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Abstract. Given a phylogenetic tree T for a family of tandemly re-
peated genes and their signed order O on the chromosome, we aim to
find the minimum number of inversions compatible with an evolutionary
history of this family. This is the first attempt to account for inver-
sions in an evolutionary model of tandemly repeated genes. We present
a time-efficient branch-and-bound algorithm and show, using simulated
data, that it can be used to detect “wrong” phylogenies among a set
of putative ones for a given gene family. An application on a published
phylogeny of KRAB zinc finger genes is presented.
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1 Introduction

A large fraction of most genomes consists of repetitive DNA sequences. In mam-
mals, up to 60% of the DNA is repetitive. A large proportion of such repetitive
sequences is organized in tandem: copies of a same basic unit that are adjacent
on the chromosome. The duplicated units can be small (from 10 to 200 bps) as
it is the case of micro- and minisatellites, or very large (from 1 to 300 kb) and
potentially contain several genes. Such large segment duplication is a primary
mechanism for generating gene clusters on chromosomes.

Many gene families of the human genome are organized in tandem, including
HOX genes [31], immunoglobulin and T-cell receptor genes [21], MHC genes [20]
and olfactory receptor genes [11]. Reconstructing the duplication history of each
gene family is important to understand the functional specificity of each copy,
and to provide new insights into the mechanisms and determinants of gene du-
plication, often recognized as major generators of novelty at the genome level.

Based on the initial evolutionary model of tandemly repeated sequences in-
troduced by Fitch [9], a number of recent studies have considered the problem
of reconstructing a tandem duplication history of a gene family [5–7, 16, 28, 32].
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These are essentially phylogenetic inference methods using the additional con-
straint that the resulting tree should induce a duplication history concordant
with the given gene order. When a phylogeny is already available, a linear-time
algorithm can be used to check whether it is a duplication tree [32]. However,
even for gene families that have evolved through tandem duplications, it is often
impossible to reconstruct a duplication history [7]. This can be explained by the
fact that the duplication model is oversimplified, and other evolutionary events
have occurred, such as gene losses or genomic rearrangements.

Evidence of gene inversion is observed in many tandemly repeated gene fam-
ilies, such as zinc finger (ZNF) genes, where gene copies have different tran-
scriptional orientations [25]. Although genome rearrangement with inversions
has received large attention in the last decade [14, 17, 4, 26, 2], beginning with
the polynomial-time algorithm of Hannenhalli and Pevzner for computing the
reversal distance between two signed gene orders [14], inversions have never been
considered in the context of reconstructing a duplication history from a gene tree.
In the case of general segmental duplications (not necessarily in tandem), poten-
tial gene losses have been considered to explain the non congruence between a
gene tree and a species tree [12, 19, 18, 3]. Similarly, in the case of tandem dupli-
cation, the non-congruence between a gene tree and an observed gene order can
be naturally explained by introducing the possibility of segmental inversions.

In this paper, our goal is to infer an evolutionary history of a gene fam-
ily accounting for both tandem duplications and inversions. As the number of
such possible evolutionary histories may be very large, we restrict ourselves to
finding the minimum number of inversions required to explain a given ordered
phylogeny. As a first attempt, we only considered tandem duplications involving
single genes. Though the model described by Fitch [9] allows for simultaneous
duplications of several gene copies, single duplications are known to be predom-
inant over multiple duplications [1, 9, 28].

After describing the evolutionary models in section 2 and the optimization
problem in section 3, we present our main branch-and-bound algorithm in sec-
tion 4. Finally, in section 5, we test the algorithm’s time-efficiency on simulated
data and show its usefulness to detect, among a set of possible phylogenies, the
“wrong” ones. An application on KRAB zinc finger genes is presented.

2 The Evolutionary Model

2.1 Duplication Model

This model, first introduced by Fitch [9], is based on unequal recombination
during meiosis, which is assumed to be the sole evolutionary mechanism (except
point mutations) acting on sequences. Consequently, from a single sequence, the
locus grows through a series of consecutive duplications, giving rise to a sequence
of n adjacent copies of homologous genes having the same transcriptional ori-
entation. We denote by O = (l1, · · · ln) the observed ordered sequence of extant
gene copies.
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A tandem duplication history (or just duplication history for brevity) is the
sequence of tandem duplications that have generated O. It can be represented by
a rooted tree with n ordered leaves corresponding to the n ordered genes, in which
internal nodes correspond to duplication events (Figure 1.a). Duplications may
be simple (duplication of a single gene) or multiple (simultaneous duplication of
neighboring genes). In this paper, we only consider simple duplications.
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Fig. 1. (a) Duplication history; each segment represents a copy. (b) The unrooted
duplication tree corresponding to history (a). (c) The duplication tree corresponding
to history (a).

In a real duplication history, the time intervals between consecutive duplica-
tions are known, and the internal nodes are ordered from top to bottom according
to the moment they occurred in the course of evolution. However, in the absence
of a molecular clock mode of evolution, it is impossible to recover the order of
duplication events. All we can infer from gene sequences is a phylogeny with or-
dered leaves (Figure 1.b). Formally, an ordered phylogeny is a pair (T, O) where
T is a phylogeny and O is the ordered sequence of its leaves. According to this
model, all the genes have the same transcriptional orientation.

If an ordered phylogeny (T, O) can be explained by a duplication history H,
we say that (T, O) is compatible with H, and that H is a duplication history of
(T, O). If (T, O) is compatible with at least one duplication history, it is called
a duplication tree. Choosing appropriate roots for unrooted duplication trees is
discussed in [10] (Figure 1.c).

In the rest of this paper, a duplication tree will refer to a simple rooted
duplication tree, that is a rooted duplication tree that is compatible with at
least one history involving only simple duplications. Unless otherwise stated, all
the phylogenies are rooted.

2.2 A Duplication/Inversion Model

Many tandemly repeated gene families contain members in both transcriptional
orientations. The simple duplication model is thus inadequate to describe their
evolution. To circumvent this limitation, we propose an extended model of du-
plication which includes inversions. Thereafter, the transcriptional orientations
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of the genes in a signed ordered phylogeny (T, O) are specified by signs (+/−)
in O. Thus O is formally a signed permutation of the leaves of T . We denote by
dinv(Oi, Oj) the inversion distance between the two signed permutations Oi and
Oj . Note that a signed ordered phylogeny (T, O) cannot be a duplication tree
unless all the genes in O have the same sign (although this is not a sufficient
condition).

Definition 1. A simple duplication/inversion history (or just dup/inv history)
of length k is an ordered sequence Hk = ((T1, O1), ..., (Tk−1, Ok−1), (Tk, Ok))
where :

1. Every (Ti, Oi) is a signed ordered phylogeny.
2. T1 = v is a single leaf phylogeny and O1 = (±v) one of the two trivial orders.
3. For 0 < i < k,

– if Ti+1 = Ti, then dinv(Oi, Oi+1) = 1. This corresponds to one inversion
event.

– if Ti+1 6= Ti, then Ti+1 is obtained from Ti by adding two children u and
w to one of its leaf v. In this case Oi+1 is obtained from Oi by replacing
±v by (±u,±w). This corresponds to a simple duplication event.

3 An Inference Problem

A signed ordered phylogeny is not necessarily compatible with a duplication
history. The following lemma shows that additional inversions can always be
used to infer a possible evolutionary history for the gene family.

Lemma 1. A signed ordered phylogeny (T, O) is compatible with at least one
simple duplication/inversion history.

Proof. According to Definition 1, obtain a duplication tree (T, O′) by successive
duplication events. Then, transform O′ into O by applying the required inver-
sions. �

As the number of possible dup/inv histories explaining (T, O) can be very
large, we restrict ourselves to finding the minimum number of events involved in
such evolutionary histories. More precisely, as the number of simple duplications
is fixed by T , we are interested in finding the minimum number of inversions
involved in a dup/inv history. The next theorem shows that if i is the mini-
mum number of inversions needed to transform O into O′ such that (T, O′) is a
duplication tree, any dup/inv history of (T, O) contains at least i inversions.

Theorem 1. Let (T, O) be a signed ordered phylogeny. For any dup/inv history
H with i inversions leading to (T, O), there exists a duplication tree (T, O′) such
that dinv(O, O′) ≤ i.

Proof by induction.
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– Base case: Let H1 = (T1, O1) be a dup/inv history with no duplication or
inversion. Clearly (T, O′) = (T1, O1) is a duplication tree.

– Induction step (on the number k of events):
Let Hk+1 = ((T1, O1), ..., (Tk, Ok), (Tk+1, Ok+1)) be a dup/inv history in-
volving k +1 events and i inversions and Hk = ((T1, O1), ..., (Tk, Ok)). From
Definition 1, there are two possibilities:

• If Tk+1 = Tk, then the last event is an inversion, and Hk is a dup/inv
history involving i − 1 inversions. By induction hypothesis, there exists
a duplication tree (Tk, O′

k) such that dinv(Ok, O′

k) ≤ i − 1. Let Ok+1 be
the order obtained from Ok by applying the last inversion. Then we have
dinv(Ok+1, O

′

k) ≤ dinv(Ok , O′

k) + 1 ≤ i.
• If Tk+1 6= Tk, the last event is a duplication, that is a leaf ±v of (Tk, Ok)

is replaced by two consecutive leaves (±u,±w) in (Tk+1, Ok+1). Let
(Tk, O′

k) be the duplication tree associated to Hk and suppose that all
elements of O′

k are positive. If we have +v in Ok, we obtain O′

k+1
by

replacing +v by (+u, +w) in O′

k. Otherwise we have −v in Ok and we ob-
tain O′

k+1
by replacing +v by (+w, +u) in O′

k. Thus, dinv(Ok+1, O
′

k+1
) =

dinv(Ok, O′

k) ≤ i and (Tk+1, O
′

k+1
) is a duplication tree. The case where

the elements of O′

k have a negative sign is similar. �

Corollary 1. Let (T, O) be a signed ordered phylogeny and (T, O′) a duplication
tree such that dinv(O, O′) = i is minimum. There exists a dup/inv history H for
(T, O) with exactly i inversions, which is optimal.

Proof. The existence of H for (T, O) with exactly i inversions follows directly from
the proof of Lemma 1. The number i of inversions in H must be optimal, other-
wise, from Theorem 1, it would contradicts the hypothesis that dinv(O, O′) = i

is minimum. �

Corollary 1 allows to reformulate our problem in the following way :

Minimum-Inversion Duplication problem

Input: A signed ordered phylogeny (T, O),
Output: An order O′ such that (T, O′) is a duplication tree and dinv(O, O′) is
minimal.

4 A Branch-and-Bound Algorithm

We begin by briefly summarizing the Hannenhalli-Pevzner method [14], as it will
be used in our approach.

4.1 Hannenhalli-Pevzner (HP) Algorithm

Given two signed permutations O, O′ of size n on the same set of genes, the
problem is to find the minimal number dinv(O, O′) of inversions required to
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transform O to O′ (or similarly O′ to O). The algorithm is based on a bicolored
graph, called the breakpoint graph, constructed from the two permutations as
follows: if gene x of O has a positive sign, replace it by the pair xtxh, and if it is
negative, by xhxt. Then the vertices of the graph are just the xt and the xh for
all genes x. The graph contains two classes of edges: the real and desired edges
(as named in [24]). Any two vertices which are adjacent in O, other than xt and
xh deriving from the same x, are connected by a real edge, and any two adjacent
in O′, by a desired edge. This graph decomposes naturally into a set of c disjoint
color-alternating cycles. An important property of the graph is its decomposition
into components, where a component is a maximal set of “crossing” cycles.

Based on this graph, the inversion distance can be computed according to
the following formula [14]:

dinv(O, O′) = n + 1 − c + h + f,

where h and f are quantities related to the presence of “hurdles” (components
of a particular type). As the probability for a component to be a hurdle is low,
h and f are usually close to 0. Therefore, the number of cycles c is the dominant
parameter in the formula. In other words, the more cycles there are, the less
inversions we need to transform O into O′.

4.2 Enumerating the Compatible Orders

We say that an order O′ is compatible with a phylogeny T iff (T, O′) is a duplica-
tion tree. To enumerate all the orders compatible with T , we associate a binary
variable bi to each internal node i of T . Each bi defines an order relation between
the left and right descendant leaves of i. By setting bi to 0, we make all the left
descendants smaller than the right ones. Conversely, by setting bi to 1, all left de-
scendants are considered larger than the right ones (see Figure 2.a.b). Assigning
a value to all internal nodes of T defines a total order O′ on its leaves: the order
between two leaves is determined by the bi value of their closest common ances-
tor. Otherwise, the order is partial since some pairs of leaves are incomparable.
We will denote such a partial order as O∗. Note that every such order admits
two transcriptional orientations according to our definition of a duplication tree.

Lemma 2. An order O′ is compatible with T iff it is defined by an assignment
of all the binary variables bi in T and all the genes have the same sign.

Therefore, if n is the number of leaves in T , there are 2n−1 possible assign-
ments of the bi variables, each with two possible transcriptional orientations.
This leads to 2n distinct orders O′ compatible with T . Hereafter, for clarity of
presentation, we will only consider one of the two orientations.

4.3 A Lower Bound for the Inversion Distance

To avoid computing dinv(O, O′) for each of the 2n orders O′ compatible with T ,
we consider a branch-and-bound strategy similar to the one used in [33]. The
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Fig. 2. (a) A phylogeny with an appropriate depth-first labeling of the internal nodes;
(b) The duplication tree corresponding to an assignment of the bi variables of (a);
(c) The breakpoint graph illustrating the difference between the gene order O′ =
(1, 3, 2, 4) obtained from the duplication tree (b) and the gene order O = (1, 2,−3, 4)
observed in the genome. Desired edges (curved edges) are added in the same order as
the corresponding bi values (b1 then b2 then b3). For simplicity, the genome is assumed
to be circular (gene 1 next to gene 4).

idea is to compute a lower bound on dinv(O, O′) as we progressively define O∗

by updating the breakpoint graph of (O, O∗). In order to progressively construct
this graph, it is essential to define the bi values in a depth-first manner according
to T : the binary variables of all the descendant nodes of i should be defined before
bi. This insures that the two subtrees of i have a total order on their leaves.

Consequently, if we set bi to 0, the greatest left descendant leaf lmax of
node i will immediately precedes its smallest right descendant leaf rmin in O′.
Conversely, if bi is set to 1, the greatest right descendant rmax will immediately
precede the smallest left descendant lmin. Therefore, the assignment of a bi value
allows us to add a desired edge in the breakpoint graph between lmax and rmin

(or rmax and lmin) (see Figure 2.c).
Let O∗ be the partial order obtained at a given stage of the procedure. Let e

be the number of cycles and p the number of paths of the corresponding partial
graph. The remaining desired edges can create at most p cycles, ending with a
breakpoint graph with at most c = e + p cycles. Thus, any total order O′ that
can be obtained from the partial order O∗ is such that:

dinv(O, O′) = n + 1 − c + h + f ≥ n + 1 − c ≥ n + 1 − p − e = d∗

inv(O, O∗).

The branch-and-bound algorithm proceeds as follows. An initial assignment
of all binary variables is considered and the corresponding inversion distance is
computed. Each following step re-assigns the binary variables in a depth-first
manner. At each step, we backtrack to the last node (closest to the root) that
has not been re-assigned yet. The re-assignment procedure continues as long as
the partial order O∗ obtained is such that d∗

inv(O, O∗) < mininv , where mininv is
the lowest inversion distance obtained from the previous steps. This is justified
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by the fact that any total order that can be obtained from O∗ cannot be smaller
than the current best value. Every time we reach a leaf, we use the HP algorithm
to compute the exact reversal distance dinv(O, O′).

5 Results

5.1 Branch-and-Bound Efficiency

To test the efficiency of the branch-and-bound algorithm, we generated 3 sets of
500 phylogenies each with respectively 10, 20 and 40 leaves using r8s [23]. We
then defined arbitrarily compatible orders to obtain a total of 1,500 duplication
trees. For each of them, we performed 1, 2, 4 and 8 inversions to obtain 12
datasets containing a total of 6,000 signed ordered phylogenies which are no
longer duplication trees.

We applied our algorithm on each dataset and measured the execution time
(on a Pentium 4) and the average fraction of nodes explored in the search space.
Results are given in Table 1. We observe that the algorithm is very efficient and
can be used on relatively important phylogenies within reasonable time.

Table 1. Average fraction of nodes explored in the search tree during the branch-and-
bound / Execution time (in seconds) for the 500 signed ordered phylogenies.

1 inversion 2 inversions 4 inversions 8 inversions

10 leaves 1 × 10−2 / 13 2 × 10−2 / 20 6 × 10−2 / 35 0.1/51
20 leaves 3 × 10−5 / 15 8 × 10−5 / 20 2 × 10−4 / 37 2 × 10−3 / 90
40 leaves 7 × 10−11 / 17 2 × 10−10 / 24 1 × 10−9 / 39 2 × 10−8 / 112

5.2 Application on simulated data

We applied our algorithm on simulated data to verify how it could be used to
validate inferred phylogenies on tandemly repeated gene families. Using the sim-
ulation protocol described in the previous section, we randomly generated 500
duplication trees with 15 leaves. For each one of them we performed 0, 2, 4
and 6 inversions to obtain 4 datasets containing a total of 2,000 signed ordered
phylogenies. These are the observable states (Ttrue, O) resulting from “true” du-
plication/inversion histories. For each Ttrue, we then randomly generated two
“wrong” (but close) phylogenies Twrong, that can be obtained by applying re-
spectively one or two Nearest Neighbor Interchange rearrangements (NNI) [27].
Those “wrong” phylogenies can be seen as the ones we could obtain from bio-
logical data when a few nodes have weak statistical support. Finally, we used
our algorithm to compute the minimum number of inversions inv() necessary
in a simple duplication/inversion history to explain each (Ttrue, O) and all its
corresponding Twrong. The averaged results are presented in Table 2.

Results can be interpreted as follows. For a wrong phylogeny Twrong, 50%
of the time on average our algorithm reports an excess of inversions, otherwise
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Table 2. Percentage of times inv(Twrong, O) is less, equal or greater than inv(Ttrue, O).
Averaged over all possible neighbors for each of the 500 phylogenies.

Trees distant from one NNI Trees distant from two NNI
inv(Twrong, O) 0 inv. 2 inv. 4 inv. 6 inv. 0 inv. 2 inv. 4 inv. 6 inv.

< inv(Ttrue, O) 0.0 0.2 0.8 1.6 0.0 0.2 0.08 1.6
= inv(Ttrue, O) 49.0 50.4 57.6 68.0 36.6 35.0 41.2 54.4
> inv(Ttrue, O) 51.0 49.4 41.6 30.4 66.4 64.8 58.0 44.0

it reports the same number of inversions compared to the true phylogeny Ttrue.
Suppose that we are presented some ordered phylogenies. One is correct and the
others differ by a few NNIs. According to Table 2, for wrong trees, the algorithm
almost always reports the same number of inversions or more as in the true tree.
Thus, choosing the phylogeny with the lowest number of inversions is either
a winning strategy (roughly 50% of the time) or useless, but is almost never
misleading. Of course, this ability to discard wrong phylogenies decreases as the
true number of inversions increases.

5.3 Application on biological data

The KRAB-zinc finger gene family encodes for transcription factors. It contains
more than 400 active members physically grouped into clusters. In a recent
study [13], Hamilton et al. proposed a phylogeny of the primate specific ZNF91
sub-family based on their tether3 and flanking sequences. This phylogeny (ob-
tained by Neighbor-Joining [22]) contains a monophyletic group of 6 genes clus-
tered at the telomere of HSA4p, which may have been derived from a single
ancestor through successive tandem duplications.

We applied our algorithm on this cluster using the proposed phylogeny, and
found that a duplication/inversion history would require at least 4 inversions,
which seems relatively high considering that only 6 genes are involved.

To test whether a “better” phylogeny could be proposed, we used the Mr-
Bayes software [8] to obtain a sample from the posterior probability distribution
of all possible phylogenies. The tether (+100 flanking bp) sequences were down-
loaded from the Human KZNF Gene Catalog4 [15] and aligned using ClustalW
[29] with default settings. The ZNF160 tether sequence was used as an outgroup
to obtain a rooted tree. We performed 500,000 MCMC generations with MrBayes
under the GTR model [30] and a gamma-shaped rate variation with a propor-
tion of invariable sites. Convergence was easily attained and the experiment was
repeated three times with similar results. Finally we applied our algorithm on
the sampled phylogenies and observed that the best one (p=0.4) is compati-
ble with an optimal duplication/inversion history involving only two inversions.
Phylogenies are presented in Figure 3.

3 The region upstream from the first finger.
4 http://znf.llnl.gov/catalog/
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Fig. 3. Different phylogenies for the ZNF141 clade on human chromosome 4, with the
associated minimal number of inversions in a dup/inv history. The black vertical lines
represent an optimal sequence of inversions leading to the signed gene order observed on
the chromosome: (+ZNF595,+ZNF718,+L1073,−ZNF732,+ZNF141,−ZNF721). (a)
The phylogeny published in [13] requires 4 inversions, which is relatively high for
6 genes; (b,c,d) The 3 best phylogenies we obtained with MrBayes, and their associ-
ated probabilities. The first two ones require only 2 inversions, which is optimal for
this order. The position of the root was determined using ZNF160 as an outgroup.
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6 Conclusion

This work represents the first attempt to account for inversions in an evolution-
ary model of tandemly repeated genes. We presented a time-efficient branch-and-
bound algorithm for finding the minimal number of inversions in an evolutionary
history of a gene family characterized by an ordered phylogeny. Though only sim-
ple duplications were considered here, the model has been shown useful to select
an appropriate phylogeny among a set of possible ones. These are encouraging
results that motivate further extensions.

The next step of this work will be to account for multiple duplications in
the evolutionary model. Another important generalization will be to consider a
family of tandemly duplicated genes with orthologs in two or more genomes. For
example, Shannon et al. [25] identified homologous ZNF gene family regions in
human and mouse. A phylogenetic tree involving such tandemly repeated genes
in human and mouse clusters was established. It would be of major interest to
develop an algorithm allowing to explain such a phylogeny based on an evolu-
tionary model involving tandem duplication, inversion and speciation events.
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