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Abstract. Given a phylogenetic tree involving Whole Genome Dupli-
cation events, we contribute to the problem of computing the rearrange-
ment distance on a branch of a tree linking a duplication node d to a
speciation node or a leaf s. In the case of a genome G at s containing
exactly two copies of each gene, the genome halving problem is to find a
perfectly duplicated genome D at d minimizing the rearrangement dis-
tance with G. We generalize the existing exact linear-time algorithm for
genome halving to the case of a genome G with missing gene copies. In
the case of a known ancestral duplicated genome D, we develop a greedy
approach for computing the distance between G and D that is shown
time-efficient and very accurate for both the rearrangement and DCJ
distances.

1 Introduction

The increasing number of completely sequenced and annotated genomes now al-
low to study evolution from a genomic point of view, in contrast to the classical
method of comparing single gene sequences. In particular, inferring the structure
of ancestral genomes is a major step towards answering to numerous biological
questions such as the mechanisms of evolution, the variation in rearrangement
and loss rates among the different branches of a phylogenetic tree, and the conse-
quence of such variations on the genetic and physiological specificities of species.
Even though manual approaches can not be avoided when analyzing specific
biological datasets, the availability of automated methods can largely facilitate
and orient the study [19]. In this context, since 1995, the computational biol-
ogy community working on genome rearrangements has contributed to provide
many accurate and rapid algorithms dedicated to the evolutionary study of a set
of genomes represented as ordered sequences of genes [8, 16, 21]. However, most
of these methods can not be applied to genomes with multiple gene copies, in
particular genomes arising from whole genome duplication events.

Whole genome duplication (WGD) is a spectacular evolutionary event that
has the effect of simultaneously doubling all the chromosomes of a genome. Right
after the WGD event, a genome Dpredup is transformed into a perfectly dupli-
cated genome D = (Dpredup ⊕Dpredup) containing a complete set of duplicated



chromosomes. However, this initial perfect duplicate status is obscured by sub-
sequent rearrangement events and gene losses, eventually leading to an extant
rearranged duplicated genome (RD genome) containing exactly two copies of each
gene, or a rearranged duplicated genome with losses (RDL genome), containing
at most two copies of each gene. Evidence of WGD events has shown up across
the whole eukaryote spectrum, from the protist Giardia to the yeast species [11],
including most plant lineages [18], several fishes [22], amphibians [23], and even
to mammalian species [17].

Consider a set of genomes that have been subject to WGD events during
their evolution, and a phylogenetic tree reflecting the speciation events leading
to these genomes. Then, under the assumptions that WGD is the only mechanism
leading to gene duplicates and that, in each genome, at least one gene reflects
the doubling status of the genome, WGD events can be placed on the phylo-
genetic tree as new internal nodes, called WGD nodes [25]. The rearrangement
phylogeny problem seeks for ancestral gene orders leading to a most “plausible”
evolutionary scenario. The parsimony approach is based on inferring gene or-
ders at the internal nodes of the tree so that the sum of distances among all
branches is minimized. When studying genome rearrangements, the most nat-
ural distance between two gene orders (distance on a branch) is the minimum
number of rearrangements required to transform one gene order into the other.
The rearrangements that have been most studied by the genome rearrangement
community are inversions and reciprocal translocations (including fusion and
fission). In the case of two genomes G and H with no gene duplicates and the
same gene content, a key result in the field of genome rearrangement is the
Hannenhalli and Pevzner (HP) formula [14, 21] for computing the rearrange-
ment distance (minimum number of inversion and translocations required to
transform G into H), leading to a polynomial-time algorithm. Another distance
that has been extensively studied in the last years is the Double Cut-and-Join
(DCJ) distance which represents all known rearrangement events and gives rise
to simplest formal results [5, 6, 24].

In the case of genomes with no gene duplicates, one of the main approaches
to the rearrangement phylogeny problem is based on iterating an algorithm for
the median problem to all overlapping triplets of the phylogenetic tree [7, 8, 15].
A prerequisite for applying such methodology to a phylogeny with WGD nodes is
to be able to compute the distance on a branch of the phylogeny. However, this is
far from being straightforward, as the orthology relationship between duplicated
genes is not set. In particular, computing the distance between an RD genome G
and a perfectly duplicated genome D (called the double distance in [10, 20]) has
been shown to be NP-hard for the DCJ distance [20]. When the ancestral genome
D is unknown, the genome halving problem seeks for a perfectly duplicated
genome D minimizing the rearrangement distance between G and D. In 2003,
we have presented the first formal result related to genome duplication, which
is an exact linear-time algorithm for solving the genome halving problem [9].

In this paper, we contribute to solving a number of problems related to the
computation of the rearrangement and DCJ distances on a branch of a phyloge-



netic tree connecting a first WGD node to a speciation node or a leaf, in both
cases of a known and an unknown preduplicated genome (label of the WGD
node). In the case of an unknown ancestral genome, our result is a generaliza-
tion of the genome halving algorithm to a genome G with missing gene copies
(i.e. G is an RDL genome instead of an RD genome). In the case of a known
ancestral genome D, we present a very efficient and accurate greedy heuristic
for computing both the rearrangement and DCJ distance between G and D.

2 Preliminaries

Let Σ be a set of n genes. A string is a sequence of genes from Σ, where each
gene is signed (+ or −) depending on its orientation. The reverse of a string X =
x1x2 . . . xr is the string −X = −xr −xr−1 . . . − x1. A chromosome is a string,
and a genome is a collection of chromosomes. A unichromosomal genome has a
single chromosome, and a multichromosomal genome has at least two nonnull
chromosomes C1, C2, . . . CN . A circular chromosome is a string x1 . . . xr, where
x1 is considered to follow xr. A chromosome that is not circular is linear . To
represent its endpoints, we add an “artificial gene”, denotedO, at each extremity.
In other words, a linear chromosome is a string of the form Ox1 . . . xrO.

In this paper, we consider both uni- and multichromosomal genomes. As
most unichromosomal genomes are formed by a circular chromosome, and most
multichromosomal genomes are formed by linear chromosomes, only circular
unichromosomal genomes, and linear multichromosomal genomes are considered
here.

2.1 Evolutionary events and genomic distances

All the following evolutionary events apply to both uni- and multichromoso-
mal genomes, except translocations that are only relevant for multichromosomal
genomes.

– A reversal (or inversion) is an operation that replaces some proper substring
of a chromosome into its reverse.

– A translocation between two chromosomes X = X1X2 and Y = Y1Y2 is an
event transforming the two chromosomes into X1Y2, Y1X2 (prefix-prefix), or
intoX1(−Y1), (−Y2)X2 (prefix-suffix). Two special cases of reciprocal translo-
cations are fusions (if one of the two chromosomes generated by the translo-
cation is an empty string) and fissions (if one of the two input chromosomes
is the empty string).

– A Whole Genome Duplication (WGD) is an event transforming a multichro-
mosomal genome G = {C1, C2, . . . CN} into a multichromosomal genome
D = {C1, C

′

1, C2, C
′

2, . . . CN , C′

N} containing 2N chromosomes where, for
each 1 ≤ i ≤ N , Ci = C′

i. In the case of a circular genome G rep-
resented by the string x1x2 . . . xr, a WGD transforms G into a circular
genome D represented by either of the two strings : x1x2 . . . xr x1x2 . . . xr,
or x1x2 . . . xr − xr . . .− x2 − x1.



– Finally, a loss is an operation removing a proper substring from a chromo-
some.

A rearrangement event will refer to an inversion or a translocation event.
The rearrangement distance between two genomes G and H (with the same gene
content or not), denoted dR(G,H), is the minimum number of rearrangement
events required in a scenario transforming G into H . In the case of genomes
with single gene copies, computing the inversion and/or translocation distance
has been shown to be a polynomial-time problem, and the best developed method
runs in linear time [3, 4].

Another distance that has been extensively studied in the last years is the
DCJ distance [5, 6, 24]. Given a genome G, a Double-Cut-and-Join (DCJ) is an
operation that “cuts” two adjacencies pq and rs in a genome, and replaces them
by either pr and qs, or ps and qr. The DCJ distance is an “artificial” distance
in the sense that some DCJ operations are not relevant from a biological point
of view. However, it is interesting from a theoretical point of view as it leads
to a unifying formulae including all previously studied rearrangement events,
as well as transpositions, for which no polynomial-time exact method is known.
Computing the DCJ distance between two signed permutations is a linear-time
problem.

2.2 Genome definitions

In this section, we consider G to be a genome defined on a set Σ of genes, i.e. g
is in G iff g ∈ Σ.
• G is a singleton genome iff each gene is present exactly once in G.
• G is a rearranged duplicated (RD) genome iff each gene is present exactly twice
in G.
• G is a perfectly duplicated genome (or duplicated genome for short) iff:

– The multichromosomal case: G is an RD genome containing an even number
2N of chromosomes, with two identical copies of each chromosome. If D is
the set of the N different chromosomes, then we write G = (D ⊕D).

– The circular case: G is an RD genome and there is a string D such that G
is exactly D followed by D (we write G = D⊕D), or D followed by −D (we
write G = D ⊕−D).

• G is a rearranged duplicated genome with losses (RDL genome) iff each gene
in Σ is present at least once and at most twice in G.
• G is a duplicated genome with losses (DL genome) if each gene of Σ is present
in one or two copies in G, and if a duplicated genome D can be obtained from G

by an appropriate insertion of an additional copy of each singleton (gene present
in one copy in G).

A DL genome A is said to be induced by an RDL genome G if each gene in
Σ has the same copy number in A and G.

Let G be an RD genome and H be an RDL genome. We can define the
evolutionary cost E(G,H) as the minimum number of inversions, translocations
and losses required to transform G into H .



2.3 The breakpoint graph

In a series of papers published in 1995 [12–14], Hannenhalli and Pevzner (here-
after HP) developed polynomial-time algorithms for computing the rearrange-
ment distance (inversion only, translocation only, or inversion+translocation)
between two singleton genomes G and H on Σ. The algorithms all depend on a
bicolored graph B(G,H), called the breakpoint graph, constructed from G and H

as follows (Tesler’s formalism [21]).

Graph B(G,H): If gene x of Σ has a positive sign, replace it by the pair xtxh,
and if it is negative, replace it by xhxt. Then the set V of vertices of B(G,H)
is the set of xt and xh for all x in Σ. Any two vertices of V that are adjacent
in some chromosome in G, other than xt and xh deriving from the same x, are
connected by a black edge (thick lines in Figure 2(b)), and any two adjacent
vertices in H are connected by a gray edge (thin lines in Figure 2(b)). Notice
that adjacencies to O are not represented.

In the case of circular chromosomes, each vertex in V is incident to exactly
one black and one gray edge, and thus the graph uniquely decomposes into
c(G,H) disjoint cycles of alternating edge colors.

In the case of G and H being multichromosomal genomes, let an endpoint
vertex of G (resp. of H) be a vertex of V adjacent to O in G (resp. in H). Then
any vertex has degree zero if it is an endpoint in both G and H , one if it is an
endpoint in exactly one of the two genomes or two otherwise. Thus, the graph
decomposes into c(G,H) cycles and p(G,H) paths of alternating edge colors.
Note that a path may contain only one vertex and no edges. We denote by pGG

(resp. pHH) the number of paths linking two endpoints of G (resp. of H). If G
and H have the same number of chromosomes, then pGG = pHH . Otherwise,
suppose w.l.o.g. that G has more chromosomes than H , then pHH ≤ pGG.

The rearrangement distance: Although somehow different algorithms are re-
quired for sorting by translocation only, inversion only or inversion+translocation,
all results in [12–14] (revisited by Tesler [21] for multichromosomal genomes) can
be summarized by a unique formulae given bellow:

HP: dR(G,H) = n+N − C(G,H) + h(G,H)

where n is the number of genes, N is the number of chromosomes of G in
the case of a multichromosomal genome and N = O in the case of a circular
genome, C(G,H) = c(G,H)+p(G,H)−pGG is the dominating parameter, with
p(G,H) = pGG = 0 in the case of circular genomes, and h(G,H) is a correction
parameter that has a different value depending on the considered model. In all
cases, it is related to the decomposition of B(G,H) into components, where a
component is a maximal set of crossing cycles. A component is termed good if
it can be transformed into a set of cycles of size 1 by increasing the number
of cycles at each step, and bad otherwise. The parameter h(G,H) reflects the
number of bad components of the graph. As the probability for a component to
be bad is low, the value of h(G,H) is usually low compared to the dominating
parameter C(G,H).



The DCJ distance: Based on the breakpoint graph, the DCJ distance between
G and H can be expressed as follows [5, 20]:

DCJ: dDCJ(G,H) = n−

(

c(G,H) +
peven

2

)

where peven is the number of paths with an even number (≥ 0) of edges.

3 Genome Halving with Losses

Given an RD genome G, the Genome Halving problem is to find a duplicated
genome D minimizing the rearrangement distance with G. In other words, we
define dR(G) as the minimum rearrangement distance between G and any du-
plicated genome D. Then the problem is to find a duplicated genome D such
that dR(G) = dR(G,D).

In [9] we have developed an exact linear-time algorithm, called Algorithm
Dedouble, for the reversals-only version of the problem (in the case of unichro-
mosomal genomes), the translocations-only version, and the version with both
reversals and translocations. The approach was to start from a partial break-
point graph B(G), i.e. the breakpoint graph with the set of edges restricted to
the black edges representing G, and to complete this graph with a set of “valid”
gray edges, i.e. gray edges representing a duplicated genome D, maximizing the
number of cycles and paths (parameter c(G,D) and p(G,D) in the HP formula).
The second step was then to perform modifications on the obtained graph in
order to remove bad components that can be avoided, and obtain a duplicated
genome D minimizing the rearrangement distance with G (i.e. minimizing the
HP formula).

M1:

M2:

G

G A

D = (Dpredup ⊕Dpredup)

D = (Dpredup ⊕Dpredup)

Dpredup

Dpredup

WGD

WGD

LossInv, Trans

Inv, Trans, Loss

RDL genome

RDL genome DL genome

Duplicated genome

Duplicated genome

Singleton genome

Singleton genome

Fig. 1. Evolutionary models M1 and M2 considered for a present-day rearranged dupli-
cated genome with losses G. Direction of evolution is represented by arrows orientation.

Here, we seek to generalize Algorithm Dedouble to a present-day genome G

containing both duplicated genes and singletons, i.e. to an RDL genome. Let G
be a present-day RDL genome. We assume that G has evolved from an ancestral



singleton genome through a WGD, and a sequence of inversions, translocations
and loss events. We are then interested in finding such a pre-duplicated singleton
genome Dpredup minimizing the number of rearrangements needed to obtain G

(see modelM1 in Figure 1). Note that we do not attempt to minimize the number
of losses.

The following theorem allows to reduce the evolutionary model to a simpler
one (model M2 in Figure 1), where all losses occur first, followed by all rear-
rangement events.

Theorem 1. Let G be an RDL genome and D be a duplicated genome. Then
there exists a DL genome A induced by G such that dR(G,A) = dR(G,D).

Proof: By induction on e = E(G,D)
1. The property is trivially verified for e = 0 and e = 1.
2. Suppose the induction hypothesis is verified for a given e ≥ 1. Now sup-
pose that E(G,D) = n + 1, and let E = E1, E2, . . . En, En+1 be a sequence
of e + 1 events transforming a duplicated genome D into an RDL genome
G. Let G′ be the genome obtained after performing the sequence of e events
E ′ = E1, E2, . . . En on D. Then e = E(G′, D) as otherwise (if e is not the mini-
mum number of events transforming D into G′) e+1 would not be the minimum
number of events transformingD into G. Moreover, by the induction hypothesis,
there exists a DL genome A′ for which dR(G

′, A′) = dR(G
′, D).

If En+1 is a rearrangement event, the DL genome A induced by G is equal
to A′. Then, we have dR(G,A) = dR(G,A′) = dR(G

′, A′) + 1 and dR(G,D) =
dR(G

′, D) + 1. Therefore, dR(G,A) = dR(G,D).
Otherwise, En+1 is a loss event. Let A be the DL genome obtained from

A′ by removing the genes that are removed by the loss operation En+1. Then,
it is easy to see that a minimum sequence of k rearrangement events trans-
forming A′ into G′ can be converted into a sequence of k rearrangement events
transforming A into G (just by removing the lost genes from the inverted or
translocated segments). Therefore dR(G,A) ≤ dR(G

′, A′). Similarly, a minimum
sequence of k rearrangement events transforming A into G can be converted
into a sequence of k rearrangement events transforming A′ into G′. Therefore,
dR(G,A) = dR(G

′, A′) = dR(G,D) 2

Corollary 1. Let G be an RDL genome, and A be a DL genome induced by G

minimizing the cost dR(G,A). If D is the duplicated genome obtained from A,
then dR(G) = dR(G,D).

Proof: Let A be a DL genome induced by G minimizing the cost dR(G,A), and D

be the duplicated genome obtained from A. Then we have dR(G,D) = dR(G,A).
Suppose dR(G) 6= dR(G,A), i.e. dR(G,A) > dR(G). Let D′ be a duplicated
genome such that dR(G,D′) = dR(G). Then, from Theorem 1, there is a DL
genome A′ such that dR(G,A′) = dR(G,D′) = dR(G). And thus dR(G,A′) <

dR(G,A), which is a contradiction with the fact that A minimizes the rearrange-
ment cost 2



Therefore, finding a duplicated genome D such that dR(G) = dR(G,D) can
be reduced to the problem of finding a DL genome A induced by G such that
dR(G,A) is minimal over all DL genomes induced by G. In other words, loss
events can be ignored.

To find such DL genome A, we use a generalization of Algorithm Dedouble,
called Algorithm Dedouble-RDL(G), that proceeds as follows:

1. Consider the RD genome G′ obtained from G by “gluing” singletons to an
adjacent gene. More precisely, consider a given orientation for chromosomes.
Then, for each maximum sequence S of singletons in G: (1) if S is a chro-
mosome, then just remove this chromosome; (2) otherwise, if S is connected
to a left extremity of a chromosome, then replace its successor x (the gene
representing the right adjacency of S in G) by the artificial gene x′ = Sx;
(3) otherwise, if S is not connected to a left extremity of a chromosome,
then replace its predecessor x (possibly already updated in step (2)) by a
new artificial gene x′ representing the sequence xS.

2. Use Algorithm Dedouble to infer a duplicated genome A′ from G′.
3. Recover a DL genome A from A′ by replacing each of its artificial genes by

its corresponding sequence of singletons, and by adding all removed chromo-
somes of G (formed exclusively by singletons).

The following theorem immediately follows from the fact that Algorithm De-
double outputs a doubled genome A′ minimizing the distance to G′, and that
singletons are preserved in the same order in G and A.

Theorem 2. Let G be an RDL genome and A be the DL genome resulting from
Algorithm Dedouble-RDL(G). Then dR(G,A) = dR(G).

4 An algorithm for the Double Distance

Given an RD genome G and a duplicated genome D = (Dpredup ⊕ Dpredup),
how to compute the distance between G and D? The problem of computing
the DCJ distance between G and D has already been shown to be an NP-hard
problem [20]. The difference in complexity (polynomial versus NP-hard) between
computing the distance of two singleton genomes versus computing the distance
between a RD genome and a duplicated genome (or between two RD genomes)
is due to the missing one-to-one orthology relationship between genes. In other
words, given a labeling of the genes in G, the problem is to find a labeling of the
genes in D leading to a minimum distance between G and D.

Consider a given beginning gene, in the case of a circular genome, or a given
order and left-to-right orientation of chromosomes in the case of a multichro-
mosomal genome G. Then, for each gene x (present in two copies in G and
also in D), label the first occurrence of x in G as x1 and the second as x2. Let
B(G) be the partial breakpoint graph for G. To complete this partial graph,
each double adjacency (xr, ys) in D (where r, s ∈ {t, h}) should be represented
in the completed graph B(G,D) by either of the following pairs of gray edges:



{(xr
1, y
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1), (x
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2, y
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2)}, or {(x

r
1, y

s
2), (x

r
2, y

s
1)}. Each of these two cases leads to a dif-

ferent labeling of the gene copies in D. The problem is then to choose the pairs of
gray edges allowing to minimize the HP formulae in the case of the rearrangement
distance, or the DCJ formulae in the case of minimizing the DCJ distance.

Here, we focus on maximizing the dominating value C(G,D) in the HP for-
mulae. In the case of Genome Halving, this simplification has been called the
Weak Genome Halving Problem [1]. We similarly define our simplified problem as
follows:

Weak Double Distance Problem. For a given labeled RD genome G and
a duplicated genome D, find a labeling of gene copies in D that maximizes the
parameter C(G,D) in the breakpoint graph B(G,D) of the labeled genomes G

and D.

Notice that, in the case of a circular genome, a labeling of D maximizing the
parameter C(G,D) also maximizes the DCJ formulae, as C(G,D) = c(G,D) in
this case. In the multichromosomal case, a labeling of D maximizing C(G,D) is
likely to also maximize the DCJ formulae, though there is no guarantee for that.

Clearly, the “best” exhaustive approach trying all possible labelings forD has
a worst running-time complexity in O(n.2n) for n = |Σ|. Indeed, D has 2n pos-
sible labelings, and for each labeling, the most efficient approach for computing
the rearrangement distance between G and D is linear.

4.1 Circular genomes
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Fig. 2. (a) The contracted breakpoint graph CB(D,G) constructed for the circular RD
genome G = (u,−v, u, v) and the circular duplicated genome D = (u, v)⊕ (u, v). Gray
edges (thin lines) represent genome D and black edges (thick lines) represent genome G.
(b) The breakpoint graph B(G,D) corresponding to the labeling G = (u1,−v1, u2, v2)
and D = (u1, v1) ⊕ (u2, v2). Given the above labeling of G, the labeling of D, leading
to 3 cycles, is optimal. The resulting rearrangement distance is 1.

Let G be a circular RD genome and D be a circular duplicated genome. We
consider the contracted breakpoint graph representation CB(D,G) defined as
follows: the set of vertices of CB(D,G) is V = {xr, for all x ∈ Σ and r ∈ {t, h}}.
Any two vertices which are adjacent in D (except the extremities of a same gene)
are connected by two parallel gray edges, and any two adjacent in G (except the
extremities of a same gene) are connected by a black edge (see Figure 2.(a)).



Such representation has previously been used in the context of genome halving
for circular [2] and multichromosomal genomes [10], with the difference that each
gray edge was represented exactly once. It follows that each vertex of CB(D,G)
is adjacent to exactly two gray edges and two black edges.

Then, for each cycle of alternating edge color (just called cycle in the rest of
this paper) in CB(D,G), there is a labeling of D giving rise to a corresponding
cycle in B(G,D). This observation leads to a greedy approach for labeling the
genome D, or equivalently completing the partial graph B(G). Formally, a com-
pleted graph B(G,D) is a graph obtained from B(G) by adding gray edges such
that each vertex of B(G,D) is adjacent to exactly 2 edges (one black and one
gray), and such that the set of gray edges represent a given labeling of genome
D ( Figure 2.(b)).

The general idea of Algorithm Complete-Graph(G,D) given in Figure 3 is: at
each step, pick a cycle of minimum size from CB(D,G), construct the corre-
sponding cycle in B(G), and then remove from CB(D,G) all used edges. The
algorithm stops when the partial graph is completed.

Algorithm Complete-Graph(G,D)
1. For CSize = 1 to n Do ;

2. For CV ertex = bl1 to bln Do

3. If CB(D,G) is empty (i.e. no edges left)
4. Return ;
5. If there is a cycle CCB of size CSize beginning at CV ertex Then

6. Construct the corresponding cycle CB in B(G);
7. Remove from CB(D,G) all edges of CCB;
8. End If

9. End For

10. End For

Fig. 3. A greedy approach for completing the partial graph B(G) with gray edges rep-
resenting the genome D. Here, n = |Σ| is the number of different genes, and b1, b2, . . . bn
is a left-to-right ordering of the black edges of CB(D,G). For each i, bli is the vertex
representing the left adjacency of bi. The size of a cycle is the number of black (or
equivalently gray) edges of the cycle.

The following proposition immediately follows from the fact that all gray
edges of CB(D,G) are placed in B(G).

Proposition 1. Given a circular RD genome G and a circular duplicated genome
D, the output of Algorithm Complete-Graph (G,D) is a completed graph B(G,D).

As each vertex is adjacent to two black edges, finding a cycle of size k begin-
ning at a given vertex of CB(D,G) (line 5) can be done in O(2k) time. Therefore,



the algorithm has a worst running-time complexity bounded by Σn
k=1

n.2k, which
is not better than the exhaustive approach inO(n.2n). However, as demonstrated
in the experimental part of this paper, it is actually a much faster approach in
practice. This is due to the edge removal step (line 7), which allows to reduce
the graph quickly, and to stop the process after a small number of iterations.

4.2 Multichromosomal genomes

In the case of G and D being multichromosomal genomes, we define the con-
tracted breakpoint graph CB(D,G) as before, except that it contains an addi-
tional vertex O such that any endpoint vertex in D is connected to O by two gray
edges, and any endpoint vertex in G is connected to O by a black edge. It follows
that, except O that is adjacent to 2NG black edges and 2ND gray edges, NG

being the number of chromosomes of G, and ND the number of chromosomes of
D, each other vertex is adjacent to exactly two gray edges and two black edges.

Algorithm Complete-Graph(G,D) can be used in the case of multichromosomal
genomes if we replace line 3 with “ If CB(D,G) is acyclic”. The output of the
algorithm is then an acyclic partially completed graph, where the only remaining
paths connect two vertices that are both endpoints of G, or both endpoints of
D. Indeed, if there is a remaining path that connects two endpoints of different
genomes, CB(D,G) is not acyclic. This path is in fact a cycle since it starts from
O with an edge type and ends at O with a different edge type. Then, to complete
the graph B(G), it suffices to add the remaining paths of CB(D,G).

Due to the 2(NG+ND) edges incident to O, the worst-time complexity is the
one for circular genomes multiplied by NG.ND, i.e. O(n.NG.ND.2n). Hopefully
in practice, n is not a tight upper bound as exploration eventually stops for
much smaller cycle sizes.

5 Results

Since the generalization of the genome halving problem to a present-day RDL
genome has been proven to be an exact algorithm executing in linear time,
we only test the performance of the proposed method to compute the double
distance. We generated datasets through simulated evolutions between a dupli-
cated genome D and an RD genome G for both circular and multichromosomal
genomes, as follows.

Simulated datasets: We first determine n, the number of genes, and N , the num-
ber of chromosomes in D. Then, we generate D, and a series of rearrangement
events are performed on D to obtain G. Those are simply the rearrangements
allowed by our model, namely inversions only in the case of circular genomes or
inversions and translocations (including fusions and fissions) in the case of mul-
tichromosomal genomes. The number of events, µ, is a parameter chosen prior
to the data generation, and the size of each rearrangement is chosen randomly.
As for the rates of rearrangement operations, we chose (Inv : Trans : Fus+Fiss)



= (5 : 4 : 1) to follow the rates reported for a lineage where a WGD occurred [11].

In order to validate the distances obtained with our greedy approach, we use
an exact algorithm described below.

Exact algorithm: Let L (resp. L∗) be a complete (resp. partial) labeling of the
gene copies of D, and B(G,DL∗) the breakpoint graph where the only defined
gray edges are those adjacent to the genes of L∗. The idea is to compute a
lower bound for dR(G,D) as we progressively construct L∗. More precisely, if at
one step we have c cycles and p paths in B(G,DL∗), we know that the number
of cycles in B(G,DL) will be at most equal to c + p. Thus it is possible to use
the following lower bound in a branch and bound strategy: dR(G,D) ≥ n−c−p.

Due to the high running-time complexity of the exact method, validation
with the exact distance can only be done for “simple” datasets obtained with
a low number of genes, and a low number of rearrangements. For datasets that
were too complex for the exact algorithm, we estimated the accuracy of our
greedy algorithm for the double distance by comparing the inferred distance
with the number of rearrangements performed betweenD and G in the simulated
evolution.

5.1 Time efficiency

Since the running-time complexity is function of n for the exact approach, we
generated genomes containing different number of genes to evaluate the time
efficiency of our greedy heuristic. For the exact method, n varies from 10 to
100, with an increment of 10. The parameters µ and N are arbitrarily fixed
to 15 and 4 respectively. For the greedy heuristic, n varies from 100 to 1000
with an increment of 100. With µ fixed to 15, the running-time of the heuristic
does not vary (below 0.001 seconds for all values of n). Thus, the number of
rearrangements has been changed to µ = n in order to see a variation in the
running-time. For each of those n values, multiple datasets were generated and
the running time was averaged.

We can clearly observe the exponential running-time of the exact approach
when the number of genes increases (see Figure 4 left). In contrast, our greedy
algorithm is less limited by the genome size and more by the number of rear-
rangements. In Figure 4 right, we can see that even for datasets with a high
number of rearrangements (µ = n), the running-time is less than the anticipated
worst-time complexity and remains under, or close to 1 second.

5.2 Heuristic accuracy

Comparison with the exact approach. We now test whether our greedy heuristic
infers an accurate rearrangement distance by comparing its results against those
of the exact approach. Recall that because of the high running-time complexity
of the exact approach, we can only perform this algorithm on simple datasets
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Fig. 4. Left: Running-time of the exact algorithm computing the double distance be-
tween D and G with various number of genes and a fixed number of rearrangements
(µ=15). Right: Running-time of the heuristic approach to compute the double distance
with various number of genes and rearrangements (µ = n).

exhibiting low numbers of genes and rearrangements. The genomes are generated
with n fixed to 25, N to 4 and µ varying from 0 to 50 by increments of 5. For
each value of µ, 500 datasets were simulated. The error rate is the proportion of
datasets for which the exact method found a more accurate distance than our
greedy algorithm. Results are averaged over all datasets showing a comparable
number of rearrangement events.
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Fig. 5. Comparison of the greedy heuristic with the exact approach, showing the error
rate of the inferred rearrangement distance for circular (Left) and multichromosomal
genomes (Right).

As observed in Figure 5, the error rate of the greedy approach is close to
0 when the number of rearrangements is less than 25. Notice that the distance
inferred by the greedy algorithm is in average really close to the optimal distance
for both types of genomes (circular and multichromosomal). Moreover, when the
distance is not the same, it differs only by 1 rearrangement. Naturally, the error
rate of the greedy approach is more apparent when the number of rearrange-
ments increases. This behavior is due to the fact that when a high number of
rearrangements is performed, different cycles of equal size can be selected and a
choice must be made affecting the remaining set of cycles. As stated before, in



this experiment we seek to optimize the rearrangement distance, but we obtain
similar results if we seek to optimize the DCJ distance (results not shown).

Complex datasets. As a final experiment, simulations were performed with n =
1000, N = 8 and µ varying from 0 to 1000. The distances obtained with our
greedy approach are compared with µ. Results shown in Figure 6 demonstrate
that our method infers distances close to the number of rearrangement events
performed on the original genome (for circular and multichromosomal genomes).
However, when the number of rearrangement events increases, our approach
underestimates that value. As in the comparison with the exact approach, the
results are similar with the DCJ distance (not shown).
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Fig. 6. Inferred rearrangement distances with complex datasets for circular genomes
(Left) and multichromosomal genomes (Right).

6 Conclusion

We presented a linear time algorithm to solve the genome halving problem for
genomes with missing gene copies. We also presented a greedy heuristic to com-
pute the distance between an RD genome and a duplicated genome for the rear-
rangement and DCJ distances. Our experiments on simulated datasets showed
that our greedy approach is time-efficient and accurate.

The proposed heuristic for the double distance could be easily generalized to
compute the distance between two RD genomes. Moreover, it could be adapted to
genomes that have undergone more than one WGD, thus increasing the running-
time complexity as the number of possible labelings for a gene would increase.
Our algorithm could then be used for the rearrangement phylogeny problem with
genomes that have evolved through one or more whole genome duplications
(without gene losses). Indeed, this method would allow to compute distances
efficiently on all branches of such a phylogeny and consequently, an algorithm
for the median problem could be used on the tree.

However, there is evidence of massive gene losses in lineages that have un-
dergone a whole genome duplication event [11]. Thus, another interesting future
work will concern the generalization of Algorithm Complete-Graph(G,D) to an



RDL genome G. Note that the approach of Algorithm dedouble-RDL can not be
used directly (i.e. removing the singleton genes from G and the corresponding
copies in D, and reinserting them after having completed the breakpoint graph)
because of the constraints imposed by the duplicated genome D.
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