
An optimal reconciliation algorithm for gene trees with

polytomies

Manuel Lafond1, Krister M. Swenson2, and Nadia El-Mabrouk3

1 DIRO, Université de Montréal, H3C 3J7, Canada, lafonman@iro.umontreal.ca
2 DIRO, swensonk@iro.umontreal.ca
3 DIRO, mabrouk@iro.umontreal.ca

Abstract. Reconciliation is a method widely used to infer the evolutionary relationship be-
tween the members of a gene family. It consists of comparing a gene tree with a species
tree, and interpreting the incongruence between the two trees as evidence of duplication and
loss. In the case of binary rooted trees, linear-time algorithms have been developed for the
duplication, loss, and mutation (duplication + loss) costs. However, a strict prerequisite to
reconciliation is to have a gene tree free from error, as few misplaced edges may lead to a
completely different result in terms of the number and position of inferred duplications and
losses. How should the weak edges be handled? One reasonable answer is to transform the
binary gene tree into a non-binary tree by removing each weak edge and collapsing its two
incident vertices into one. The created polytomies are “apparent” as they do not reflect a
true simultaneous divergence of many copies from a common ancestor, but rather a lack of
resolution. In this paper, we consider the problem of reconciling a non-binary rooted gene tree
G with a binary rooted species tree S, were polytomies of G are assumed to be apparent. We
give a linear-time algorithm that infers a reconciliation of minimum mutation cost between a
binary refinement of a polytomy and S, improving on the best known result, which is cubic.
This implies a straightforward generalization to a gene tree G with nodes of arbitrary degree,
that runs in time O(|S||G|), which is shown to be an optimal algorithm.

1 Introduction

The evolutionary history of a gene family is determined by a combination of microevolutionary events
at the sequence level, and macroevolutionary events (duplications, losses, horizontal gene transfer)
affecting the number and distribution of genes among genomes [11]. While sequence similarity can
be considered as a footprint of microevolution and used to construct a gene tree G for the gene
family, macroevolution is harder to predict as it is not explicitely reflected by the gene tree. Having
a clear picture of the speciation, duplication and loss mechanisms that have shaped a gene family
is however crucial to the study of gene function. Indeed, following a duplication, the most common
occurrence is for only one of the two gene copies to maintain the parental function, while the other
becomes non-functional (pseudogenization) or acquires a new function (neofunctionalization) [19].

Reconciliation, first introduced by Goodman in 1979 [13] — and since widely studied and imple-
mented in comparative genomics software [12] — is a method that compares the gene tree G with
a phylogeny S of the considered species (species tree), and interprets the incongruence between
the two trees as evidence describing evolution of the gene family through duplication and loss. A
reconciliation R(G, S) is a tree obtained from G by inserting “lost” branches so that the obtained
tree is in agreement with the phylogeny S. As there can be several reconciliations for a given tree
pair, a natural approach is then to select one, or a subset, that optimize some probabilistic [1, 2] or
combinatorial [16] criterion such as the number of duplications (duplication cost), losses (loss cost)
or both combined (mutation cost). Reconciliation of binary rooted trees is a well-studied problem,
and linear-time algorithms based on the so called lowest common ancestor (LCA) mapping have
been developed for the duplication, loss and mutation costs [6, 20, 22]. Generalizations of reconcilia-
tion accounting for horizontal gene tranfers have also been considered [9]. In particular, minimizing

the number of duplications, losses and transfers has been shown to be computationally hard [18],
but feasible in polynomial time if the input species tree is dated [10].

The fundamental hypothesis behind reconciliation is that the gene tree reflects the true phylogeny
of the gene family. Therefore, a strict prerequisite is to have both gene tree and species tree free from
error [8, 15]. Unfortunately gene trees are not always well-supported, and frequently many equally-
supported trees are obtained as the output of a phylogenetic method. Typically bootstrap values
are used as a measure of confidence in each edge of a phylogeny. How should the weak edges of a
gene tree be handled? One strategy adopted in [6] is to explore the space of gene trees obtained from
the original tree G by performing Nearest Neighbor Interchanges around weakly-supported edges.
Another reasonable answer is to transform the binary gene tree into a non-binary tree by removing
each weak edge and collapsing its two incident vertices into one. A polytomy (node with more than
two children) in a gene tree is called true (or hard) if it reflects a true simultaneous divergence of
its children from a common ancestor, and it is called apparent (or soft) otherwise [17]. Implicitly,
polytomies of a gene tree obtained by the method of collapsing short or poorly supported internal
branches are apparent polytomies, reflecting a lack of resolution.

In this paper, we consider the problem of reconciling a non-binary rooted gene tree G with a
binary rooted species tree S, where polytomies of G are assumed to be apparent. More precisely,
we seek out a reconciliation of minimum mutation cost between a binary refinement of G and S.
Chang and Eulenstein were the first to consider this problem [3]. They showed that each polytomy
P can be treated independently in O(|S| × |P |2) time, implying an O(|S| × |G|2) algorithm for the
entire tree. In a recent paper [21], a linear-time algorithm is developed for reconciling a non-binary
gene tree G with a binary species tree S, but for the duplication cost. The output is a reconciliation
with optimal loss cost over all the reconciliations with the optimal duplication cost, which does not
necessarily minimize the mutation cost. Here, we describe an algorithm that infers the minimum
mutation cost reconciliation between P and S in O(max(|P |, |S|)) time, implying an O(|G| × |S|)
algorithm over the entire gene tree. This algorithm is optimal, since there exists a family of instances
leading to a most parsimonious reconciliation of size Ω(|G| × |S|).

2 Preliminary notation

In this paper, all the trees are considered rooted (we ommit to mention it each time). Given a tree
T , we denote by Tx the subtree of T rooted at x, and by L(Tx) (or simply L(x) if unambiguous)
the set of leaves of Tx. We also denote by root(T) the root of T , by V (T) the set of nodes of T and
by |T | the number of nodes |V (T)| of T . The degree of an internal node x in a tree T is the number
of children of x. If T is binary, we denote by xl and xr the two children of x in T .

A phylogeny over a set L is a tree with internal nodes of degree 2 or more, uniquely leaf-labeled
by L. A polytomy (or star tree) over a set of L is a phylogeny with a single internal node, which is
of degree |L|, adjacent to each leaf of L. For example, the tree G in Figure 2 is a polytomy.

A species tree S is a phylogeny over a set of species Σ, which represents the evolutionary rela-
tionship between these species. Similarly, we can consider the evolutionary relationship between a
family of genes Γ , that appear in the genomes of Σ: a gene tree G for Γ is a phylogeny accompanied
by a function g : Γ → Σ indicating the species where each gene is found. See Figure 1 for an
example. Given a gene tree G, we denote by S(Gx) the subset of Σ corresponding to L(Gx) (i.e.
S(Gx) = {g(l) | l ∈ L(Gx)}).

In this paper, we assume a binary species tree S and a non-binary gene tree G. As stated in the
introduction, the polytomies of G are considered apparent (i.e. reflecting non resolved parts of the
tree). The goal is then to find a “binary refinement” of G. For any internal node x of G with children
{x1, x2, . . . , xn}, any rooted binary tree on the set of leaves {Gx1

, Gx2
, . . . , Gxn

} is a refinement of
the polytomy Gx. The following definition generalizes this fact.

2

Definition 1 (binary refinement). A binary refinement B(G) of a gene tree G is defined as
follows.

– If r is a leaf then B(G) = G;
– Otherwise, B(G) is a rooted binary tree on the set {B(G1), B(G2) . . . , B(Gn)}, where Gi is the

tree rooted at the ith child of root(G) (for some ordering of the children), and B(Gi) is a binary
refinement of Gi.

2.1 Histories and reconciliation

a b c d

e

g

f

a1 a2 b1 c1 d2a3 b2 c2 d1

H:

a1 a2 b1 c1 d1 c2 d2 a3 b2

e

g

f f

g

g

ea

R(G,S):

a b c d

S:

e f

g

Fig. 1: S is a species tree over Σ = {a, b, c, d}; R(G, S) is a reconciliation between S and the gene tree G

represented by plain lines. Here Γ = {a1, a2, a3, b2, c2}, and for each xi ∈ Γ , g(xi) = x. Internal nodes of
R(G, S) are labeled according to the LCA mapping. Artificial genes {b1, c1, d1, d2} are added to illustrate
lost branches. Duplication nodes are indicated by bold squares, and loss leaves are represented by crosses.
This reconciliation has cost 5: 2 duplications and 3 losses; H illustrates the history that has led to the gene
family Γ . H is the same tree as R(G, H), but represented differently (embedded in the species tree).

We study the evolution of a family of genes Γ taken from genomes Σ through duplication and
loss. Conceptually, a duplication/loss/speciation history (or simply history) is a tree H reflecting
the evolution from a single ancestral gene to a set of genes through duplication, loss, and speciation
events. Given a binary gene tree G for the gene family and a species tree S for Σ, a reconciliation is
a history obtained from G, in “agreement” with the phylogeny S. In this section we formally define
history and reconciliation, as well as presenting tools for working with them. All these concepts are
illustrated in Figure 1.

The most popular method for finding a parsimonious reconciliation is based on the “LCA map-
ping”. The LCA mapping between G and S, denoted by µ(), maps every node x of G to the lowest
common ancestor of S(Gx) in S, which is the common ancestor of S(Gx) in S that is farthest from
the root. We call µ(x) the label of x. A node x of G is considered a duplication with respect to S if
and only if µ(xℓ) = µ(x) and/or µ(xr) = µ(x). Any node of G that is not a duplication node, is a
speciation node.

Take a binary tree T , labeled by the LCA mapping, where there exists exactly one leaf labeled
by each gene in Γ , and a function g : Γ 7→ Σ indicating the species where each gene is found. A
duplication-free restriction D(T) of a tree T is obtained by removing either Txℓ

or Txr
for each

duplication node x, along with x, and if x is not the root, joining the parent of x and the remaining
child by a new edge. Each duplication-free restriction D(T) can be considered to be a copy of a
species tree S, in which case each loss leaf u corresponds subtree Su of the species tree that is
missing in D(T).

A duplication-free restriction D(T) agrees with a species tree S iff relabeling each leaf l of D(T)
by g(l), and replacing each loss leaf u in D(T) with the subtree Su, results in a tree isomorphic to
S.

3

Definition 2 (consistent). Take a species tree S and a rooted binary tree T where there exists
exactly one leaf labeled by each gene in Γ , and all other leaves are labeled as losses. T is said to be
consistent with S iff every duplication-free restriction of T agrees with S.

Definition 3 (history). A history H is a rooted binary tree uniquely leaf-labeled by a gene set
Γ , and function g : Γ 7→ Σ (indicating the species where each gene is found) with the following
properties:

1. Any leaf not labeled by a member of Γ is a loss.
2. Each internal node is a duplication or speciation node.
3. There exists a species tree S consistent with H.

Definition 4 (reconciliation). A reconciliation R(G, S) between a binary gene tree G and a
species tree S is a history that can be obtained from G by inserting loss leaves and labeling internal
nodes as speciations or duplications so that it is consistent with S.

The parsimony criteria used to choose among the large set of possible reconciliations are the
number of duplications (duplication cost), the number of losses (loss cost) or both combined (muta-
tion cost). The LCA mapping induces a reconciliation R(G, S) between G and S, where an internal
node x of G leads to a duplication node in R if and only if x is a duplication node of G with re-
spect to S. Moreover, R(G, S) is a reconciliation that minimizes the duplication, loss, and mutation
costs [5, 14].

In the rest of this paper, the cost of a reconciliation refers to its mutation cost.

2.2 Problem statement

Given a binary species tree S and a non-binary gene tree G, we seek out a full resolution of G

leading to a reconciliation of minimum mutation cost. We formally define the notion of a resolution
of G as being a reconciled refinement of G.

Definition 5 (Resolution). A tree R(G, S) is a resolution of G with respect to S if and only if
R(G, S) is a reconciliation between a binary refinement B(G) of G, and S.

We are now ready to state our optimization problem.

Minimum Resolution:

Input: A binary species tree S and a non-binary gene tree G.
Output: A Minimum Resolution of G with respect to S (or simply a Minimum Resolution of G if
there is no ambiguity on S), e.g. a resolution of G with respect to S of minimum mutation cost.

We first show that each polytomy of G can be resolved independently.

Theorem 1. Let {Gxi
, for 1 ≤ i ≤ p} be the set of subtrees of G rooted at the p children {xi, for 1 ≤

i ≤ p} of the root of G. Let Rmin(Gxi
, S) be a minimum resolution of Gxi

w.r.t. S. Let G′ be the
tree obtained from G by replacing each Gxi

by Rmin(Gxi
, S). Then a minimum resolution of G′ is

a minimum resolution of G.

Proof. This statement was proved by Chang and Eulenstein in [4], which led them to a dynamic
programming algorithm with running-time complexity O(|S|×|G|2), for the Minimum Resolution

problem. The reader interested in this proof might refer to Chang’s MSc. Thesis written in 2006.

It follows from Theorem 1 that a minimum resolution of G can be obtained by a depth-first
procedure that solves each polytomy Gx iteratively, for each internal node x of G. At each step,
whether the children of the polytomy Gx are internal nodes or leaves of G, they are treated as leaves
of the polytomy and we refer to each leaf l by its label µ(l).

4

In the next section, we consider G as a polytomy whose leaves are labeled (not uniquely) by
nodes of S. Furthermore, as the subtrees Sx of S such that V (Sx) \ {x} has an empty intersection
with S(G), will never be considered in the resolution of G, we can ignore them. We say that S is a
species tree linked to the polytomy G if and only if any internal node of S has a descendant included
in S(G) and the root of S is the lowest common ancestor of S(G). For example, in Figure 2, S is a
species tree linked to the polytomy G.

3 Method

In this section, we consider G to be a polytomy whose leaves are labeled (not uniquely) by nodes of
a species tree S. Notice that a leaf labeled x actually represents a whole subtree of the considered
gene tree, which has already been resolved, and thus is consistent with Sµ(x). We assume that S is
a species tree linked to G. We describe an approach for computing a minimum resolution R(G, S)
of G based on the observation that for any node x in R(G, S), all nodes on a path from x to a
leaf in R(G, S) will map to a node that is on a path from µ(x) to a leaf of S. Thus, we decompose
the computation of a minimum resolution of G according to a depth-first traversal of the nodes of
S; for each node s of S we consider the cost of having k maximal subtrees of R(G, S) whose roots
map to s. For example, Figures 2c and 2d represent two such partial resolutions where there are
three maximal subtrees whose roots map to e. Given, for all k, the minimum cost of a so-called
“k-partial resolution” corresponding to a node s, we show how to compute the cost of a partial
resolution corresponding to the parent of s. Clearly a solution of the Minimum Resolution problem
is a minimum 1-partial resolution of G at the root of S.

b b c eb c da a a a a

fe

S
g

G

(a)

a a a b b c ea

a

a

(b)

a a b e cb ba a

e
e e

e

a

(c)

a a b c ea b a

e
a

a e

(d)

 g

a a ba b a e c d

e
ea

a
e

e

f

(e)

Fig. 2: (a) A species tree S and a polytomy G; (b) A 2-partial resolution of G at a of cost 2 (2 duplications);
(c) A 3-partial resolution of G at e of cost 3 (2 duplications and one loss); (d) A 3-partial resolution of G

at e of cost 2 (2 duplications); (e) A full resolution of G with minimum cost (4 duplications, 1 loss).

3.1 Partial resolutions

Let s be a node of S. The restriction of G by node s, denoted G/s, is the tree obtained from G by
removing the set of leaves Ls whose labels are not in Ss.

Definition 6 (partial resolution). Let s be a node of S. A partial resolution P (G, S, s) of G at
s is a polytomy on a set Fs ∪Ls, where Fs is obtained from a resolution R(G/s, S) as follows: Fs is

5

a forest of subtrees of G/s, rooted at nodes labeled s, partitioning the set of leaves of G/s (i.e. each
leaf of G/s is in a unique tree of the forest).

The cost of a partial resolution P (G, S, s) on a set Fs ∪Ls is the sum of the cost of all the trees
(reconciliations) of Fs. See Figure 2 for an example.

Definition 7 (k-partial resolution). Let s be a node of S. A k-partial resolution P k(G, S, s) of
G at s is a partial resolution of G at s on a set Fs ∪ Ls with exactly k trees in Fs.

For example, the tree G in Figure 2 is itself a 4-partial resolution of G at a, whereas the tree (b)
is a 2-partial resolution of G at a, and (c) and (d) are two different 3-partial resolutions of G at e.

Notation 1 For any integer k ≥ 1, we denote by Ms,k the minimum cost of a k-partial resolution
of G at s. We also denote by Ms the vector (Ms,k)k≥1.

A solution for the Minimum Resolution problem is a resolution of G with cost Mroot(S),1. In this
section, we describe an algorithm that computes Mroot(S),1 based on the costs Ms,k of all partial
resolutions of G over all k and s. Before giving a recursive formulation of Ms,k, we need to introduce
a subset of k-partial resolutions, leading to an intermediate cost Cs,k for internal nodes s, which
can be computed directly from k-partial resolutions corresponding to the children of s.

Definition 8 (k-speciation resolution). Let s be an internal node of S. A k-partial resolution
P k(G, S, s) of G at node s is a k-speciation resolution of G at s if and only if each node of P k(G, S, s)
labeled s is a speciation or a leaf.

A k-speciation resolution at s contains no duplication node nor loss leaf labeled s. In Figure 2,
the tree G is a 4-speciation resolution of G at node a, while the tree (d) is a 3-speciation resolution
at e. Neither the 2-partial resolution of G at a (b) nor the 3-partial resolutions of G at e (c) is a
speciation resolution, as in the first case the left-most child of the root labeled a is a duplication
node, while in the second case the right-most child of the root labeled e is a duplication node.

Notation 2 For any node s of S, we denote by nb(s) the number of leaves of G labeled s.

Note that there is no k-speciation resolution for k ≤ nb(s). Indeed, as G has nb(s) leaves labeled
s, any speciation resolution of G has at least nb(s) speciation nodes labeles s, and thus k ≥ nb(s).
Moreover, as S is a species tree linked to G, at least one descendant of the internal node s of S

should be a leaf of G, and thus any partial resolution at s needs to have at least one additional
speciation node labeled s.

Notation 3 For any internal node s of S and any integer k > nb(s), we denote by Cs,k the cost of a
minimum k-speciation resolution of G at s. For technical reasons, we set Cs,k = ∞ for 1 ≤ k ≤ nb(s).
We denote by Cs the vector (Cs,k)k≥1.

3.2 A recursive formulation

There is an infinite range of values of k for which Ms,k and Cs,k correspond to valid resolutions.
However, the following remark is easy to validate and implies that, for some input, we need only
consider a fixed-size table of values.

Remark 1. There exists a value n ∈ N such that Ms,k < Ms,n, for any node s of S and any integer
0 < k < n.

The intuition behind this remark is that when k is large enough a k-partial resolution would contain
too many losses, so could never be part of an optimal solution.

The following lemma exhibits a relationship between two entries of vector Ms.

6

Lemma 1. For any node s of S and any integers k, i ≥ 1, we have Ms,k ≤ Ms,i + |k − i|.

Proof. Let P i(G, S, s) be an i-partial resolution at s of cost Ms,i. If i < k, inserting k − i losses
of s at the root of P i(G, S, s) gives us a k-partial resolution of cost Ms,i + k − i. If i > k, joining
i− k + 1 subtrees rooted at s in P i(G, S, s) (by duplication nodes) gives us a k-partial resolution of
cost Ms,i + i − k. Both cases imply that Ms,k ≤ Ms,i + |k − i|. ⊓⊔

We use Lemma 1 to prove the main recurrence defining Cs,k and Ms,k.

Theorem 2. Let s be a node of S and 1 ≤ k ≤ n.

1. If s is a leaf of S, then Ms,k = |k − nb(s)|;
2. Otherwise, let sl and sr be the two children of s in S. Then,

(a) Cs,k = Msℓ,k−nb(s) + Msr ,k−nb(s) if k > nb(s) (∞ otherwise);

(b) Ms,k = min

(

Cs,k, min
1≤i≤n

(Ms,i + |k − i|)

)

Proof. Let P k(G, S, s) be a minimum k-partial resolution of G at node s of cost Ms,k. Suppose
P k(G, S, s) is defined on the set of nodes Fs ∪ Ls.

1. Suppose s is a leaf of S. If k = nb(s), then each tree in Fs is a single node labeled s, with
reconciliation cost 0, and thus Ms,k = 0 = |k − nb(s)|. If k < nb(s) (respectively k > nb(s)), then
at least nb(s) − k duplication nodes (respec. k − nb(s) losses) should be present in the trees of Fs.
As the trees of Fs are part of an optimal k-partial resolution, the number of duplications (losses)
should be exactly nb(s) − k (k − nb(s)), and thus Ms,k = |k − nb(s)|.

2. Otherwise, s is an internal node of S.
2(a) Let P k(G, S, s) be a k-speciation resolution of G at node s of minimum cost Cs,k. Since none
of the trees in Fg are rooted at a duplication node nor labeled as a loss, there must be exactly
k−nb(s) trees in Fs that are rooted at speciation nodes labeled by s. Any such node must have one
child labeled sℓ and one child labeled sr. Since we are going through each node of S in a depth-first
manner, we assume that the values of Msℓ

and Msr
have been computed. The result follows from

the fact that Msℓ,k−nb(s) (resp. Msr,k−nb(s)) gives the optimal configuration yielding k−nb(s) trees
rooted at nodes labeled sℓ (resp. sr).
2(b) If P k(G, S, s) is a k-speciation resolution of G at s, then clearly Ms,k = Cs,k. Otherwise, let k′

be the number of trees rooted at duplication nodes of Fs. For positive k′, if each of the two children
of those duplication nodes were taken as the roots of two new trees, then we would have a forest of
i′ = k + k′ trees. This gives us Ms,k ≥ Ms,i′ + k′ = Ms,i′ + |k − i′|. If k′ = 0 (and P k(G, S, s) is
not a k-speciation resolution), then Fs must have, say k′′, trees corresponding to losses. Consider
the i′′ = k − k′′ trees of Fs that are not losses. This gives us Ms,k ≥ Ms,i′′ + k′′ = Ms,i′′ + |k − i′′|
as well. Therefore Ms,k ≥ mini(Ms,i + |k − i|). On the other hand, Lemma 1 gives us Ms,k ≤
mini(Ms,i + |k − i|). ⊓⊔

3.3 A dynamic programming approach

The recurrence 2.b in Theorem 2 induces a circular argument for computing the entries of Ms, as for
two different constants k and i, Ms,k may be computed from Ms,i, which in turn may be computed
from Ms,k. In other words, the recurrences of Theorem 2 cannot be used directly in a dynamic
programming algorithm for the computation of Cs,k and Ms,k. The rest of this section focuses on
reformulating recurrence 2.b. We start by giving two important properties relating Ms to Cs.

Lemma 2. For an internal node s of S, there exists at least one k such that Ms,k = Cs,k.

7

Proof. Let P k(G, S, s) be a k-partial resolution of G at node s of cost Ms,k, defined on the set
Fs ∪ Lg. Assume that Ms,k 6= Cs,k for all k. This implies Ms,k < Cs,k for all k. Consider the
subforest F ′

s consisting of the j maximal subtrees of Fs that are rooted at speciation nodes; F ′
s

defines a j-speciation resolution with cost C′ < Ms,k. Since Cs,j ≤ C′, we have Cs,j < Ms,k. But
Ms,j < Cs,j , so in general, for any k there exists a j such that Ms,j < Ms,k, a contradiction since
the minimum value in Ms must occur in within a finite range (by Remark 1). ⊓⊔

Theorem 2 shows that for an internal node s of S, Ms,k can be computed from Cs,k, or from
some other value in Ms. However, we have not characterized how to easily discern which case will be
used, and we have no information about which i gives Ms,i = Cs,i. The following lemma addresses
this matter by narrowing the possibilities.

Lemma 3. For some internal node s of S and integer k ≥ 1, if Ms,k 6= Cs,k then there exists an i

such that Ms,i = Cs,i and Ms,k = Ms,i + |k − i|.

Proof. By the recurrence 2(b) of Theorem 2, if Ms,k 6= Cs,k, then we should have Ms,k = Ms,i+|k−i|
for some i. If Ms,i = Cs,i, then the lemma is verified. Otherwise, Ms,i = Ms,h + |i − h| for some h.
This gives Ms,k = Ms,h + |k − i| + |i − h| ≥ Ms,h + |k − h|. By lemma 2 we know that there must
be some value α for which Ms,kα

= Cs,kα
, so in general, for some integers k0 and α we have

Ms,k0
= Ms,kα

+ |kα − kα−1| + |kα−1 − kα−2| + · · · + |k2 − k1| + |k1 − k0|

= Ms,kα
+

α
∑

i=1

|ki − ki−1|

≥ Ms,kα
+ |kα − k0| = Cg,kα

+ |kα − k0|.

Lemma 1 gives the complementary bound Ms,k0
≤ Cs,kα

+ |kα − k0|, so equality holds. ⊓⊔

Lemma 3 allows us to rewrite the recurrence 2(b) of Theorem 2 as follows:

Ms,k = min
nb(s)<i≤n

Cs,i + |k − i| (Eq.1)

With this new formulation of recurrence 2(b), Theorem 2 leads to a cubic-time dynamic program-
ming algorithm for the computation of the cost of a solution of the Minimum Resolution problem.
Indeed, let the height of a node s of S be the maximum number of nodes in a path from s to a
leaf of S. Consider an ordering s1, s2 · · · sp of the nodes of S by increasing height, where p = |S|. In
other words, leaves are listed before nodes of height 1, etc. In particular sp = root(S). Consider the
tables M and C of |S| lines, where each line i of M and C corresponds respectively to the vectors
Msi

and Csi
. The table C is defined only for lines i > L(S). We first compute the L(S) first lines of

M in O(n) steps using recurrence (1) of Theorem 2. Then, for each line i, we successively compute
Csi

and Msi
for increasing values of i, by using the recurrences (2) a. and b. of Theorem 2. Each

line representing Csi
is computed in time O(n), while each line representing Msi

is computed in
O(n2) steps, leading to an O(n2|S|) algorithm for filling the two tables. The final result (cost of a
solution of the Minimum Resolution problem) is just Msp,1. An example is given in Figure 3.

3.4 A linear-time approach

We show in this section that the recurrence (2)b of Theorem 2 can further be simplified in a way
leading to a constant time update for each Ms vector according to the Msl

and Msr
vectors. This

implies a linear time algorithm for the computation of Mroot(S),k.
We first show that Ms,k = Cs,k when Cs,k is the minimum value among the entries of Cs.

Lemma 4. For k such that Cs,k = min
nb(s)<i≤n

Cs,i, we have Ms,k = Cs,k.

8

Proof. If Ms,k 6= Cs,k, then by Lemma 3, there must exist an i such that Ms,k = Ms,i + |k − i| and
Ms,i = Cs,i. This implies that Cs,i < Cs,k, contradicting the minimality of Cs,k. ⊓⊔

The key observation allowing a constant-time computation of any entry in Cs and Ms is that
these vectors can be seen as two functions with a cup shape. The following definition formally
introduces the notion of a “cup function”.

Definition 9 (cup function). A cup function is a convex piecewise linear function m() which,
for a minimum value γm ∈ Z and two breakpoints m1, m2 ∈ N, is strictly decreasing linearly for
x < m1, equal to γm when m1 ≤ x ≤ m2, and strictly increasing linearly when x > m2. It can be
written as

m(x) =

γm + m1 − x + P(x) if x < m1

γm if m1 ≤ x ≤ m2

γm + x − m2 + Q(x) if x > m2

where P : N → Z is non-increasing and Q : N → Z is non-decreasing.
We say the function m(x) is a simple cup function iff P(x) = Q(x) = 0 for all x. Roughly

speaking, a simple cup function viewed from left to right has a slope of −1, a plateau of minimum
values, and a slope of 1.

Assume for now that Ms can be associated with a simple cup function m() such that Ms,k = m(k)
for 1 ≤ k ≤ n. Recall that the values of Cs are obtained by adding the values of Msℓ

and Msr

(recurrence 2(a) of Theorem 2). We show that Cs can be associated with a cup function by proving
that the addition of two simple cup functions yields a cup function.

Lemma 5. If ℓ() and r() are two simple cup functions, then the function m() defined by m(k) =
ℓ(k) + r(k), is a cup function.

Furthermore, if ℓ1, ℓ2 and r1, r2 respectively denote the breakpoints of ℓ() and r(), and γℓ, γr

respectively denote the minimum values of ℓ() and r(), then the breakpoints m1, m2 and minimum
value γm of m() are computed according to the following table:

Condition γm m1 m2

If ℓ1 < r1, ℓ2 < r1 γℓ + γr + r1 − ℓ2 ℓ2 r1

If ℓ1 < r1, r1 ≤ ℓ2 ≤ r2 γℓ + γr r1 ℓ2

If ℓ1 < r1, ℓ2 > r2 γℓ + γr r1 r2

If r1 ≤ ℓ1 ≤ r2, r1 ≤ ℓ1 ≤ r2 γℓ + γr ℓ1 ℓ2

If r1 ≤ ℓ1 ≤ r2, ℓ2 > r2 γℓ + γr ℓ2 r2

If ℓ1 > r2, ℓ2 > r2 γℓ + γr + ℓ1 − r2 r2 ℓ1

Proof. The complete proof of this lemma is given in Appendix A. Moreover, a more general version
of this lemma has already been proven by Csűrös in [7], where it is shown that the sum of an
arbitrary number of cup functions yields a cup function ⊓⊔

The following theorem states that Ms and Cs can be associated with two cup functions with the
same breakpoints m1, m2 and minimum value γm. Moreover, Ms is associated with a simple cup
function. For example, each line of the table of Figure 3 can be rewritten as a cup function, with
the breakpoint and minimum values indicated in vectors m1, m2 and γm.

Theorem 3. For any node s of S, there exists a simple cup function m() with breakpoints m1, m2 ≥
1 and minimum value γm, such that Ms,k = m(k) for 1 ≤ k ≤ n.

Furthermore, if s is an internal node of S, there exists a cup function c() with the same break-
points m1, m2 > nb(s) and same minimum value γm, such that Cs,k = c(k) for nb(s) < k ≤ n.

9

Proof. We prove the theorem by induction over the nodes visited in a postorder traversal of S.

Base Case: If s is a leaf and nb(s) > 0, let m(k) = |k − nb(s)|. It is clear that m(k) is a simple cup
function with breakpoints m1 = m2 = nb(s) and γm = 0. If nb(s) = 0, let m(k) be a simple cup
function with breakpoints m1 = m2 = 1 and minimum value γm = 1. We have m(k) = |k − nb(s)|
for k ≥ 1. Then from Theorem 2.1, both cases give Ms,k = m(k) for 1 ≤ k ≤ n.

Induction Step: If s is an internal node, then from the inductive hypothesis, there exist two simple
cup functions ℓ(), r() such that Msℓ,k = ℓ(k) and Msr ,k = r(k) for 1 ≤ k ≤ n. Let f(k) = ℓ(k −
nb(s)) + r(k − nb(s)). By Lemma 5, f() is a cup function. Let f1, f2 be the breakpoints of f() and
γf its minimum value. From part (2a) of Theorem 2 we have Cs,k = Msℓ,k−nb(s) + Msr,k−nb(s),
implying that Cs,k = f(k) for nb(s) < k ≤ n. However, it is possible that f1 ≤ nb(s) or f2 ≤ nb(s),
making the theorem statement invalid.

Let c() be another cup function with breakpoints m1 = max(f1, nb(s)+1), m2 = max(f2, nb(s)+
1) and minimum value γm = f(m2) = min

nb(s)<k≤n
Cs,k. It can be verified that c(k) = f(k) when

nb(s) < k ≤ n and thus, Cs,k = c(k) for nb(s) < k ≤ n. From this, we have

Cg,k =

∞ if k ≤ nb(s)

γm + m1 − k + P(k) if nb(s) < k < m1

γm if m1 ≤ k ≤ m2

γm + k − m2 + Q(k) if k > m2

for 1 ≤ k ≤ n.
By Lemma 4, we know that Ms,k = Cs,k = γm for m1 ≤ k ≤ m2.
If k < m1, we show that Ms,k = γm + m1 − k. From the equation (Eq.1), we have Ms,k =

minj(Cs,j + |k − j|). If j > m1, then by the definition of Cs,j given above, we have Cs,j ≥ γm and
thus Cs,j + j−k ≥ γm +m1−k. If j < m1, then Cs,j + |k− j| ≥ γm +m1− j + |k− j| ≥ γm +m1−k

since we can reformulate this inequality as |k− j| ≥ j−k. Therefore, Cs,j + |k− j| has the minimum
value when j = m1 and it follows that Ms,k = Cs,m1

+ m1 − k = γm + m1 − k when k < m1.
If k > m2, we show that Ms,k = γm+k−m2. From the (Eq.1), we have Ms,k = minj(Cs,j+|k−j|).

If j < m2, we have Cs,j ≥ γm and thus Cs,j + k − j ≥ γm + k−m2. If j > m2, then Cs,j + |k − j| ≥
γm+j−m2+|k−j| ≥ γm+k−m2 since we can reformulate this inequality as |k−j| ≥ k−j. Therefore,
Cs,j + |k − j| is minimum when j = m2 and it follows that Ms,k = Cs,m2

+ k − m2 = γm + k − m2

when k > m2.
The three cases verify that Ms can be associated with a cup function. ⊓⊔

Denote by m1,s, m2,s and γs the breakpoints and minimum value of the cup function associated
with Ms (and thus from Theorem 3 also with Cs). Theorem 2.(1) allows us to compute m1,s, m2,s

and γs for any leaf s of S. Finally, Theorem 2.(2a) and Lemma 5 allow us to compute, in constant
time, the breakpoints m1,s, m2,s and minimum value γs associated with Cs and Ms, given those
associated with Msl

and Msr
.

Stated differently, let s1, s2, · · · sp be the ordering of the nodes of S defined at the end of Sec-
tion 3.3, and consider the three vectors m1 = (m1,si

)1≤i≤s, m2 = (m2,si
)1≤i≤s and γ = (γsi

)1≤i≤s.
Then each entry of each of these vectors can be computed in constant-time. Theorem 3 ensures
that these vectors allow us to completely define the simple cup function Ms. This leads to an
O(max(|G|, |S|)) algorithm for computing any value Ms,k, and in particular the cost Msp,1 of a
solution of the minimum Resolution problem.

In Algorithm CupValues(s), we detail the steps required to compute m1,s, m2,s and γs for a given
node s. Lines 1 to 6 follow from the Theorem 3’s base case proof. Line 9 follows from Theorem 2.(2a)
and Lemma 5 (discussion above). Line 10 is a correction needed because the table in Lemma 5 gives
the result for the addition of two simple cup functions for the same value of k, e.g. c(k) = ℓ(k)+r(k).

10

Since Cs,k = Msℓ,k−nb(s) + Msr ,k−nb(s), we need to shift the obtained breakpoints by adding nb(s)
to them. Lines 11 and 12 ensure that m1,s, m2,s > nb(s) and that γs is the minimum entry in Cs,
as stated in Theorem 3.

Algorithm 1 CupV alues(s)

1: if s is a leaf then

2: if nb(s) > 0 then

3: m1,s := nb(s); m2,s := nb(s); γs := 0;
4: else

5: m1,s := 1; m2,s := 1; γs := 1;
6: end if

7: else

8: Let sℓ, sr be the two children of s:
9: Compute m1,s, m2,s and γs using the children values m1,sℓ

, m2,sℓ
, m1,sr , m2,sr , γℓ, γr and the table

given in Lemma 5;
10: m1,s := m1,s + nb(s); m2,s := m2,s + nb(s);
11: If m1,s ≤ nb(s) then m1,s := nb(s) + 1;
12: If m2,s ≤ nb(s) then m2,s := nb(s) + 1 and γs := Msℓ,1 + Msr ,1;
13: end if

1 2 3 4 5 6 m1 m2 γm

Ma 3 2 1 0 1 2 4 4 0

Mb 1 0 1 2 3 4 2 2 0

Mc 0 1 2 3 4 5 1 1 0

Md 1 2 3 4 5 6 1 1 1

Ce ∞ 4 2 2 2 4 3 5 2
Me 4 3 2 2 2 3 3 5 2

Cf 1 3 5 7 9 11 1 1 1
Mf 1 2 3 4 5 6 1 1 1

Cg 5 5 5 6 7 9 1 3 5
Mg 5 5 5 6 7 8 1 3 5

Fig. 3: An illustration of the algorithms for the gene tree G and species tree S of Figure 2(a). The cost of a
most parsimonious resolution of G is Mg,1 = 5. The gray cells are those considered by Algorithm DupLoss

for computing the Dup and Loss vectors, the values in bold being the first ones evaluated by the algorithm
on a given row. The obtained values are Dup(e) = 2, Dup(a) = 2, Loss(d) = 1 and Dup(s) = Loss(s) = 0
for any other node s. The corresponding resolution is given in Figure 2(e).

3.5 Constructing an optimal resolution

Starting with s = root(S) and k = 1, we recursively compute the number of losses and duplications
required for each node s of S in an optimal reconciliation, based on partial resolutions at sl and
sr, for sl and sr being the children of s. The algorithm presented in this section is based on the
following result, which is a corollary of Theorem 3.

Corollary 1 Let s be a node of S with children sℓ and sr, and P k(G, S, s) be a minimum k-partial
resolution at s defined on the set Fg ∪ Lg for 1 ≤ k ≤ n.

11

1. If Ms,k = Msℓ,k−nb(s) + Msr,k−nb(s), then the k roots of Fs are all speciation nodes. Otherwise,
2. either Ms,k = γs + k − m2,s, in which case P k(G, S, s) has k − m2,s loss leaves labeled s,
3. or Ms,k = γs + m1,s − k, in which case P k(G, S, s) has m1,s − k duplications labeled s.

Proof. In the first case, Ms,k = Cs,k, indicating that the optimal k-partial resolution at s is a k-
speciation resolution. case, taking the m2,s-speciation resolution at s of cost γs and adding k−m2,s

loss leaves labeled s yields a k-partial resolution at s with minimum score γs +k−m2,s. In the third
case, taking the m1,s-speciation resolution at s of cost γs and creating m1,s − k duplications labeled
s yields a k-partial resolution at s with minimum score γs + m1,s − k. ⊓⊔

Algorithm DupLoss(s, k) computes the values Dup(s) and Loss(s), being respectively the number
of duplications labeled s and the number of loss leaves labeled s in a minimum resolution of G.
Starting with a call to Algorithm DupLoss(root(S), 1), the output is a pair (Dup(s), Loss(s)) for
each node s of S. From these values, it is easy to reconstruct the corresponding solution R(G, S) of
the Minimum Resolution problem.

Algorithm 2 DupLoss(s, k)

if s is a leaf and k ≥ nb(s) then

Dup(s) := 0; Loss(s) := k − nb(s);
else if s is a leaf and k < nb(s) then

Dup(s) := nb(s) − k; Loss(s) := 0;
else if k − nb(s) > 0 and Ms,k = Msℓ,k−nb(s) + Msr,k−nb(s) then

Dup(s) := 0; Loss(s) := 0;
DupLoss(sℓ, k − nb(s)); DupLoss(sr, k − nb(s));

else if k < m1,s then

Dup(s) := m1,s − k; Loss(s) := 0;
DupLoss(sℓ, m1,s − nb(s)); DupLoss(sr, m1,s − nb(s));

else if k > m2,s then

Dup(s) := 0; Loss(s) := k − m2,s;
DupLoss(sℓ, m2,s − nb(s)); DupLoss(sr, m2,s − nb(s));

end if

Once the vectors Dup and Loss have been computed, an optimal resolution of G can be con-
structed easily, knowing nb(g) for each node, and knowing how many of these nodes are joined under
duplication or speciation and how many are inserted as losses.

4 Discussion

We have developed an algorithm for constructing the most parsimonious reconciliation, in term of
number of duplications + losses, of a polytomy G with a binary species tree S, running in time
O(|S|). It naturally leads to an O(|G| × |S|) algorithm for the reconciliation of a gene tree with an
arbitrary number of polytomies. Indeed, it is sufficient to traverse the tree in a depth-first manner,
and resolve each polytomy at a time. Interestingly, we can find an example of trees G and S leading
to a reconciliation of size |G| × |S|. Indeed, let Σ = {1, 2, · · · s}, and consider the species tree S

over Σ to be a caterpilar tree (1, 2, · · · s) with leaves ordered from 1 to s, where s = |S|. Consider
the gene tree G to be the caterpilar tree ((l1, r1), · · · (lg, rg)) composed of g cherries (l1, rs), where
the l leaves are labeled 1, and the r leaves are labeled s. We have g = |G|. Then clearly a most
parsimonious reconciliation of G and S is one with s − 2 leaves inserted in each cherry of G, which
leads to a tree of size |G| × |S|. Therefore, the algorithm is optimal for our considered Minimum

Resolution problem. It is likely however that finding the mutation cost of an optimal reconciliation,
without displaying the actual reconciliation, can be done in linear-time.

12

References

1. O. Akerborg, B. Sennblad, L. Arvestad, and J. Lagergren. Simultaneous bayesian gene tree reconstruc-
tion and reconciliation analysis. Proceedings of the National Academy of Sciences USA, 106(14):5714-
5719, 2009.

2. L. Arvestad, A.-C. Berglung, J. Lagergren, and B. Sennblad. Gene tree reconstruction and orthology
analysis based on an integrated model for duplications and sequence evolution. In D. Gusfield, editor,
RECOMB ‘04: Proceedings of the Eighth Annual International Conference on Research in Computational
Molecular Biology, pages 326–335, New York, 2004. ACM.

3. W.C. Chang and O. Eulenstein. Reconciling gene trees with apparent polytomies. In D.Z. Chen and
D. T. Lee, editors, Proceedings of the 12th Conference on Computing and Combinatorics (COCOON),
volume 4112 of Lecture Notes in Computer Science, pages 235–244, 2006.

4. W.C. Chang and O. Eulenstein. Reconciling gene trees with apparent polytomies, technical report. In
Department of Computer Science, Iowa State University, 2006.

5. C. Chauve and N. El-Mabrouk. New perspectives on gene family evolution: losses in reconciliation and
a link with supertrees. In RECOMB 2009, volume 5541 of LNCS, pages 46-58. Springer, 2009.

6. K. Chen, D. Durand, and M. Farach-Colton. Notung: Dating gene duplications using gene family trees.
Journal of Computational Biology, 7:429–447, 2000.

7. M. Csűrös. Ancestral reconstruction by asymmetric wagner parsimony over continuous characteand
squared parsimony over distributions. Sixth RECOMB Satellite Workshop on Comparative Genomics,
pages 72–86, 2008.

8. A. Doroftei and N. El-Mabrouk. Removing noise from gene trees. In WABI, volume 6833 of LNBI/LNBI,
pages 76-91, 2011.

9. J-P. Doyon, V. Ranwez, V. Daubin, and V. Berry. Models, algorithms and programs for phylogeny
reconciliation. Brief Bioinform, 12:392–400, 2011.

10. J.P. Doyon, C. Scornavacca, and G.J. SzÃPllösi et al. An efficient algorithm for gene/species trees
parsimonious reconciliation with losses, duplications and transfers. Proc 14th Int Conf Res Comput Mol
Biol (RECOMB-CG) 2011, pages 93–108, 2011.

11. D. Durand, B.V. Haldórsson, and B. Vernot. A hybrid micro-macroevolutionary approach to gene tree
reconstruction. Journal of Computational Biology, 13:320–335, 2006.

12. Gang Fang, Nitin Bhardwaj, Rebecca Robilotto, and Mark B. Gerstein. Getting started in gene orthology
and functional analysis. PLoS Comput Biol, 6(3):e1000703, 03 2010.

13. M. Goodman, J. Czelusniak, G.W. Moore, A.E. Romero-Herrera, and G. Matsuda. Fitting the gene
lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin
sequences. Systematic Zoology, 28:132–163, 1979.

14. P. Gorecki and J. Tiuryn. DLS-trees: a model of evolutionary scenarios. Theoretical Computer Science,
359:378–399, 2006.

15. M.W. Hahn. Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome
evolution. Genome Biology, 8(R141), 2007.

16. B. Ma, M. Li, and L. Zhang. From gene trees to species trees. SIAM J. on Comput., 30:729–752, 2000.

17. J.B. Slowinski. Molecular polytomies. Molecular Phylogenetics and Evolution, 19(1):114-120, 2001.

18. A. Tofigh, M. Hallett, and J. Lagergren. Simultaneous identification of duplications and lateral gene
transfers. IEEE/ACM Trans Comput Biol Bioinform 2011, 8:517–535., 2011.

19. J. Zhang. Evolution by gene duplication: an update. TRENDS in Ecology and Evolution, 18(6):292-
298, 2003.

20. L.X. Zhang. On Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of
Computational Biology, 4:177–188., 1997.

21. Y. Zheng, T. Wu, and L. Zhang. Reconciliation of gene and species trees with polytomies. eprint
arXiv:1201.3995, 2012.

22. C. M. Zmasek and S. R. Eddy. A simple algorithm to infer gene duplication and speciiation events on
a gene tree. Bioinformatics, 17:821– 828, 2001.

13

Appendix

A Proof of lemma 5

Proof. Let

ℓ(k) =

γℓ + ℓ1 − k if k < ℓ1

γℓ if ℓ1 ≤ k ≤ ℓ2

γℓ + k − ℓ2 if k > ℓ2

r(k) =

γr + r1 − k if k < r1

γr if r1 ≤ k ≤ r2

γr + k − r2 if k > r2

and m(k) = ℓ(k) + r(k). The addition of ℓ(k) and r(k) yields a function with nine possible cases.

m(k) = ℓ(k) + r(k) =

γℓ + ℓ1 − k + γr + r1 − k if k < ℓ1, k < r1

γℓ + ℓ1 − k + γr if k < ℓ1, r1 ≤ k ≤ r2

γℓ + γr + r1 − k if ℓ1 ≤ k ≤ ℓ2, k < r1

γℓ + γr if ℓ1 ≤ k ≤ ℓ2, r1 ≤ k ≤ r2

γℓ − ℓ2 + γr + r1 if k > ℓ2, k < r1

γℓ + ℓ1 + γr − r2 if k < ℓ1, k > r2

γℓ + γr + k − r2 if ℓ1 ≤ k ≤ ℓ2, k > r2

γℓ + k − ℓ2 + γr if k > ℓ2, r1 ≤ k ≤ r2

γℓ + k − ℓ2 + γr + k − r2 if k > ℓ2, k > r2

These nine cases are not all compatible with each other depending on ℓ1, ℓ2, r1, r2. In fact, there
are only six possible cases of how these breakpoints cross eachother. If ℓ1 < r1, either ℓ2 < r1, r1 ≤
ℓ2 ≤ r2 or ℓ2 > r2. If r1 ≤ ℓ1 ≤ r2, either r1 ≤ ℓ2 ≤ r2. If ℓ1 > r2, then ℓ2 > r2. Let α = γℓ + γr.
Then, m(k) can be rewritten as :

If ℓ1 < r1, ℓ2 < r1, then m(k) =

α − 2k + ℓ1 + r1 if k < ℓ1, k < r1

α − k + r1 if ℓ1 ≤ k ≤ ℓ2, k < r1

α + r1 − ℓ2 if k > ℓ2, k < r1

α + k − ℓ2 if k > ℓ2, r1 ≤ k ≤ r2

α + 2k − ℓ2 − r2 if k > ℓ2, k > r2

If ℓ1 < r1, r1 ≤ ℓ2 ≤ r2, then m(k) =

α − 2k + ℓ1 + r1 if k < ℓ1, k < r1

α − k + r1 if ℓ1 ≤ k ≤ ℓ2, k < r1

α if ℓ1 ≤ k ≤ ℓ2, r1 ≤ k ≤ r2

α + k − ℓ2 if k > ℓ2, r1 ≤ k ≤ r2

α + 2k − ℓ2 − r2 if k > ℓ2, k > r2

If ℓ1 < r1, ℓ2 > r2, then m(k) =

α − 2k + ℓ1 + r1 if k < ℓ1, k < r1

α − k + r1 if ℓ1 ≤ k ≤ ℓ2, k < r1

α if ℓ1 ≤ k ≤ ℓ2, r1 ≤ k ≤ r2

α + k − r2 if ℓ1 ≤ k ≤ ℓ2, k > r2

α + 2k − ℓ2 − r2 if k > ℓ2, k > r2

14

If r1 ≤ ℓ1 ≤ r2, r1 ≤ ℓ2 ≤ r2, then m(k) =

α − 2k + ℓ1 + r1 if k < ℓ1, k < r1

α − k + ℓ1 if k < ℓ1, r1 ≤ k ≤ r2

α if ℓ1 ≤ k ≤ ℓ2, r1 ≤ k ≤ r2

α + k − ℓ2 if k > ℓ2, r1 ≤ k ≤ r2

α + 2k − ℓ2 − r2 if k > ℓ2, k > r2

If r1 ≤ ℓ1 ≤ r2, ℓ2 > r2, then m(k) =

α − 2k + ℓ1 + r1 if k < ℓ1, k < r1

α − k + ℓ1 if k < ℓ1, r1 ≤ k ≤ r2

α if ℓ1 ≤ k ≤ ℓ2, r1 ≤ k ≤ r2

α + k − r2 if ℓ1 ≤ k ≤ ℓ2, k > r2

α + 2k − ℓ2 − r2 if k > ℓ2, k > r2

If ℓ1 > r2, ℓ2 > r2, then m(k) =

α − 2k + ℓ1 + r1 if k < ℓ1, k < r1

α − k + ℓ1 if k < ℓ1, r1 ≤ k ≤ r2

α − r2 + ℓ1 if k < ℓ1, k > r2

α + k − r2 if ℓ1 ≤ k ≤ ℓ2, k > r2

α + 2k − ℓ2 − r2 if k > ℓ2, k > r2

Using the breakpoints and minimum values provided by the table in the theorem statement, it
can be verified that each of these cases is a cup function. ⊓⊔

15

