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Abstract. Tandemly arrayed genes (TAG) constitute a large fraction of most genomes and play impor-
tant biological roles. They evolve through unequal recombination, which places duplicated genes next
to the original ones (tandem duplications). Many algorithms have been proposed to infer a tandem
duplication history for a TAGs cluster in a single species. However, the presence of different tran-
scriptional orientations in most TAGs clusters highlight the fact that processes such as inversion also
contribute to their evolution. This makes those algorithms inapplicable in many cases. To circumvent
this limitation, we proposed an extended evolutionary model which includes inversions and presented
a branch-and-bound algorithm allowing to infer a most parsimonious scenario of evolution for a given
TAGs cluster. Here, we generalize this model to multiple species and present a general framework to
infer ancestral gene orders that minimize the number of inversions in the whole evolutionary history.
An application on a pair of human-rat TAGs clusters is presented.

1 Introduction

A multigene family is a set of genes that have evolved by duplication from a common ancestral
gene, and share a similar sequence and usually a similar function. Members of a gene family in a
given genome may appear in clusters, or scattered in a single or many chromosomes. In this paper,
we focus on families of tandemly arrayed genes (TAG): copies that are adjacent on the chromosome.
TAGs have been shown to represent a large proportion of genes in a genome. In particular, they
represent about 14-17% of all genes in human, mouse and rat [24]. Clusters of TAGs may vary in
length from two to hundreds genes, though small clusters are largely predominant (an average of 3
to 4 genes in mouse, rat and human) [24]. They are involved in many different functions of binding
or receptor activities. In particular, the olfactory receptor genes constitute the largest multigene
family in the vertebrate genome, with several hundred genes per species [21]. Other families of
TAGs include the HOX genes [29], the immunoglobulin and T-cell receptor genes [1], the MHC
genes [15] and the ZNF genes encoding for transcription factors [23].

TAGs are widely viewed as being generated solely by tandem duplications resulting from unequal
recombination [13] or slipped strand mispairing [2]. Such mechanisms have the effect of generating
sequences of repetitive units with the same transcriptional orientation. However, it is not infrequent
to observe TAGs with different orientations. In particular, Shoja and Zhang [24] have observed
that more than 25% of all neighboring pairs of TAGs in human, mouse and rat have non-parallel
orientations. This underlines the fact that other rearrangement mechanisms such as inversions
should be considered in an evolutionary model of TAGs.

Based on the unequal recombination model of evolution, a large number of studies have con-
sidered the problem of reconstructing a tandem duplication history of a TAGs family [4, 9, 10, 25].
These are essentially phylogenetic inference methods using the additional constraint that the re-
sulting tree should induce a duplication history according to the given gene order. When a gene
tree is already available for a gene family, a linear-time algorithm can be used to check whether it
is a duplication tree [30]. However, it is often impossible to reconstruct a duplication history [14],
due to other evolutionary events such as gene losses or genomic rearrangements [8]. In [5] we have
considered an evolutionary model accounting for both tandem duplications and inversions. Given a



gene tree for a family of TAGs, we developed an algorithm allowing to find the minimum number
of inversions in any possible evolutionary scenario for this family.

All the above methods are restricted to the analysis of TAGs located on a single chromosome
(and thus in a single species). However, the increasing availability of complete genomic sequences
and of many different TAGs databases [21, 27] makes it possible to study the evolution of gene
families with members belonging to different species. Such a global evolutionary study may help
deciphering the common origins of TAGs, highlighting the inter-species differences and identifying
the genetic basis of species-specific features. Various phylogenetic studies have been conducted by
biological groups on different TAGs families such as the Zinc-Finger transcription factors in human
and mouse [23], and the olfactory receptor genes in various mammalian species [21]. However no
rigorous approach has been developed so far to explain the non agreement between a given gene
tree of a TAGs family and a duplication and speciation history.

In this paper, we consider an evolutionary model of TAGs accounting for duplication, speciation,
gene loss and inversion events. This is a generalization of [5] to TAGs located on different genomes.
More precisely, given a gene tree for a family of TAGs and their signed order on the genomes
(chromosomes or clusters), we aim to find an evolutionary scenario involving the minimum number
of inversions, and the corresponding gene orders of the ancestral genomes. The Fitch model allows
for the simultaneous duplication of several gene copies, but there are now evidence that simple
duplications are predominant over multiple duplications [4, 29]. As a first attempt, we only consider
simple duplications.

This paper is organized as follows. After describing the evolutionary models in Section 2, we
present the general problem in Section 3. It is related to the more classical one of inferring the
gene order of the ancestral genomes in a species tree minimizing a given genomic distance [20, 22].
In Section 3.1, we present an algorithm to infer the most parsimonious scenario of inversion on a
single branch of the species tree. In Section 3.2, we present a simple iterative method used to infer
the ancestral gene orders minimizing the total number of inversions in a species tree. It is based on
the median problem, for which we propose a branch-and-bound algorithm in Section 3.3. Finally,
in Section 4, we test the algorithm’s time-efficiency on simulated data, and present an application
on a pair of human-rat TAGs clusters.

2 The evolutionary model

The classical model of evolution considered for TAGs is based on tandem duplications resulting from
unequal recombination during meiosis. The later is assumed to be the sole evolutionary mechanism
(except point mutations) acting on sequences. Formally, from a single ancestral gene at a given
position in the chromosome, the locus grows through a series of consecutive duplications placing
the created copy next to the original one. Such tandem duplications may be simple (duplication of
a single gene) or multiple (simultaneous duplication of neighboring genes). In this paper, we only
consider simple duplications. From now on, a duplication will refer to a simple tandem duplication.

The former model of evolution applies only on a family of TAGs all located on the same chro-
mosome and having the same transcriptional orientation. In particular, it is inadequate to describe
the evolution of a TAGs family containing members on both DNA strands. To circumvent this
limitation, we have proposed, in [5], an extended model of duplications including inversions. In this
paper, we further extend the model to account for several genomes.

Consider a family of TAGs located on m different genomes. In addition to the TAGs orders
on each genome, all we can infer from the gene sequences is a gene tree representing the global
evolution of the gene family. Formally, an ordered gene tree is a set (T,O), where T is a gene tree
of the TAGs family and O = (O1, O2, · · ·Om) where Oi is the signed order of the family members



in genome i, for 1 ≤ i ≤ m. Thereafter, the transcriptional orientations of the genes in an ordered
gene tree (T,O) are specified by signs (+/−) in each Oi. We denote by dinv(Oi, Oj) the inversion
distance between the two signed permutations Oi and Oj . Such a distance can be computed using
the original Hannenhalli and Pevzner algorithm[16], or any of the existing optimizations [3, 18, 26].

An ordered gene tree (T,O) can always be explained by a history H involving duplication, gene
loss, speciation and inversion events (DLSI history), as stated in Lemma 1 below. We say that H
is a DLSI history of (T,O), and that (T,O) is compatible with H. Hereafter, we begin by formally
defining a DLSI history (see Figure 1 for an illustration).

Definition 1. Let H = ((T 1,O1), · · · (T k,Ok), · · · (T n−1,On−1), (T n,On)) be a sequence of n or-
dered gene trees. For each k, 1 ≤ k ≤ n, we denote by mk the number of genomes represented in
T k, and by Ok

i the gene order in genome i, for 1 ≤ i ≤ mk.

We say that H is a DLSI history if and only if:

1. T 1 = v is the single leaf gene tree and O1 = (O1
1) = (±v) is one of the two trivial orders;

2. For 1 < k < n, one of the four following situations hold:
a. Duplication event: There is an i, 1 ≤ i ≤ mk, such that T k+1 is obtained from T k by adding

two children u and w to a leaf v belonging to genome i. Moreover:
– mk+1 = mk;
– Ok+1 is obtained from Ok by replacing ±v by (±u,±w) in Ok

i .
b. Gene loss event: There is an i, 1 ≤ i ≤ mk, such that T k+1 is obtained from T k by removing

a leaf v belonging to genome i. Moreover: If v was the only leaf in Ok
i , mk+1 = mk − 1.

Otherwise, Ok+1

i is obtained from Ok
i by deleting v and mk+1 = mk.

c. Inversion event: T k+1 = T k and there is an i, 1 ≤ i ≤ mk, such that dinv(O
k
i , Ok+1

i ) = 1.
Moreover, Ok+1

j = Ok
j for j 6= i and mk+1 = mk.

d. Speciation event: There is an i, 1 ≤ i ≤ mk, such that T k+1 is obtained from T k by adding
two children u and w to each leaf v belonging to genome i. Moreover:
– mk+1 = mk + 1;
– Ok+1 is obtained from Ok by dedoubling the order Ok

i .

Any DLSI history H induces a unique species tree S obtained from the speciation events of H.
We say that H is consistent with S (see Figure 1).

Let (T,O) be an ordered gene tree for a family of TAGs on m genomes. Suppose that a species
tree is already known for the m genomes. Then a natural problem is to find a DLSI history of
(T,O) that is consistent with S. The existence of such a history is stated in Lemma 1. It follows
from the existence of a duplication/speciation/loss history in the more general case of non-ordered
gene families generated by general duplications, e.g. not necessarily in tandem. More precisely,
given a gene tree T for a set of (unsigned) genes located on m genomes, and a species tree S for
these genomes, the classical reconciliation approach [7, 11, 19] infers a duplication/speciation/loss
history, involving a minimum number of gene losses, that has led to the gene tree T . It is based on
a particular mapping (the LCA mapping) from the vertices of T to the vertices of S. Moreover, it
infers the gene contents in the ancestral species preceding each speciation event.

Lemma 1. Given an ordered gene tree (T,O) on m genomes and a species tree S for the m

genomes, there is at least one DLSI history H of (T,O) consistent with S.

Proof. Obtain a sequence of duplications (not necessarily in tandem), gene losses and spe-
ciations from the reconciliation of T and S. From that sequence, construct a DLSI history
H′ = ((T 1,Q1), · · · , (T n = T,Qn) by applying the corresponding rules in definition 1 (case a,b
or d). Then, obtain H from H′ by appending the inversions required to transform Qn in O (case c
in definition 1) 2
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Fig. 1. A DLSI history. Transcriptional orientations are indicated by signs, duplications by bold lines, gene losses by
’X’ and inversions by dashed lines. The resulting TAGs orders are denoted as ik meaning “gene i in genome k”. For
clarity, we omitted successive identical configurations in each lineage. The induced species tree for the three genomes
is given right.

From the general case of Definition 1, we also introduce the following restricted evolutionary
history: A Duplication/Inversion history (DI history) is an evolutionary history of TAGs in one
species involving only duplication and inversion events (case a and c of Definition 1).

3 An inference problem

In the present study, we are given an ordered gene tree (T,O) of a TAGs family on m genomes, and
we assume that a species tree S is known for the m genomes (in the case of an unknown species
tree, we can take advantage of our algorithm presented in [6] that infers a speciation tree leading
to the minimum number of gene losses).

As the number of possible DLSI histories of (T,O) consistent with S is unlimited, we restrict
ourselves to finding a most parsimonious sequence of evolutionary events leading to the observed
ordered gene tree. Moreover, if the gene tree T is not compatible with a history of duplication and
speciation consistent with S, then the reconciliation method allows to create a new gene tree T ′

that is compatible with a duplication and speciation history consistent with S. This is done by
performing a minimum number of subtrees insertions in T , where each subtree insertion represents
a gene loss in an ancestral genome. However, when the gene order is important (in the case of an
ordered gene tree), as no order is known for the hypothetical “inserted” genes, the only information
resulting from the reconciliation analysis that is of interest is the set of ancestral genes, and the
localization of gene losses. In other words, we construct, T ′′ from T ′ by keeping the roots of the
inserted subtrees. Formally, a reconciled gene tree is a tree where each internal node has exactly
one or two children, and an ordered reconciled gene tree is just a reconciled gene tree with ordered
leaves (see Figure 2).

It follows from the previous developments that the problem of interest reduces to the one of
finding the ancestral gene orders that minimize the total number of inversions involved in a DLSI
history of (T,O). Formally, the considered problem is the following:

Minimum-DLSI problem

Input: An ordered reconciled gene tree (T,O).
Output: A gene order for each ancestral genome inducing a history of minimum inversions.
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Fig. 2. The ordered reconciled gene tree induced by the DLSI history of Figure 1, with an arbitrary gene order at
each ancestral genome preceding each speciation event. The gene tree is ”embedded” in the species tree. The dashed
gene in genome M indicates a loss of its descendants in lineage B.

A DLSI history H can be seen as a set of DI histories embedded in the species tree S. Each
such individual history correspond to a branch of the species tree (see Figure 2). The next section
focuses on a single branch of the species tree.

3.1 The generalized Minimum-DI problem

This problem is a generalization of the Minimum-DI problem we presented in [5], which consists in
finding the minimum number of inversions required to explain a single “rooted” ordered gene tree.
Here the goal is to find the minimum number of inversions required to explain an ordered forest of
gene trees, associated to a given branch of the species tree (see Figure 2 and 3a). Formal definitions
follow.

Definition 2. An ordered forest of gene trees (F,R,O) is a set of n gene trees F = {T1, T2, · · · Tn}
rooted at R = {r1, r2 · · · rn} (ri is the ancestral gene that gave rise to Ti) with an order O on the
set of leaves of F . When an ancestral order OR is imposed on R, we use the notation (F,OR, O).

Definition 3. Let OR = (r1, r2 · · · rn) be an ordered sequence of roots, and O1 = (o1, o2, · · · on)
be an ordered sequence of genes such that, for each 1 ≤ i ≤ n, oi is a direct descen-
dant of ri. A partial DI history rooted at OR is a sequence of ordered forests of gene trees
H = ((F1, OR, O1), ..., (Fk−1, OR, Ok−1), (Fk, OR, Ok)) where (F1 is just a set of single leaf gene
trees, and for 0 < i < k:

1. Inversion event: If Fi+1 = Fi, then dinv(Oi, Oi+1) = 1.
2. Duplication event: If Fi+1 6= Fi, then Fi+1 is obtained from Fi by adding two children u and w

to one of its leaf v, and Oi+1 is obtained from Oi by replacing v by (u,w), where u and w have
the same sign as v.

Moreover, a partial duplication history is a partial DI history restricted to duplication events.

A partial duplication history gives rise to a duplication forest, defined as follows.

Definition 4. A duplication forest is an ordered forest of gene trees (F,OR, O) which contains
only duplications trees, and such that for every pair of roots ri, rj in R, if ri precedes rj in OR,
then all the leaves of Ti precedes all the leaves of Tj in O. Moreover, the leaves of each Tk in F ,
must have the same sign as rk.



The following theorem is a generalization of the result obtained in [5] for a single ordered gene
tree.

Theorem 1. Let (F,OR, O) be an ordered forest of gene trees and (F,OR, O′) be a duplication
forest such that dinv(O,O′) = i is minimum. Then there exists a partial DI history of (F,OR, O)
with exactly i inversions. Moreover, i is the minimum number of inversions involved in any partial
DI history of (F,OR, O).

Proof. The proof uses arguments similar to those considered in [5], and will be detailed in a full
version of this extended abstract 2

Theorem 1 allows us to formulate the problem as follows:

Generalized-Minimum-DI problem

Input: An ordered forest of gene trees (F,OR, O),
Output: An order O′ on the leaves of F such that (F,OR, O′) is a duplication forest and dinv(O,O′)
is minimal.

For a branch represented by the forest (F,OR, O), we denote by DI(OR, O) the minimal dinv(O,O′)
defined above, and we call it the minimum DI value.

A Branch-and-Bound algorithm: The algorithm is a generalization of the one we presented
in [5]. Given an ordered gene tree (T,O), the goal was to find an order O ′ minimizing the distance
dinv(O,O′) that is compatible with T , i.e. such that (T,O ′) is a duplication tree. As mentioned in [14],
the considered duplication trees are equivalent to binary search trees. Therefore, to enumerate all
the orders compatible with T , we associated a binary variable bi to each internal node i of T as
follows: each bi defines an order relation between the left and right descendant leaves of i, i.e. by
setting bi to 0 (respec. 1), we make all the left descendants smaller than the right ones (respec.
all left descendants are larger than the right ones). Then an order O ′ is compatible with T iff it is
defined by an assignment of all the binary variables bi in T , and all its genes have the same sign
(+ or −). If n is the number of leaves of T , this leads to 2n distinct orders O′ compatible with T .

To avoid computing dinv(O,O′) for each order O′, we considered a branch-and-bound strategy.
The idea was to compute a lower bound on dinv(O,O′) as we progressively define a partial order
O∗, by updating the breakpoint graph of (O,O∗) [16]. The bi values must be defined in a depth-first
manner according to T (see [5] for more details).

Generalization to an ordered forest of gene trees (F,OR, O) is straightforward. Indeed, let
(T1, T2, · · · Tn) be the set of trees of F ordered according to the order OR of their roots. Then
an order O′ compatible with (F,OR), i.e. such that (F,OR, O′) is a partial duplication tree, is the
concatenation of n orders (o′1, o

′

2, · · · o
′

n) such that o′i is compatible with Ti. Therefore, similarly to
the preceding case, an order O′ is compatible with (F,OR) iff it is defined by an assignment of all
the binary variables bi in F , and for each 1 ≤ i ≤ n, all the genes belonging to Ti have the same
sign as ri (see Figure 3). The same branch-and-bound strategy can then be used to explore the
space of all possible orders.

3.2 A general method using the median problem

The Minimum-DLSI problem is related to the more classical one of inferring the gene orders of the
hypothetical ancestral genomes represented by the internal nodes of a species tree. In this case,
each species is characterized by a given gene order, and the problem is to find the ancestral gene
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Fig. 3. (a) The ordered forest of gene trees corresponding to the branch (M, B) of the tree in Figure 2 (F =
{T1, T2}, OR = (r1, r2), O = (1, 2, 3,−4,−5)). (b) The gene trees in a), with an arbitrary left/right orientation of the
children at each internal node. (c) The ordered forest of duplication trees (F, OR, O′) induced by an assignment of
the bi variables in b). The resulting order is O′ = (4, 2, 1,−3,−5), and dinv(O, O′) = 3.

orders minimizing a given genomic distance. The two distances that have been considered in the
literature are the breakpoint and inversion distances [20, 22].

Although the case of ordered gene trees is more involved due to the fact that the considered
duplication are in tandem, the two problems are related, suggesting a similar global approach
summarized below.

1. Begin with an arbitrary order for each internal node of the species tree;
2. Traverse the tree in a depth-first manner. For each subtree consisting of two sister branches

(M,A) and (M,B) and a branch (C,M) where C is the immediate ancestor of M (see Figure 2),
ignore the assigned order of M , and reconstruct an order that minimizes the value:

DI(OM , OA) + DI(OM , OB) + DI(OC , OM ).

3. Iterate step 2. a given number of times, or after convergence to a minimizing configuration.

Step 1. can be improved by the use of a heuristic that will be detailed in a full version of this
extended abstract. Step 2. can be seen as a generalization of the median problem in the context of
reconstructing ancestral gene orders of a phylogenetic tree.

To formally define the median problem, we need to extend the notion of an ordered forest of
gene trees by allowing the order to be defined either for the leaves or for the roots of the trees.
An ordered forest of gene trees defined by a set of trees FXY , a set of roots X and a set of leaves
Y will be denoted as (FXY , X,OY ) and called a leaf-ordered forest of gene trees if an order OY is
defined on the leaves, by (FXY , OX , Y ) and called a root-ordered forest of gene trees if an order OX

is defined on the roots, and by (FXY , OX , OY ) and called a fully-ordered forest of gene trees if an
order is defined for both the leaves and the roots.

The median problem is formulated as follows. Given two leaf-ordered forest of gene trees
(FMA,M,OA) and (FMB ,M,OB) (M is the set of ancestral genes generating both A and B)
and a root-ordered forest of gene trees (FCM , OC ,M), the goal is to find an order OM minimizing
the value:

DI(OM , OA) + DI(OM , OB) + DI(OC , OM )

The following section focuses on the median problem.

3.3 A Branch-and-Bound algorithm for the median problem

To avoid considering each of the 2nn! possible signed orders OM , where n is the number of genes of
M , we consider a branch-and-bound strategy. The idea is to compute a lower bound on DI(OM , OA),
DI(OM , OB) and DI(OC , OM ) as we progressively extend the prefixes O∗

M of M . This is justified
by the following property.



Property 1. Let (F ∗

XY , O∗

X , O∗

Y ) be a fully-ordered forest of gene trees obtained from (FXY , OX , OY )
by removing the tree rooted at the last element of OX , or the leaf corresponding to the last element
of OY . Then:

DI(O∗

X , O∗

Y ) ≤ DI(OX , OY )

This bound can be used when we progressively construct the median candidate order OM . The
branch-and-bound strategy is explained below.

1. Consider an initial upper bound for the median problem and the empty orders O∗

M , O∗

A, O∗

B

and O∗

C .

2. Construct O∗

M by adding a gene gM at the end of O∗

M , and construct O∗

A and O∗

B by inserting
the genes of OA and OB that are descendant of gM in the right positions. Moreover, if gM is the
descendant of a gene gC that is not in O∗

C , then construct O∗

C by inserting this gene, otherwise
O∗

C is unchanged.

3. Compute DI(O∗

M , O∗

A), DI(O∗

M , O∗

B) and DI(O∗

C , O∗

M ), using the branch-and-bound algorithm
described in Section 3.1.

4. If DI = DI(O∗

M , O∗

A) + DI(O∗

M , O∗

B) + DI(O∗

C , O∗

M ) is lower than the current upper bound
then: if OM is of size n then replace the current upper bound by DI, otherwise go back to
step 2.

5. If DI is larger than the current upper bound or OM is of size n, then stop extending OM ,
and consider another possible gene for the last position of OM , or backtrack to the preceding
position if all genes have been considered for the last position.

4 Results

4.1 Branch-and-bound efficiency

To measure the efficiency of our branch-and-bound algorithm, we simulated 1,000 DSI histories, each
involving i inversions an a unique speciation event, leading to two contemporary genomes (TAGs
clusters) of 15 genes and an implicit median containing k genes. Table 1 contains the execution
times (on a standard PC) and the average fraction of the search space explored for different values
of i and k.

We observe that the algorithm performance depends significantly on the number of inversions
and on the ancestral order size. Nevertheless, it can be used on realistic datasets within reasonable
time (45 seconds on average for a history implying an ancestral order of 12 genes and a total of 8
inversions).

Table 1. Execution time (in minutes) for the 1,000 ordered forest of gene tree / Average fraction of the search space
explored during the branch-and-bound.

Median size

6 genes 8 genes 10 genes 12 genes

4 inversions 3 / 2 × 10−3 4 / 3 × 10−5 5 / 2 × 10−7 9 / 9 × 10−10

6 inversions 8 / 5 × 10−3 14 / 1 × 10−4 35 / 1 × 10−6 95 / 8 × 10−9

8 inversions 15 / 1 × 10−2 46 / 4 × 10−4 182/ 6 × 10−6 723 / 5 × 10−8



4.2 Application on biological data

As a first application, we used our branch-and-bound algorithm to infer an ancestral gene order
for a pair of human and rat olfactory TAGs clusters. The results are shown in Fig 4. We see that
this dataset is compatible with an optimal DLSI history containing only one inversion event, that
occurred before the human-rat speciation.

The human cluster is located on chr14@21.2 and the rat cluster on chr15@27.9. Protein se-
quences and gene orders were obtained from the HORDE database(CLIC #35) [21]. The sequences
were aligned with clustalW [28] and the gene tree generated with MrBayes, [12] using the Jones
substitution matrix [17] and performing 1,000,000 MCMC iterations.
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Fig. 4. The ordered reconciled gene tree obtained for the pair of olfactory receptor TAGs clusters, and the inferred
ancestral gene order at the time of human-rat speciation. Transcriptional orientations are indicated by signs. The
unique inversion occurred before human-rat speciation and is indicated by a black contour. The rightmost gene in
the ancestral TAGs cluster (dashed contour) has its unique descendant in the rat TAGs cluster, indicating a gene
loss in the human lineage after the speciation.

This first “simple” application only aims to give an example of a TAGs cluster which is very
likely to have evolved in agreement with our model of evolution restricted to simple duplications
and inversions, demonstrating its validity.

5 Conclusion

We have presented a formal approach to infer the ancestral gene orders inducing a most parsimo-
nious scenario of inversions in the evolution of a TAGs family in multiple species.

The next important step would be the extension of the model to multiple duplications. However,
gene losses are no longer independent from the duplication events in this case [10]. Inferring a
tandem duplication tree with multiple duplications and gene losses remains an open problem, even
when inversions are not taken into account and only one species is considered.

In addition to our model being restricted to simple duplications, the main problem we face with
the inference of TAGs evolutionary histories is the difficulty to obtain a reliable gene tree for some
families: Events such as gene conversions and unequal crossover can create “mosaic” genes that
share more than one ancestor, and pseudogenization is a frequent process. Nevertheless, different
strategies could be used to cope with these problems and produce biological knowledge from the
present model. For example, the gene tree inference can be facilitated by excluding the pseudogenes
of the analysis, and the signal noise can be reduced by choosing closely related species and excluding
the period of time that precedes the first speciation from the analysis.
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