared the com-
mon and conserved blocks criteria using the evolutionary model INV (Fig. 8b). It
appears that both criteria have almost the same proportion of true predictions,
while the common blocks criterion produces more false predictions. In the case
of reversals of large segments, using the conserved blocks criterion seems to be
more appropriate, as it limits the noise introduced by irrelevant blocks.
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Fig. 8. (a) Comparison of the blocks and breakpoint distance criteria, using evolution-
ary model ALL; (b)Comparison of the blocks criteria using evolutionary model INV.

4.3 Impact of homolog assignment on the reversal distance

Various approaches have been considered in the past to preprocess duplicated
genes for genome rearrangement studies. A common approach has been to re-
move all duplicated genes even though the missing data will typically lead to an
underestimate of the rearrangement distances. An alternative approach could be
to randomly assign corresponding pairs but that, in contrast, would lead to an
overestimate of the actual distances. We were interested in measuring the extent
of this under/over estimation and to compare it with the bias of our own meth-
ods for homolog assignment. The results are shown in Fig. 9. We observe a much
stronger impact, especially at moderate levels of rearrangements, of the random
assignment of homologs compared to the simple removal of all duplicated genes.
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Fig. 9. The impact of homolog assignment on the observed reversal distance. ‘Actual’:
number of simulated reversals. ‘Good’: ideal case with true ancestral assignment, ‘Ran-
dom’: random selection of orthologs. ‘Conserve’ and ‘common’ are as before.



5 Conclusion

We have shown how synteny blocks can be used to accurately recover a large
proportion of ancestral homologs. Based on the observation that incorrect as-
signment of homologs tend to have a more damageable impact on the induced
rearrangement distances, we propose that a conservative approach, with a low
level of false positives, is probably most desirable for this problem. Another
strength of the approach is that it is directly generalizable to sets of multiple
genomes. The next step of our work will be use the method, in replacement
to the one used [13], to assign positional homology in bacterial genomes, and
subsequently for the annotation of more complex genomes.
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