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Abstract. Tree-oriented methods for inferring orthology and paralogy
relations between genes are based on reconciling a gene tree with a species
tree. On the other hand, many tree-free methods, mainly based on se-
quence similarity, are also available. The link between orthology relations
and gene trees has been formally considered recently from the angle of
reconstructing phylogenies from orthology relations. Here, we rather con-
sider this link from a correction point of view. While a gene tree induces
a set of relations, the converse is not always true, as a set of relations is
not necessarily in agreement with any gene tree. How can we minimally
correct an infeasible set of relations? On the other hand, given a gene tree
and a set of relations, how to minimally correct a gene tree in order to
fit the set of relations? In this paper, various objective functions are con-
sidered for the minimality criterion, among them the Robinson-Foulds
distance between the initial and corrected gene tree. All considered prob-
lem variants are shown to be NP-complete.

1 Introduction

Genes are the molecular units of heredity, holding the information to build
and maintain cells. In the course of evolution, they are duplicated, lost,
and passed to organisms through speciation. Genes originating from the
same ancestral copy are called homologs. They are usually inferred from
sequence similarity and grouped into Gene Families. Two homologous
genes are orthologous if their parental origin is a speciation, and paralo-
gous if it is a duplication. From the orthology conjecture, orthologs tend
to be more similar in function than paralogs [29]. This is a major moti-
vation for inferring gene evolution, as it is a prerequisite for functional
prediction purposes.

The tree-based method requires to build, classically from a DNA or
protein sequence alignment, a phylogenetic tree for the considered gene
family. Reconciliation [12] with the species tree then allows to label in-
ternal nodes as duplications and speciations, inducing a full orthology
and paralogy set of relations between gene pairs. On the other hand,
tree-free orthology detection methods are also available. They are based



on gene clustering according to sequence similarity, (cf. e.g. the COG
database [34], OrthoMCL [24], InParanoid [3], Proteinortho [22]), syn-
teny [20,21] or functional annotation of genes [7]. Only partial sets of
relations are usually inferred from these methods.

Recent papers have been dedicated to the formal study of the link
between trees and orthology/paralogy relations (we just say “relations”
in the following) [15,16]. Given a gene family Γ and a set C of pairwise
relations, can we reconstruct a labeled gene tree for Γ inducing C? The
question can be subdivided into two parts: 1. Is C satisfiable, i.e. is there
an event-labeled gene tree G in agreement with C? However satisfiability
is not sufficient to ensure the possibility for the relation set to reflect a
true history, as nodes of G labeled as speciations can be contradictory.
This raises the second question; 2. Is there an event-labeled gene tree
G which is S-consistent , i.e. obtained from reconciliation, with a species
tree S? A simple characterization of satisfiability is given in [15] in the
case of C being a full set of relations (i.e. each pair of genes of Γ is in
C). Moreover, a polynomial-time algorithm can be devised to check for S-
consistency [1,17]. In [19], we generalized these results to partial relations.

In this paper we explore the link between relations and trees for
the purpose of relation and tree correction. Several gene tree databases
from whole genomes are available, including for instance Ensembl Com-
para [36], Hogenom [30], Phog [8], MetaPHOrs [31], PhylomeDB [18],
Panther [26]. However, due to various limitations such as alignment er-
rors, systematic artifacts of inference methods or unsufficient differentia-
tion between sequences, trees are known to contain errors and uncertain-
ties. Consequently, a great deal of effort has been put towards tools for
gene tree editing [5,6,13,14,9,33,35]. Most of them are based on selecting,
in a neighborhood of an input tree, one best fitting the species tree.

Recently, we developed the first algorithm for gene tree correction
using orthology relations [20]. Here we address, from a complexity point
of view, the more general problem of correcting a gene tree according
to a set of orthology and paralogy relations. Two objective functions
are considered: the number of unchanged relations and the number of
unchanged clades (the Robinson-Foulds distance [32]). Conversely, we also
address the problem of correcting a set of relations so that it represents
a valid history in terms of an S-consistent gene tree. Two criteria are
considered: maximize the number of unchanged relations, and minimize
the number of genes that should be removed for the relation set to be
S-consistent. These problems are all shown to be NP-complete.



We introduce the notations and known results in Section 2, and show
the NP-completeness of two relation correction problems in Section 3,
namely the Minimum Edge-Removal Consistency and Minimum Node-Removal
Consistency problems. In Section 4, we then provide analogous complexity
results for two gene tree correction problem: the Maximum Homology Cor-
rection and the Maximum Clade Correction problems. Algorithmic avenues
are discussed in Section 5. Due to space constraints, some of the proof
have been relegated to Supplementary materials, which can be accessed at
http://www-ens.iro.umontreal.ca/~lafonman/publications.php.

2 Trees and orthology relations

All trees considered in this paper are assumed to be rooted. We also
assume that trees have no nodes of degree 2, except possibly the root.
Given a set X, a tree T for X is a tree whose leafset L(T ) is in bijection
with X. We denote by V (T ) the set of nodes and by r(T ) the root of T .
Given an internal node u of T , the subtree rooted at u is denoted Tu and
we call the leafset L(Tu) the clade of u. A node u is an ancestor of v if
u is on the (inclusive) path between v and the root, and we then call v
a descendant of u. If u and v are connected by an edge of T , then v is a
direct descendant of u. We denote by ch(u) the set of direct descendants
(children) of u. The lowest common ancestor (lca) of u and v, denoted
lcaT (u, v), is the ancestor common to both nodes that is the most distant
from the root. We say that u and v are separated iff lcaT (u, v) /∈ {u, v}
(i.e. none is an ancestor of the other). We define lcaT (U) analogously for
a set U of nodes. Let L′ be a subset of L(T ). The restriction T |L′ of T to
L′ is the tree with leaf set L′ obtained from the subtree of T rooted as
lcaT (L′) by removing all leaves that are not in L′, and all internal nodes of
degree 2, except the root. Let T ′ be a tree such that L(T ′) = L′ ⊆ L(T ).
We say that T displays T ′ iff T |L′ is label-isomorphic to T ′.

2.1 Evolution of a Gene Family

Species evolve through speciation, which is the separation of one species
into distinct ones. A species tree S for a species set Σ represents an or-
dered set of speciation events that have led to Σ: an internal node is an
ancestral species at the moment of a speciation event, and its children are
the new descendant species. Inside the species’ genomes, genes undergo
speciation when the species to which they belong do, but also duplica-
tions, and losses (other events such as transfers can happen, but we ignore
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them here). A gene family is a set of genes Γ accompanied by a mapping
function s : Γ → Σ mapping each gene to its corresponding species. The
evolutionary history of Γ can be represented as a node-labeled gene tree
for Γ , where each internal node refers to an ancestral gene at the mo-
ment of an event (either speciation or duplication), and is labeled as a
speciation (Spec) or duplication (Dup) accordingly.

Formally, we call a DS-tree for Γ a pair (G, evG), where G is a tree
with L(G) = Γ , and evG : V (G) \ L(G) → {Dup, Spec} is a function
labeling each internal node of G as a duplication or a speciation node
(we drop the G subscript from evG when it is clear from the context).
Given a species tree S, the LCA-mapping function sG maps each gene,
ancestral or extant, to a species as follows: if g ∈ L(G), then sG(g) = s(g);
otherwise, sG(g) = lcaS({s(g′) : g′ ∈ L(Gg)}). An example is given in
Figure 1, where the label of each node of G represents its LCA-mapping
with respect to S.

According to the Fitch [11] terminology, we say that two genes x, y
of Γ are orthologous in G if ev(lcaG(x, y)) = Spec, and paralogous in
G if ev(lcaG(x, y)) = Dup. We denote by O(G), respectively P(G), the
set of all gene pairs that are orthologous, respectively paralogous in G.
By xy ∈ O(G) we mean {x, y} ∈ O(G) (the same applies for P(G)). In
Figure 1, a1c1 ∈ O(G) while a1b1 ∈ P(G). We say that a1c1 (respec. a1b1)
is an orthology (respec. paralogy) relation induced by G.
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Fig. 1: A species tree S, a binary DS-tree G and a non-binary DS-tree
G′. In DS-trees, Dup nodes are indicated by squares, and each leaf αi
denotes a gene belonging to the genome α. G is a refinement of G′ such
that O(G) = O(G′) and P(G) = P(G′).

While a history for Γ can be represented as a DS-tree, the converse
is not always true, as a DS-tree G for Γ does not necessarily represent
a valid history. For this to hold, any speciation node of G should reflect
a clustering of species in agreement with S [19]. Formally G should be
S-consistent, as defined below.

Definition 1. Let S be a species tree and G be a DS-tree. Let v be an
internal node of G such that ev(v) = Spec. Then the speciation node v is



S-consistent iff for any v1, v2 ∈ ch(v), sG(v1) and sG(v2) are separated
in S.

We say that G is S-consistent iff every speciation node of G is S-
consistent.

Notice that G and S are not required to be binary. In particular, the
definition of S-consistency for a speciation node v of G does not require v
to be binary, even if S is binary. In this case, one can “refine” v into a set
of binary S-consistent speciation nodes based on the topology of S. This
operation does not affect the orthology and paralogy relations of by G (see
Figure 1). Duplication nodes can be refined as well. Lemma 1 formalizes
this intuition - we leave the proof to the Supplementary materials.

Lemma 1. Let G be an S-consistent DS-tree for some binary species
tree S. Then there is a binary DS-tree G′ such that G′ is S-consistent,
O(G) = O(G′) and P(G) = P(G′).

We can verify that both DS-trees in Figure 1 are S-consistent. For
example, the speciation node in G′ has children from species v, c, d and
w, which are pairwise separated in S. Notice that, from Definition 1, if G
is a DS-tree, then the lca of two leaves of G belonging to the same species
must be a duplication node. The converse is not true. For example, in the
S-consistent gene tree G of Figure 1, the parental node of e1 and f1 is a
duplication node even though e1 and f1 belong to two different species.

2.2 Relation graph
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Fig. 2: A species tree S and a DS-tree G. The full orthology set induced
by G is represented by the relation graph R. The following graph R′

is an example of a not satisfiable graph, as {c1, b1, d1, a2} induces a P4,
while R′′ is an example of a satisfiable (it has no induced P4), but not
S-consistent graph.

A set of orthology/paralogy relations on Γ (or simply a relation set)
is a pair C = (CO, CP ) of subsets CO, CP ⊆

(
Γ
2

)
such that CO ∩ CP = ∅

and if s(x) = s(y), then {x, y} ∈ CP . The relation set is said full if
CO∪CP =

(
Γ
2

)
. A DS-tree G induces a full set (O(G),P(G)) of relations.



We adopt the graph representation considered in [19] for full relation
sets. A relation graph R on a gene family Γ is a graph with vertex set
V (R) = Γ , in which we interpret each edge uv of the edge set E(R)
of R as an orthology relation between u and v, and each missing edge
(non-edge) uv /∈ E(R) as a paralogy relation 1. Note that if s(u) = s(v),
then uv /∈ E(R). The relation graph of a DS-tree G, denoted by R(G), is
the graph with vertex set L(G) and edge set O(G) (for example, see the
relation graph R in Figure 2).

A DS-tree for a gene family Γ leads to a relation graph, but the con-
verse is not always true. A relation graph R is satisfiable if there exists a
DS-tree G such that R(G) = R. The problem of relation graph satisfia-
bility has been addressed in [15]. The following theorem is a reformulation
of one of the main results of this paper.

Theorem 1 ([15]). A relation graph R is satisfiable if and only if R is
P4-free, meaning that no four vertices of R induce a path of length 4.

For example, in Figure 2, the relation graphs R and R′′ are satisfiable,
while the graph R′ is not. As a DS-tree does not necessarily represent
a true history for Γ (see previous section and Definition 1), satisfiability
of a relation graph does not ensure a possible translation in terms of a
history for Γ . For this to hold, R should be consistent with the species
tree, according to the following definition.

Definition 2. A relation graph R for Γ is S-consistent if and only if R
is satisfiable by a DS-tree G which is itself S-consistent.

For example the graph R in Figure 2 is S-consistent. Note that S-
consistency implies satisfiability. Results from [19] complete the charac-
terization of S-consistent graphs through Theorem 2. A triplet is a binary
tree with leafset L of size three. For L = {x, y, z}, we denote by xy|z the
unique triplet T on L for which lcaT (x, y) 6= r(T ) holds. Now P3(R) is the
subset of triplets of species induced by paths of length 3 in R = (V,E):

P3(R) = {s(x)s(y)|s(z) : zx, zy ∈ E and xy /∈ E and s(x) 6= s(y)}

Theorem 2. Let R = (V,E) be a satisfiable relation graph. Then R is
S-consistent if and only if S displays all the triplets of P3(R).

1 It has been pointed out to us that the term ‘relation graph’ is also used in phyloge-
netics in the form of a generalization of a median network to a set of partitions. To
make it clear, relation graphs in this paper have nothing to do with this notion



Theorem 2 is an immediate consequence of Theorem 5 in [19]. For
the sake of completeness, we include the full proof in the Supplementary
materials. As an example, the graph R′′ in Figure 2 is satisfiable but not
S-consistent as the path of length 3 containing {a1, b1, c1} induces the
triplet ac|b, while the triplet displayed by S is ab|c.

We end this section with additional notations that will be of use later.
A subgraph H ′ of H is a graph with V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H).
For a graph H and some V ′ ⊆ V (H), the subgraph of H induced by
V ′, denoted H[V ′], is the subgraph of H with vertex-set V ′ having the
maximum number of edges. We say that H ′ is an induced subgraph of H if
there is a subset V ′ ⊆ V (H) such that H ′ = H[V ′]. If I is another graph,
we say H is I-free if there is no V ′ ⊆ V (H) such that H[V ′] is isomorphic
to I. Finally, for some edge set E′ ⊆ E(H), H − E′ is the subgraph H ′

with V (H ′) = V (H) and E(H ′) = E(H) \ E′.

3 Relation Correction Problems

We raise the issue of leaving out a minimum of information from a relation
graph R in order to reach satisfiability or S-consistency. The problem
limited to satisfiability reduces to modifying, i.e. adding or removing, a
minimum number of edges of R in order to make it P4-free, which is known
to be NP-Hard [25]. In [16], an integer linear programming formulation
is used to correct relation graphs of reasonable size.

We first extend the above problem to S-consistency: given a relation
graph R and a species tree S, what is the minimum number of edges that
need to be modified in order to reach S-consistency? Then, we study the
problem of removing as few genes as possible from the gene family in
order for the set of relations to be consistent.

3.1 The Minimum Edge-Removal Consistency Problem

Based on the same construction used in paper [10], we show that adding
the information on the species tree S does not make the problem of re-
moving the minimum number of edges leading to a P4-free graph simpler.
Although a similar reduction is likely to hold in the general case of edge-
modification (removal or insertion) [25], here we focus on edge removal,
as this formulation is needed in subsequent developments (Section 4). We
show the NP-Completeness of this problem, even when every gene from
the family Γ comes from a distinct species.



Minimum Edge-Removal Consistency Problem:
Input: A relation graph R for a gene family Γ , a species tree S and an
integer k;
Output: An S-consistent subgraph R′ of R with V (R) = V (R′) such
that |E(R) \ E(R′)| ≤ k.

Theorem 3. The Minimum Edge-Removal Consistency Problem is NP-
Complete, even if for any distinct g1, g2 ∈ Γ , s(g1) 6= s(g2).

Proof. Given R′, Theorem 2 easily translates into a polynomial-time al-
gorithm to verify that R′ is S-consistent. It is also clear that verifying if
|E(R) \E(R′)| ≤ k can be done quickly. The problem is therefore in NP.
As for the NP-Hardness, the reduction is from the exact 3-cover problem,
a classic NP-Hard problem [27]: given a set W = {w1, . . . , w3t} and a
collection Z = {Z1, . . . , Zr} of 3-elements of W , does there exists Z ′ ⊆ Z
such that |Z ′| = t and Z ′ is a partition of W ?

1 2 3 4 5 6

X1 X2 X3 X4

Y1 Y2 Y3 Y4

1 2 3 4 5 6

X1 X2 X3 X4

Y1 Y2 Y3 Y4

XYW

R* S R'

W W

Fig. 3: S represents the species tree and R∗ the relation graph con-
structed from the sets W , Z, X and Y . The illustration is given for
W = {1, 2, 3, 4, 5, 6} and Z = {{1, 2, 3}, {2, 3, 4}, {3, 5, 6}, {4, 5, 6}}. Z ′ =
{{1, 2, 3}, {4, 5, 6}} is a subset of Z which is a partition of W . R′ is the
“corrected” relation graph corresponding to Z ′.

Given arbitrary W and Z, we construct R and S by first defin-
ing the species set Σ. Let α =

(
3t
2

)
and let X = {X1, . . . , Xr} and

Y = {Y1, . . . , Yr} be two collections of all disjoint sets (i.e. for any dis-
tinct set A,B ∈ X ∪ Y , A ∩ B = ∅), with |Xi| = α and |Yi| = r2α,
for all 1 ≤ i ≤ r. Let XΣ =

⋃
1≤i≤rXi and YΣ =

⋃
1≤i≤r Yi be the

species in X and Y . Then the species set is Σ = W ∪ XΣ ∪ YΣ . Let
SW , SX and SY be three trees such that L(SW ) = W,L(SX) = XΣ

and L(SY ) = YΣ . Then S is obtained by first connecting r(SY ) with
r(SW ) to obtain a new tree SWY , then connecting r(SWY ) with r(SX)
(see Fig. 3). Therefore S has exactly |Σ| = 3t + r(α + r2α) leaves. The
gene family Γ is then constructed so that it contains exactly one gene
per species, as mentioned in the Theorem statement. In other words
the mapping s : Γ → Σ is one-to-one. Since s is a bijection, we make



no distinction between a gene g and its species s(g). We then define
R with V (R) = Σ such that each of the sets W,X1, . . . , Xr, Y1, . . . , Yr
forms an individual clique. Finally we add two edge-sets E1 and E2 to
R, where E1 = {g1g2 : g1 ∈ Xi, g2 ∈ Zi, for a given 1 ≤ i ≤ r} and
E2 = {g1g2 : g1 ∈ Xi, g2 ∈ Yi, for a given 1 ≤ i ≤ r}. Then R has 2r + 1
cliques, namely W,X1, . . . , Xr, Y1, . . . , Yr. Also, for 1 ≤ i ≤ r, all edges
between Xi and Yi are present, as well as all edges between Xi and Zi.
Figure 3 gives an example with t = 2 and W = {1, 2, 3, 4, 5, 6}.

We show that W and Z admit an exact 3-cover if and only if R admits
an S-consistent DS-tree after the deletion of at most 3α(r− t) + (α− 3t)
edges. Notice that the construction of R described above can clearly be
done in polynomial time.

(⇒) : let Z ′ ⊆ Z be a partition of W , |Z ′| = t. Let R′ be the subgraph
of R in which all edges between Zi and Xi are removed iff Zi /∈ Z ′

(which removes 3α(r − t) edges), and the only edges not removed from
the W -clique are those belonging to a Zi triangle with Zi ∈ Z ′ (which
removes α− 3t edges). An example of R′ is given in Figure 3. Thus there
are exactly 3α(r − t) + (α − 3t) edges of R missing from R′, as desired.
Clearly, R′ is P4-free and thus satisfiable. To see that R′ is S-consistent,
we use Theorem 2. Notice that any path of length 3 in R′ has the form
wxiyi with w ∈ W,xi ∈ Xi and yi ∈ Yi for some i, inducing the wyi|xi
speciation triplet, which is in agreement with S. Therefore there exists
an S-consistent gene tree G′ satisfying R′.

(⇐) : The construction of R is exactly the same as in Theorem 3
in [10], and the proof is directly applicable to our case. Still, we have
included a complete proof in the Supplementary materials. ut

3.2 The Minimum Node-Removal Consistency Problem

Minimum Node-Removal Consistency Problem:
Input: A relation graph R for a gene family Γ , a species tree S and an
integer k;
Output: An S-consistent induced subgraph R′ of R with |V (R′)| ≥ k.

We use a reduction similar to that in [23], where it was remarkably
shown that finding a maximum induced subgraph of some graph H having
some property Π is NP-Hard whenever Π is a hereditary property, i.e.
applies to any induced subgraph of H. Though it can be shown that S-
consistency is indeed hereditary, the reduction assumes H is unlabeled
and unconstrained, which is not the case of R .



Theorem 4. The Minimum Node-Removal Consistency Problem is NP-
Complete.

Proof. Again by Theorem 2, verifying that R′ is indeed a solution can be
done in polynomial time and the problem is thus in NP. The reduction is
from the maximum independent set problem. That is, given a graph H, is
there an induced subgraph H ′ of H having at least k nodes such that H ′

has no edge. Let n = |V (H)|. We construct R and S from H as follows: R
starts as a copy of H, and for each node x of R, we add a single neighbor
x∗ (i.e. xx∗ is an edge of R and x∗ is of degree one). Denote by X the
nodes of R originally from H, and by X∗ the newly added nodes. Each
gene in R is assigned to a distinct species. To construct S, first let SX
be a tree with leafset s(X), and SX∗ be a tree with leafset s(X∗). Then
S is obtained by connecting r(SX) and r(SX∗) under a common parent.
We show that H has an independent set of size at least k if and only if
R admits an induced subgraph of size at least n+ k that is S-consistent.

Let H ′ be a solution to the independent set problem with |V (H ′)| ≥ k,
and let X ′ be the nodes of X corresponding to V (H ′). Let R′ = R[X ′ ∪
X∗]. Now, no two nodes of X ′ share an edge, and thus the only edges left
in R′ are of the form xx∗. Therefore, R′ is P3-free and thus, by Theorem 2,
is S-consistent. Moreover, |V (R′)| = |X ′ ∪X∗| ≥ k + n.

Conversely, let R′ be an S-consistent induced subgraph of R with
|V (R′)| ≥ n+ k. Let W = {x ∈ X : x ∈ V (R′) and x∗ ∈ V (R′)}. We first
claim that no two nodes x, y ∈ W share an edge in R′. For otherwise,
x∗xy induce a P3 with x in the center, inducing the s(x∗)s(y)|s(x) speci-
ation triplet. This contradicts the triplet s(x)s(y)|s(x∗) found in S, and
R′ is not S-consistent. Therefore, by letting W ′ denote the nodes of H
corresponding to W , we get that H[W ′] is an independent set. Our final
claim is that |W | ≥ k. Indeed if |W | < k, then there are strictly more
than n−k node pairs {x, x∗} from which at least one of x or x∗ is missing
in R′. This implies that |V (R′)| < 2n− (n−k) = n+k, contradicting our
initial assumption. ut

4 Gene Tree Correction Problems

In this section, we consider we are given a gene family Γ , a species tree
S, an S-consistent DS-tree G for Γ , and a set C = (O,P ) of orthol-
ogy/paralogy constraints (not necessarily full). We focus on the problem
of correcting G according to C in a minimal way. The goal is thus to
find a DS-tree G′ inducing C such that the difference between G and
G′ is minimum. We consider two ways of measuring the difference (or



symetrically the similarity) between gene trees, one based on conserved
orthology/paralogy relations induced by the two trees, and one based
on the number of conserved clades between the two trees, which is the
Robinson-Foulds in the case that G, G′ and S are all binary trees.

4.1 The Maximum Homology Correction Problem

Maximum Homology Correction Problem :
Input: A species tree S, an S-consistent DS-tree G for a gene family Γ ,
an integer k, a set O of orthology and a set P of paralogy relations;
Output: An S-consistent DS-tree G′ for Γ with O ⊆ O(G′), P ⊆ P(G′)
such that |O(G) ∩ O(G′)|+ |P(G) ∩ P(G′)| ≥ k.

Theorem 5. The Maximum Homology Correction Problem is NP-Complete,
even if S, G and G′ are required to be binary.

Proof. The problem is clearly in NP, as verifying S-consistency can be
done in polynomial time, as well as counting the common orthologs/paralogs
relations (the set of relations is quadratic in size). For our reduction, we
use the Minimum Edge-Removal Consistency Problem for the case of a gene
family with at most one gene per genome, which is NP-Hard by Theo-
rem 3. Given a species tree S, a relation graph R with V (R) in bijection
with L(S) and an integer k, we construct an instance of the Maximum
Homology Correction Problem, i.e. a species tree S′, a DS-tree G, an or-
thologous set O and paralogous set P . We show that that there is an
S-consistent subgraph R′ of R obtained by removing at most k edges iff
there is an S′-consistent DS-tree G′ satisfying O and P with at most
|P |+ k relations that are not induced by G.

Let S′ = S and construct G by mimicking S - that is by first copying
S and its leaf labels, then replacing each leaf ` of G by the gene s−1(`).
Note that if S is binary, then so is G. All internal nodes of G are labeled
as speciations, so all genes of Γ are pairwise orthologous. Thus R(G) is
a clique. Finally, let O = ∅ and P = {g1g2 : g1g2 /∈ E(R)}. Notice that
R = R(G)− P .
⇒ : Let R′ be a solution to the Minimum Edge-Removal Consistency

Problem for R and S. Then there exists a S-consistent DS-tree G′ sat-
isfying R′, which is obtained by deleting at most k edges from R. By
Lemma 1, we may assume that if S is binary, then so is G′. Now, since
R′ has at most |P |+ k non-edges, G′ has at most k+ |P | paralogs and is
therefore a solution to the constructed instance of the Maximum Homology
Correction Problem that breaks at most k + |P | orthologies.



⇐ : Let G′ be a solution, binary or not, to the constructed Maxi-
mum Homology Correction Problem instance and let R′ = R(G′). Since G′

satisfies P and breaks at most |P | + k orthologies, R′ must have P as
non-edges, plus at most k other non-edges. Thus R′ can be obtained by
removing at most k edges from R(G)− P = R, as desired. ut

4.2 The Maximum Clade Correction Problem

Maximum Clade Correction Problem:
Input: A gene tree G, a species tree S, a set O of orthology and a set P
of paralogy relations and an integer k;
Output: An S-consistent DS-tree G′ satisfying O and P such that G
and G′ have at least k clades in common.

Notice that if S, G and G′ are required to be binary, the effective
measure between G and G′ is the Robinson-Foulds distance. This special
case is handled as part of the general proof.

Theorem 6. The Maximum Clade Correction Problem is NP-Complete,
even if S, G and G′ are required to be binary.

The proof of Theorem 6 is a bit involving, and due to space constraints
we only provide the construction and intuition of the NP-Hardness reduc-
tion. The complete proof can be accessed in the supplementary materials.

We use the Minimum Node-Removal Consistency Problem for our re-
duction. Let R be the input relation graph with V (R) = {v1, . . . , vn},
S be the species tree and k be an integer. Let α = n(n − 1 − k) + 2k.
The constructed instance of the Maximum Clade Correction Problem uses
the same species tree S. Construct G as follows: first consider G as a
binary tree with n leaves l1, . . . , ln, where each leaf li is mapped to vi.
Then, replace each leaf li by a subtree Ti constructed as follows: Ti is a
caterpillar tree with n − 1 + α leaves, and each leaf ` of Ti is such that
s(`) = s(vi) (a caterpillar tree is a path to which we add a leaf child to
each internal node). Let Li denote the set of the n − 1 deepest leaves
of Ti (the depth of a leaf ` being the number of nodes on the path be-
tween ` and the root). Each leaf of Li is mapped to a distinct node of
V (R)\{vi}. Denote by `i,j the leaf of Ti mapped to vj . Then G has exactly
n(n−1+α) leaves and n(n−1+α)−1 clades (since it is binary). Finally
define O = {{`i,j , `j,i} : vivj ∈ E(R)} the set of orthology relations and
P = {{`i,j , `j,i} : vivj /∈ E(R)} the set of paralogy relations. Note that
each `i,j is present in exactly one relation.



It can be shown that R admits an S-consistent induced subgraph R′

with at least k nodes if and only if G, O and P admit an S-consistent DS-
tree G′ satisfying O and P such that G and G′ share at least k(α+n−2)
clades. The idea is that given R′, we can construct an S-consistent gene
tree H satisfying R. To each leaf vi of H corresponds a subtree Ti in G.
We obtain G∗ by replacing each such leaf vi by its corresponding Ti, which
guarantees that the required number of clades were preserved (as there
were k such leaves in H). Noting that G∗ does not include every gene of
G, the difficulty of the proof consists in including every such missing gene
whilst satisfying the relations of O and P .

In the other direction, i.e. if we are given a solution G′ that preserves
enough clades, it can be shown that G′ must preserve at least k of the
Ti subtrees intact, and restricting G′ to these k subtrees, then replacing
each such Ti by its corresponding vertex vi in R, we obtain a gene tree
G∗ whose relation graph R′ is the solution we are looking for.

5 Algorithmic avenues

As the problems presented in this work are NP -complete, non-polynomial
exact algorithms or approximation algorithms avenues should be explored.
Let us generalize the Minimum Edge-Removal Consistency Problem to the
minimum editing problem (i.e. minimzing edge removals and insertions).
It is not hard to imagine a branch-and-bound algorithm that solves the
problem. Call an induced subgraph H of a relation graph R bad if it is
either a P4, or a P3 in contradiction with S. Each P4 can be solved by
6 possible edge editings, and each contradictory P3 can be solved by 3
possible editings. Therefore, in a branch-and-bound process, one would
verify if a given graph R′ contains a bad subgraph and if so, proceed re-
cursively on each graph obtained by an editing that removes it. If no bad
subgraph exists, then R′ is a possible solution and its number of editings
is retained. If, at any point, R′ has had more editings than the best so-
lution encountered so far, the algorithm can stop the recursion. Notice
however that an edge should not be edited more than once in order to
avoid infinite loops. The idea of this branch-and-bound algorithm can
also be applied to the Minimum Node-Removal Consistency problem. It is
known that a P4, if one exists, can be found in linear time [4]. It remains
to see if we can find a contradictory P3 in time better than O(n3).

As for approximations, an algorithm proposed in [28] can be directly
applied to the Minimum Edge-Removal Consistency Problem and guaran-
tees that we do not remove more than 4∆(R) times more edges than the



optimal solution, where ∆(R) is the maximum degree of R. The idea is
simple : as long as R has a bad subgraph H, remove every edge inci-
dent to a vertex of H and continue. Even though this is the best known
approximation algorithm so far, it has the undesirable effect of isolating
many vertices, motivating the exploration of alternative algorithms. One
direction would be to consider existing ideas on the problem of satisfia-
bility, i.e. what is the minimum number of editings required to make a
graph P4-free, and adapt them to the consistency problem - for instance
the Min-Cut algorithm proposed in [2].

For gene tree correction, we have developed in [19] a polynomial-time
algorithm which, given a species tree S and a partial set of relations O
and P , verifies if there exists an S-consistent gene tree G′ satisfying O
and P and if so, constructs one among the set of all possible solutions.
It would be interesting to explore the possibility of providing an input
gene tree G to the algorithm in order to pick a solution that is close to
G (either in terms of common homology relations or clades).

It is also worth mentioning that relations are not always fully known,
and instead of a yes or no orthology assignment between two genes, ex-
isting methods for orthology prediction can rather motivate a way of
assigning a probabilistic score to a given relation [19]. A natural exten-
sion to the edge removal/editing problems is therefore to add a weight
to each edge and non-edge, so that each insertion/removal has its own
weight. The objective then becomes to minimize the total weight of a set
of edited edges. Notice that the branch-and-bound algorithm given above
can easily be adapted to support weights on editings. This generaliza-
tion actually encompasses the Maximum Homology Correction problem.
Indeed, given a gene tree G and relations O and P to satisfy, one can
create a weighted relation graph R in this way: each relation in O (resp.
P ) is an edge (resp. non-edge) with infinite weight, and each relation in
O(G) \ O (resp. P(G) \ P ) is an edge (resp. non-edge) with a weight of
one. Therefore a minimum S-consistent edge-editing of R corresponds to
a gene tree G′ that satisfies O and P and has a maximum number of
common homologies with G.

6 Conclusion

A gene tree induces a set of orthology and paralogy relations between
members of a gene family, but the converse is not always true. In this
paper we show that attempting to modify a set of relations as least as
possible in order to ensure consistency with a species tree leads to the



formulation of NP-Complete problems. Moreover, even assuming that
the given relations are error-free, it remains computationally difficult to
correct a gene tree in order to fit the given set of relations. As various
model-free methods are available to infer orthology and paralogy, these
correction problems are of practical biological interest. A future direction
would be to explore fast approximation algorithms for the relation graph
and gene tree editing.
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