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Abstract. A relation graph for a gene family is a graph with vertices
representing the genes, edges connecting pairs of orthologous genes and
“missing” edges representing paralogs. While a gene tree directly leads
to a set of orthology and paralogy relations, the converse is not always
true. Indeed a relation graph cannot necessarily be inferred from any
tree, and even if it is “satisfiable” by a tree, this tree is not necessarily
“consistent”, i.e. does not necessarily reflect a valid history for the genes,
in agreement with a species tree. Here, we consider the problems of min-
imally correcting a relation graph for satisfiability and consistency, when
a degree of confidence is assigned to each orthology or paralogy relation,
leading to a weighted relation graph. We provide complexity and algo-
rithmic results for minimizing corrections on a weighted graph, and also
for the maximization variant of the problems for unweighted graphs.

1 Introduction

As genes are the basic molecular units of heredity, key for understanding
genetic diversity, a first step of most genomic studies is to group genes
into families. Gene families are usually inferred from sequence similarity,
the underlying idea being that similar sequences reflect homologous genes
that have diverged from a common ancestral sequence.

Given a gene family, it is important to discriminate between two types
of homologs: orthologs being gene copies originating from a speciation
event, and paralogs originating from a duplication. For this purpose, tree-
based methods consist in first constructing a phylogenetic tree for the gene
family, and then, given a species tree, applying a reconciliation approach
for inferring speciation and duplication nodes [8]. On the other hand,
tree-free methods are based on gene clustering according to sequence
similarity (c.f. for example [3,17,18,22]), synteny [15,16] or functional
annotation of genes [5]. Results of these methods are pairwise orthol-
ogy relations, or groups of orthologs, that can be represented as relation
graphs, where vertices are genes and edges are orthology relations. As-
suming a full inference of pairwise orthology relations, “missing” edges of



the relation graph represent paralogy relations. In addition, as different
inference methods may lead to different predictions, instead of a yes or
no orthology assignment, existing methods can rather motivate a way of
assigning a score to a given relation [14], leading to a weighted relation
graph. For example, orthology predictions with OrthoMCL [18] are based
on a weighted graph, where edge weights are related to the sequence
similarity score of the adjacent genes, while InParanoid [3] provides a
confidence value that shows how closely related a paralog is to its “seed
ortholog”. Surprisingly, as far as we know, weighted orthology/paralogy
relation graphs have not been formally considered in the literature.

While a gene tree induces a set of relations betwen genes, the con-
verse is not true, as a set of relations may or may not represent a valid
history for the gene family. Two underlying questions are: (1) is the set
of relations “satisfiable” i.e. is there a tree, with internal nodes labeled as
duplication or speciation, containing them all? (2) is the set of relations
“S-consistent” with the known species tree S, i.e. is there a tree con-
taining the relations that is a “valid” gene tree “in agreement” with S?
Polynomial-time algorithms are known to exist for deciding satisfiability
and S-consistency for full [11,9,10] or partial [14] pairwise gene relations.

In this paper, we address the problem of correcting a full relation
graph R, and more specifically a full weighted relation graph, so that
it represents a satisfiable and S-consistent set of relations. The related
minimization problems consist in editing, i.e. adding or removing, edges
of minimum total weight. In the unweighted case, the satisfiability cor-
rection problem reduces to editing a minimum number of edges of R in
order to make it P4-free, which is known to be NP-hard [19]. In [10], an
integer linear programming formulation is used to correct relation graphs
of small size, which is also applicable to weighted graphs. In [20], the au-
thors propose an approximation algorithm of factor 4∆, where ∆ is the
maximum degree of the input graph. The algorithm, however, offers no
guarantees in the case of weighted graphs, as there are weighted instances
on which it is arbitrarily far from optimal. It is shown in [1] that the mini-
mum edge editing problem cannot be approximated within an “additive”
factor of n2−ε, for any ε > 0. Yet, the authors give a class of polyno-
mial time algorithms that are approximable within an additive factor of
εn2, for any ε > 0. This implies a constant factor algorithm for graphs
with an edit distance of Ω(n2), but offers no guarantee in the other cases.
Moreover, this algorithm only applies to unweighted graphs, and does not
consider that two genes from the same species must remain paralogs. Fi-
nally in [19], parameterized versions of the algorithm are explored. As for



the S-consistency correction problem, we proved in a previous paper [13]
that it is NP-hard, which is the only result so far.

We show in, Section 3, that the weighted satisfiability and S-consistency
problems are not approximable within a constant factor, assuming the
Unique Games Conjecture. In Section 4, we then show that they can be
approximated within a factor of n (the number of vertices of the rela-
tion graph), and provide n-approximation algorithms for both the sat-
isfiability and S-consistency problems. We end this paper by giving, in
Section 5, a few results on the maximization variants of the problems for
the unweighted case, which consists in maximizing the number of pre-
served relations. We begin by introducing the concepts and optimization
problems in the following section.

2 Trees and orthology relations

A graph H is denoted H = (VH , EH), where VH is its set of vertices (or
nodes if H is a tree) and EH its set of edges. If H is a tree, degree one
nodes are leaves.

2.1 Trees

All considered trees are rooted and binary. Given a set X, a tree T for X
is a tree whose leafset L(T ) is in bijection with X. Given an internal node
u of T , the subtree rooted at u is denoted Tu and we call the leafset L(Tu)
the clade of u. A node u is an ancestor of v if u is on the (inclusive) path
between v and the root. The lowest common ancestor (lca) of u and v,
denoted lcaT (u, v), is the ancestor common to both nodes that is the most
distant from the root. We define lcaT (U) analogously for a set U ⊆ V (T ).

A species tree S for a species set Σ represents an ordered set of speci-
ation events that have led to Σ: an internal node is an ancestral species at
the moment of a speciation event, and its children are the new descendant
species. For simplicity, we will assume that species trees are binary.

A gene family Γ is a set of genes accompanied with a function s :
Γ → Σ mapping each gene to its corresponding species. The evolutionary
history of Γ can be represented as a node-labeled gene tree for Γ , where
each internal node refers to an ancestral gene at the moment of an event
(either speciation or duplication), and is labeled as a speciation (Spec)
or duplication (Dup) accordingly. Formally, we call a DS-tree for Γ a
pair (G, ev), where G is a tree with L(G) = Γ , and ev : VG \ L(G) →
{Dup, Spec} is a function labeling each internal node of G as a duplication
or a speciation. For example, in Figure 1, G1 and G2 are two DS-trees.



According to the Fitch [7] terminology, we say that two genes x, y of
Γ are orthologous in G if ev(lcaG(x, y)) = Spec, and paralogous in G if
ev(lcaG(x, y)) = Dup.

A DS-tree G for Γ does not necessarily represent a valid history.
For this to hold, any speciation node of G should reflect a clustering of
species “in agreement” with S [14]. Formally G should be S-consistent,
as defined below, where sG is the LCA-mapping function, mapping each
gene, ancestral or extant, to a species as follows: if g ∈ L(G), then sG(g) =
s(g); otherwise, sG(g) = lcaS({s(g′) : g′ ∈ L(Gg)}).

Definition 1. Let S be a species tree and G be a DS-tree. Let v be an
internal node of G such that ev(v) = Spec. Then the speciation node v,
with children v1 and v2, is S-consistent iff none of sG(v1) and sG(v2) is an
ancestor of the other. We say that G is S-consistent iff every speciation
node of G is S-consistent.

For example, in Figure 1, G1 is not S-consistent as the root of G1 is
not S-consistent.

2.2 Relation graphs

For a graph H = (VH , EH), we denote the complementary set of EH by
EH = {{u, v} : u, v ∈ VH , {u, v} /∈ EH}. Let V ′ be a subset of VH . The
subgraph of H induced by V ′, denoted H[V ′], is the subgraph of H with
vertex-set V ′ having every edge {u, v} of H such that u, v ∈ V ′. If I is
another graph, we say H is I-free if there is no V ′ ⊆ VH such that H[V ′]
is isomorphic to I.

A relation graph R on a gene family Γ is a graph with vertex set
VR = Γ , in which we interpret each edge {u, v} of ER as an orthology
relation between u and v, and each “missing” edge {u, v} ∈ ER, also
called non-edge, as a paralogy relation. Notice that if s(u) = s(v), then
{u, v} must be a non-edge (u and v are paralogous). We denote n = |VR|.

A DS-tree G leads to a relation graph, denoted R(G), with vertex set
L(G) and edge set corresponding to all gene pairs that are orthologous in
G. Conversely, a relation graph R does not necessarily lead to a DS-tree.
If this is the case, i.e. if there exists a DS-tree G such that R(G) = R,
then R is said satisfiable. As shown in [9], a relation graph R is satisfiable
if and only if R is P4-free, meaning that no four vertices of R induce a
path of length 3 (number of edges). The P4-free graphs are sometimes
called cographs. See Figure 1 for an example.

As a DS-tree does not necessarily represent a true history for Γ ,
satisfiability of a relation graph does not ensure a possible translation in
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Fig. 1: S is the species tree for Σ = {a, b, c, d}. The internal nodes, repre-
senting ancestral species, are labeled by x, y and z. R is a relation graph on
gene set Γ = {a1, a2, b1, c1, d1}. A gene name corresponds to the species
it belongs to (e.g. s(a1) = a). R is not satisfiable as the set of vertices
{c1, b1, d1, a2} induces a P4. R

′ is a satisfiable relation graph obtained
from R by inserting the edge {c1, d1}, and G1 is a DS-tree displaying
every relation of R′ (each internal node v is labeled by sG1(v)). However,
G1 is not consistent with the species tree S. R′′ is another correction of
R that is S-consistent, as the tree G2 displays the relations in R′′ and is
S-consistent. Dup nodes in DS-trees are marked by a square; all other
nodes are speciation nodes.

terms of a history for Γ . For this to hold, R should also be consistent
with the species tree, according to the following definition.

Definition 2. Let S be a species tree. A relation graph R for Γ is S-
consistent if and only if R is satisfiable by a DS-tree G which is itself
S-consistent.

2.3 Problem statements

We call a weight for a relation graph R = (VR, ER) a function w :
(
VR
2

)
→

R+ on its vertex pairs. Notice that w assigns a weight to both edges
(orthologies) and non-edges (paralogies). We shall assume that if s(u) =
s(v) for two genes u and v, then {u, v} ∈ ER and w({u, v}) = ∞. The
weight function w is extended to any IR ⊆

(
VR
2

)
by defining w(IR) =∑

{x,y}∈IR w({x, y}).
Given a relation graph R = (VR, ER), an edge-editing of R is a pair

E∗R = (E+
R , E

−
R ) with E+

R ⊆ ER and E−R ⊆ ER. We denote by R(E∗R) the
graph R(E∗R) = (VR, (ER∪E+

R )\E−R , w). In other words, E+
R (respectively

E−R ) denotes inserted (respec. removed) edges. Given a relation graph
R′ = (VR′ , ER′) computed from R by edge insertion and removal, the
set of removed edges is E−R = ER \ ER′ , and the set of inserted edges is
E+
R = ER′\ER. For example, for the graphR′ of Figure 1, E+

R = {{c1, d1}}
and E−R = ∅. An edge-editing E∗R is said P4-free if R(E∗R) is itself P4-free.

The problems considered in Sections 3 and 4 are the following (corre-
sponding maximization problems are introduced in Section 5). The first



problem asks for a satisfiable relation graph, hence no species tree is con-
sidered, while the second asks for an S-consistent relation graph, hence
the input contains also a species tree.

Minimum Weighted Editing for Satisfiability (MinWES):
Input: A relation graph R = (VR, ER) and a weight function w;
Output: A satisfiable relation graph R′ = (VR, ER′), obtained from R
by an edge-editing E∗R = (E+

R , E
−
R ) that minimizes w(E+

R ) + w(E−R ).

Minimum Weighted Editing for Consistency (MinWEC):
Input: A relation graph R = (VR, ER), a weight function w and a species
tree S for Σ (the set of species containing the genes represented by R);
Output: An S-consistent relation graph R′ = (VR, ER′), obtained from
R by an edge-editing E∗R = (E+

R , E
−
R ) that minimizes w(E+

R ) + w(E−R ).

3 Hardness of Approximation of Minimum Weighted
Editing for Satisfiability and Consistency

We show that MinWES is unlikely to be approximable within a constant
factor, by presenting a gap-preserving reduction from Minimum Multi-Cut.
First, we consider the variant of MinWES, called Minimum Weighted Re-
moval for Satisfiability (MinWRS), where only edge removal is allowed,
then we easily extend the result to MinWES.

Given a graph H = (VH , EH), and a set X ⊆
(
VH
2

)
(i.e. a set of pairs),

Minimum Multi-Cut asks for a set E′H of minimum cardinality such that
each pair {vi, vj} ∈ X is disconnected in H ′ = (VH , EH \ E′H).

Given an instance H = (VH , EH , X) of Minimum Multi-Cut, we con-
struct an instance R = (VR, ER, w) of MinWRS as follows. The vertex set
VR includes, for each vi ∈ VH , two vertices vi,R and v′i,R. For any distinct
x, y ∈ VR, we set s(x) 6= s(y), and hence there are no “forced” paralogs.
As for ER, it is defined as follows, where q = |VH |5 + 1.

– For each v ∈ VH , define an edge {vi,R, v′i,R} in ER of weight q′ =

q|EH |+ 2
((|VH |

2

)
− |EH |

)
;

– For each {vi, vj} ∈ X, define an edge {vi,R, vj,R} in ER with weight q
if {vi, vj} ∈ EH , and with weight 1 if {vi, vj} /∈ EH ;

– For each {vi, vj} /∈ X, define the edges {vi,R, v′j,R} and {v′i,R, vj,R}
in ER, each with weight q/2 if {vi, vj} ∈ EH , and with weight 1 if
{vi, vj} /∈ EH .



For each {uR, vR} ∈ ER, {uR, vR} has weight q′. Notice however, that,
since edge insertion is not allowed in MinWRS, the weight of {uR, vR}
never contributes to the cost of a solution of MinWRS.

We first show (in the Appendix) that there is a correspondance be-
tween solutions to the two problems on our constructed instances.

Lemma 1. Let H = (VH , EH , X) be an instance of Minimum Multi-Cut
and let R = (VR, ER, w) be the corresponding instance of MinWRS. Given
a solution E′H of Minimum Multi-Cut, we can compute in polynomial time

a solution of MinWRS of weight at most q|E′H |+ 2
((|VH |

2

)
− |EH |

)
.

Lemma 2. Let H = (VH , EH , X) be an instance of Minimum Multi-Cut
and let R = (VR, ER, w) be the corresponding instance of MinWRS. Given

a solution R′ of MinWRS of weight at most qW + 2
((|VH |

2

)
− |EH |

)
for

some integer W , we can compute in polynomial time a multicut E′H of H
of size at most W .

Assuming the Unique Games Conjecture, the inapproximability of
MinWRS is deduced from the inapproximability of Minimum Multi-Cut [4].

Theorem 1. MinWRS is not approximable within a constant factor as-
suming the Unique Games Conjecture.

The result of Theorem 1 can be easily extended to MinWES.

Corollary 1. MinWES is not approximable within a constant factor as-
suming the Unique Games Conjecture.

Proof. The result follows by a gap-preserving reduction similar to that
for MinWRS. Recall that for each pair {uR, vR} ∈ ER, a weight of q′ is
associated with {uR, vR}. Consider a solution R′ of MinWES on instance

R that has cost not greater than qW +
((|VH |

2

)
− |EH |

)
+
(|VH |

2

)
. It is easy

to see that R′ is obtained without any edge insertion. ut

The inapproximability result for MinWES is easily extended to MinWEC.
This is achieved by defining a species tree S on VR such that the root of
S is connected to two subtrees, one with leafset {vi,R : vi ∈ VH}, one with
leafset {v′i,R : vi ∈ VH}, and showing that any solution to our instance of
MinWRS must agree with this species tree.

Corollary 2. MinWEC is not approximable within a constant factor as-
suming the Unique Games Conjecture.



4 A Bounded Approximation Algorithm for Minimum
Weighted Editing for Satisfiability and Consistency

While MinWES and MinWEC are not approximable within a constant
factor, we show here that they can be approximated within factor n =
|V (R)|, and we give the corresponding algorithms. Despite being a large
approximation factor, this is the best known bound so far and shows
that the problems have polynomially bounded approximability. We first
describe the approximation algorithm for MinWES.

Denote by R = (VR, ER) the complement of the graph R = (VR, ER).
A well-known property of cographs is given by the following lemma.

Lemma 3. [6] A graph R is P4-free if and only if for any X ⊆ VR, one
of R[X] or R[X] is disconnected.

This motivates a greedy min-cut approach for MinWES, performing an
edge-editing of minimum weight disconnecting the graph or its comple-
ment, and iterating recursively on the resulting components. This is the
main idea of Algorithm MinCut-Cograph-Editing below. Note that assum-
ing forced paralogs have infinite weight, this algorithm will never make
two genes from the same species orthologs.

More formally, let R = (VR, ER) be a relation graph accompanied
with a weight function w. Define a cut C = {X,Y } as a partition of VR
with X and Y being non-empty sets, and denote ER(C) = {{x, y} ∈ ER :
x ∈ X, y ∈ Y }. The weight of C is w(C) = w(ER(C)). The cut C is
a minimum cut or MinCut if no other cut has a smaller weight w(C).
Applying a cut C to R consists in removing all edges of ER(C) from R.

Algorithm MinCut-Cograph-Editing(R):
If R has at most 2 vertices Then Return;
Find a MinCut C = {X,Y } for R;

Find a MinCut C = {X,Y } of R;

If w(C) < w(C) Then
Remove all edges between X and Y in R;
MinCut-Cograph-Editing(R[X]);
MinCut-Cograph-Editing(R[Y ]);

Else

Add all possible edges between X and Y in R;

MinCut-Cograph-Editing(R[X]);

MinCut-Cograph-Editing(R[Y ]);
End If

End Algorithm



Complexity: A MinCut of a given graph of n vertices and m edges can be
found in time O(nm+n2 log n) using the Stoer-Wagner algorithm [21]. In
the MinCut-Cograph-Editing algorithm, MinCut is applied to both R and
R. As at least one of these two graphs has Ω(n2) edges, the required time
for MinCut is therefore O(n3). This step is repeated at most n times,
hence the overall time complexity of MinCut-Cograph-Editing is O(n4).

The remaining of this section is dedicated to proving Theorem 2, which
states that MinCut-Cograph-Editing is an n-approximation algorithm. We
denote by σR the minimum weight of a P4-free edge-editing of R. If X ⊆
VR, we denote σR[X] by σX .

Lemma 4. Let C be a minimum cut of R, and let C be a minimum cut
of R. Then σR ≥ min{w(C), w(C)}.

Proof. Let E∗R be a P4-free edge-editing of R. By Lemma 3, either R(E∗R)
or its complement is disconnected, implying that E∗R must apply some
cut on either R or R. This cut is at best a minimum cut. ut

Lemma 5. Let {X,Y } be a partition of V . Then, σR ≥ σX + σY .

Proof. Let E∗R be a P4-free edge-editing of weight σR, and let R′ = R(E∗R).
Assume that E∗R has a weight stricly smaller than σX + σY . Then, since
R′[X] and R′[Y ] are P4-free, there must either be an edge-editing of R[X]
of weight smaller than σX , or an edge-editing of R[Y ] of weight smaller
than σY , contradicting the definition of σX and σY . ut

Theorem 2. MinCut-Cograph-Editing is an n factor approximation algo-
rithm for MinWES.

Proof. Denote by β(R) the weight of the edge-editing found by the al-
gorithm on R. We proceed by induction on n = |VR| to show that
β(R) ≤ nσR. The statement is trivial for n ≤ 3 (as there is nothing to cor-
rect), so assume that the algorithm finds a solution of weight β(R) ≤ kσR
for any graph of size at most k < n. The algorithm applies a minimum
cut C = {X,Y } on R or R, and proceeds recursively on X and Y , with
|X|, |Y | ≤ n− 1. By the induction hypothesis, we have

β(R) ≤ |X|σX + |Y |σY + w(C) ≤ (n− 1)(σX + σY ) + w(C)

≤ (n− 1)σR + σR = nσR

where the last inequality holds due to Lemma 4 and Lemma 5. ut



It is possible to show that the approximation factor of MinCut-Cograph-
Editing is tight.

By modifying MinCut-Cograph-Editing, it is possible to design an n
factor approximation algorithm for MinWEC. The main difference with
respect to MinCut-Cograph-Editing, is that the algorithm considers a min-
imum cut on a subset of R and a cut on a subset of R induced by the
species tree S. The detailed algorithm, along with the proof of the fol-
lowing Theorem, are given in the Appendix. It also requires time O(n4).

Theorem 3. MinCut-Cograph-Editing-Cons is an n factor approximation
algorithm for MinWEC.

5 Polynomial Time Approximation Schemes for the
Maximization Variant of Graph Correction

Here, we consider the complementary maximization problem, which con-
sists in maximizing conservation between the original and corrected graphs.
Although sharing the same objectives, the minimization and maximiza-
tion variants are not equivalent from an approximation point of view.

Below is a formal statement of the corresponding maximization ver-
sion of MinWES (see Section 2) for unweighted graphs. Remember that
edges represent orthologies, while non-edges are paralogies. Maximizing
conservation therefore requires accounting for both edges and non-edges.

Maximum Editing for Satisfiability (MaxES):
Input: A relation graph R = (VR, ER);
Output: A satisfiable relation graph R′ = (VR, ER′) obtained from R by
an edge-editing, such that its value |ER∩ER′ |+|(ER∩ER′)| is maximized.

Given a relation graph R, the value of a solution R′ for MaxES over
instance R is called the agreement value of R′.

Lemma 6. Given a relation graph R, an optimal solution of MaxES over
instance R has an agreement value of at least n2

8 .

Proof sketch: Consider the two ‘extreme’ solutions: either make all genes
from two distinct species orthologs, or all genes paralogs. In R, either at
least half the genes are orthologs, or at least half the genes are paralogs.
Thus one extreme solution preserves at least half the total number of
relations, which is

(
n
2

)
/2 > n2

8 . The detailed proof is in the Appendix. ut
Note that Lemma 6 gives, almost trivially, a factor 1/2 approximation

(i.e. preserving at least half as many relations as the optimal). Using



Lemma 6 and results from [1], one can devise a PTAS for MaxES in the
case that every gene belongs to a distinct species. Let OPT (R) be the
value of an optimal solution on R, and let c be such that OPT (R) = cn2.
The additive εn2 approximation algorithm for cograph editing [1] yields a
solution of value (c− ε)n2. As c ≥ 1/8 by Lemma 6, ε can be adjusted so
that, for any 0 < ε′ < 1, (c− ε)n2 ≥ (1− ε′)cn2, hence yielding a PTAS.
In the more general case, this algorithm does not ensure that genes from
the same species remain paralogs. However, the authors of [1] claim that
their approximation algorithm applies to any hereditary graph property
(i.e. preserved after vertex-deletion), which holds for satisfiability.

Finally, we end this paper with few insights on the maximization ver-
sion of graph correction for consistency, that we call MaxEC. Notice that
the lower bound n2

8 of Lemma 6 also holds for an optimal solution of
MaxEC. However, the PTAS for MaxES does not guarantee that the re-
turned relation graph R′ is S-consistent with the given species tree S.
We can show however that a PTAS for MaxEC can be obtained, based on
smooth-polynomial integer programming [2], a technique that has been
applied to problems like Maximum Quartet Consistency [12]. Proofs are
quite involved, and require several technical arguments, that will be in-
cluded in a journal version of this extended abstract.

6 Conclusion

This paper explores a new direction in the field of orthology and paralogy
prediction. Taking advantage of the many existing prediction tools, a set
of relations is better represented as a weighted relation graph, where the
weight of a relation represents its degree of confidence. In case of non-
satisfiability or unconsistency, the goal is to minimally correct the corre-
sponding relation graph. While the problem has been largely explored in
the case of unweighted graphs, the weighted version of the problem re-
mains largely unexplored. Here, we provide complexity results and poly-
nomial approximation algorihms for this problem.

For real application to biological datasets, the challenge remains to
assign appropriate weights to relations. This can be done by weighting
relations according to sequence similarity scores, or in a more sophisti-
cated way by incorporating various information from different prediction
tools, depending on the degree of confidence given to each of them. A
full bioinformatics study on simulated and real datasets remains to be
undertaken for this purpose.
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7 Appendix

A Proof of Lemma 1

We first bound the number of edges of weight 1 in R.

Claim. Let H = (VH , EH , X) be an instance of Minimum Multi-Cut and
let R = (VR, ER, w) be the corresponding instance of MinWRS. Then, R

contains at most 2
((|V |

2

)
− |EH |

)
edges of weight 1.

Proof. Consider the edges connecting vertices vi,R and vj,R; vi,R and vj,R
are connected by an edge of weight 1 if and only if {vi, vj} /∈ EH and
{vi, vj} ∈ X.

Consider the edges connecting vertices vi,R and v′j,R, v′i,R and vj,R. vi,R,
v′j,R (and v′i,R,vj,R) are connected by an edge of weight 1 if {vi, vj} /∈ EH
and {vi, vj} /∈ X.

Any other edge has weight greater than 1, hence the lemma follows.
ut

We are now ready to prove Lemma 1.

Proof. Given a set E′ that defines a multicut in H, let VH,1, . . . , VH,p
be the sets of vertices of the connected components in the graph V ′H =
(V ′H , EH \ E′H).

We define a solution of MinWRS over instance R as follows. We con-
struct the partition VR,1, . . . , VR,p of the vertices of R such that vj,R and
v′j,R belong to set VR,i if and only if vj ∈ VH,i. All edges having their
endpoints in two distinct VR,i, VR,j are removed.

We claim that the computed graph R′ induced by the partition is P4-
free. By construction, for each vj,R, v′j,R, vh,R, v′h,R that belong to VR,i, the
edges {vj,R, v′h,R} and {v′j,R, vh,R} belong to ER (because {vj , vh} /∈ X).
Moreover, there is no edge between vj,R and vh,R, nor between v′j,R and
v′h,R. Thus any path on four vertices in the graph on vertex set Vi,R must
be either of the form vj,Rv

′
h,Rvk,Rv

′
`,R, or of the form v′j,Rvh,Rv

′
k,Rv`,R. In

both cases, the endpoints of the path share an edge, and thus cannot
induce a P4.

Now, consider the edges {vi, vj} ∈ E′H . If {vi, vj} ∈ X, the correspond-
ing solution of MinWRS removes an edge of weight q, namely {vi,R, vj,R}.
If {vi, vj} /∈ X, the corresponding solution of MinWRS removes two edges
of weight q/2, namely {vi,R, v′j,R} and {v′i,R, vj,R}. Hence those edges have

a total weight q|E′H |. Since at most 2
((|VH |

2

)
− |EH |

)
edges of weight 1

are removed (see Claim A), we can conclude that the lemma holds. ut



B Proof of Lemma 2

Proof. Consider a solution R′ = (VR, E
′
R, w) of MinWRS over instance

R = (VR, ER, w) of weight at most qW + 2
((|VH |

2

)
− |EH |

)
, with W ≤

|EH |. First, notice that no edge {vi,R, v′i,R}, with 1 ≤ i ≤ |V |, is removed
to obtain R′, since the weight of such an edge is greater than qW +

2
((|VH |

2

)
− |EH |

)
.

Consider now two vertices v′i,R, v′j,R, such that, given the correspond-
ing vertices vi, vj in H, we have {vi, vj} ∈ X. By construction there is a
P4 in R, namely v′i,R, vi,R, vR,j , v

′
j,R. It follows that the edge {vi,R, vj,R}

must be removed in R′. Moreover, we claim that in R′, the vertices v′i,R,
v′j,R must be disconnected. Assume by contradiction that this does not
hold, and that v′i,R, v′j,R belong to the same connected component of R′.
Consider the shortest path P that connects vertices vi,R and vj,R in R′.
Then P has length at least 2. Note that as P is a shortest path, it has no
chord, i.e. non-consecutive vertices of P cannot share an edge.

Suppose that P does not include the vertex v′i,R. Then we can assume
that vi,R is adjacent in P to a vertex v′t,R, since if it is adjacent to a vertex
vq,R, then the vertices vi,R, v′i,R, vq,R, and v′q,R would induce a P4. Now, if
v′t,R is adjacent to vj,R, then v′i,R, vi,R, v′t,R and vj,R induce a P4. If there
is no such v′t,R, then P has length at least 3 and it must therefore contain
an induced P4.

So suppose instead that P includes the vertex v′i,R. Since by construc-
tion v′i,R is not adjacent to vj,R and it is not adjacent to any v′t,R, with
t 6= i, while it is adjacent to vi,R, P has length at least 3, and again must
have an induced P4.

We can conclude that when {vi, vj} ∈ X, the corresponding vertices
v′i,R, v′j,R belong to disconnected connected components of R′. Hence we
can compute a multi-cut of H as follows:

E′H ={{vi, vj} : {vi,R, vj,R}, of weight q, or {vi,R, v′j,R}, {v′i,R, vj,R}, of weight
q

2
,

are removed in R′ .}

E′H is a multi-cut, since each {vi, vj} ∈ X is disconnected. Now, recall
that R′ is obtained by removing edges of overall weight at most qW +

2
((|VH |

2

)
− |EH |

)
. Since edge edge in E′H corresponds to edges of overall

weight q in R (an edge {vi,R, vj,R} of weight q if {vi, vj} ∈ X, or two
edges of weight q/2, namely {vi,R, v′j,R} and {v′i,R, vj,R} if {vi, vj} /∈ X),
we must have |E′H | ≤W . ut



C Proof of Theorem 1

Proof. Given a graph H instance of Minimum Multi-Cut and the cor-
responding instance R of MinWRS, denote by OPTM (APM , respec-
tively) the value of an optimal solution (of an approximation solution,
respectively) of Minimum Multi-Cut on instance H, and denote by OPTC
(APC , respectively) the value of an optimal solution (of an approxi-
mation solution, respectively) of MinWRS on instance R. Define z =

2
((|VH |

2

)
− |EH |

)
. By Lemma 1, we assume that APC(R) ≤ APM (H)/q,

as there exists an algorithm that always outputs at most such a value,
and thus any approximation algorithm can be adapted to output at most
this value. Also, by Lemma 2, we have OPTC(R) ≤ OPTM (H)q + z. We
have that

APC(R)

OPTC(R)
≥ APM (H)q

OPTM (H)q + z
=
APM (H)q +APM (H)z −APM (H)z

OPTM (H)q + z
=

=
APM (H)q +APM (H)z

OPTM (H)q + z
− APM (H)z

OPTM (H)q + z

≥ APM (H)q +APM (H)z

OPTM (H)q +OPTM (H)z
− APM (H)z

OPTM (H)q + z

=
APM (H)(q + z)

OPTM (H)(q + z)
− APM (H)z

OPTM (H)q + z

=
APM (H)

OPTM (H)
− APM (H)z

OPTM (H)q + z

where we assume OPTM (H) ≥ 1 for the second inequality (the case
OPTM (H) = 0 can be checked in polynomial time). Since Minimum Multi-Cut
is not approximable within a constant factor assuming the Unique Games
Conjecture [4], even on unweighted graphs, it follows that

APM (H)

OPTM (H)
≥ α

on an infinity of instances of H for any constant α ≥ 1. As a consequence,
for any constant α ≥ 1, an infinity of instances of R yield:

APC(R)

OPTC(R)
≥ α− APM (H)z

OPTM (H)q + z



Since q = n5+1, APM (H) ≤ n2 and z ≤ n2, it follows that APM (H)z
OPTM (H)q+z ≤

1/n. Combining the last two inequalities, we have that

APC(R)

OPTC(R)
≥ α− 1/n ≥ β

for any constant β ≥ 1, which concludes the proof. ut

D Proof of Corollary 2

Proof. The result follows by a gap-preserving reduction similar to that
for MinWRS and MinWES. Define a species tree S on VR such that the
root of S is connected to two subtrees, one with leafset {vi,R : vi ∈ VH},
one with leafset {v′i,R : vi ∈ VH}.

Consider the partition VR,1, . . . , VR,p of the vertices of a solution R′

of MinWRS and MinWES. Each connected component VR,t that contains
vertices vi,R, v′i,R, vj,R, v′j,R, contains only edges {vi,R, v′i,R}, {vj,R, v′j,R},
{vi,R, v′j,R}, {vj,R, v′i,R}.

For each set VR,i, we construct a tree GR,i by defining two subtrees
G1
R,i and G2

R,i such that G1
R,i has leafset {vj,R : vj,R ∈ VR,i} and G2

R,i has

leafset {v′j,R : v′j,R ∈ VR,i}. Each node of G1
R,i and G2

R,i is associated with a

duplication. GR,i is obtained by joining G1
R,i and G2

R,i in a root, associated
with a speciation. Finally, the subtrees GR,1, . . . , GR,p are joined in a gene
tree G by duplication nodes (with any topology). By construction, G is
S-consistent, thus the hardness result can be extended to MinWEC. ut

E Proof of Theorem 3

We first provide the detailed MinCut-Cograph-Editing-Cons algorithm, and
show that it also is a n-factor approximation.

Given a species tree S and a set Z ⊆ VR, let Σ(Z) = {s(x) : x ∈ Z}.
Let S|Σ(Z) be the subtree of S restricted to Σ(Z) and let XS , YS be
the clades of the left and right child, respectively, of the root of S|Σ(Z).
Consider the sets X = {x : s(x) ∈ XS} and Y = {y : s(y) ∈ YS}, the
cut CS(Z) on R[Z] is defined as CS(Z) = {XR, YR}. Observe that CS(Z)
is the only possible cut on R that maintains S-consistency, as this cut
corresponds to a speciation in a DS-tree, and speciations must separate
genes according to S. Therefore, it suffices to modify MinCut-Cograph-
Editing by forcing the cut C to be CS(Z). Call this modified algorithm
MinCut-Cograph-Editing-Cons.



Algorithm MinCut-Cograph-Editing-Cons(R):
If R has at most 2 vertices Then Return;
Find a MinCut C = {X,Y } for R;

Let CS(VR) = {X,Y };
If w(C) < w(CS(VR)) Then

Remove all edges between X and Y in R;
MinCut-Cograph-Editing-Cons(R[X]);
MinCut-Cograph-Editing-Cons(R[Y ]);

Else

Add all possible edges between X and Y in R;

MinCut-Cograph-Editing-Cons(R[X]);

MinCut-Cograph-Editing-Cons(R[Y ]);
End If

End Algorithm

Proof. Denote by β(R) the weight of the edge-editing found by the al-
gorithm on R. We proceed by induction on n = |VR| to show that
β(R) ≤ nσR. The statement is trivial for n ≤ 2 (as there is nothing to cor-
rect), so assume that the algorithm finds a solution of weight β(R) ≤ kσR
for any graph of size at most k < n.

The algorithm applies a cut C = {X,Y } which is either a minimum
cut on R or it is the cut CS(VR), and proceeds recursively on X and Y ,
with |X|, |Y | ≤ n− 1. By the induction hypothesis, we have

β(R) ≤ |X|σX + |Y |σY + w(C) ≤ (n− 1)(σX + σY ) + w(C)

Now, similarly to Lemma 4, we have that w(C) ≤ σR. First, let G′

be the gene tree associated with a solution of MinWEC over instance R.
If C is a minimum cut on R, it holds due to the proof Lemma 4. If C is
CS(VR), then notice that, in order to guarantee the consistency with S,
the root of G′ must be exactly CS(VR).

Lemma 5 holds also for MinWEC, hence

β(R) ≤ |X|σX + |Y |σY + w(C) ≤ (n− 1)(σX + σY ) + w(C)

≤ (n− 1)σR + σR = nσR

hence the theorem holds. ut

F Proof of Lemma 6

Given a relation graph R, the value of a solution R′ for MaxES over in-
stance R is called the agreement value of R′ and it is denoted by A(R′, R).



Moreover, given a gene tree G, we denote by A(G,R) the agreement be-
tween the relation graph associated with G and R.

Proof. Let X = {{u, v} : u, v ∈ VR and s(u) = s(v)} be the set of
‘must-be’ paralogs. Consider the relation graphs R′ = (VR, ∅) and R′′ =
(VR,

(
VR
2

)
\ X), where

(
VR
2

)
is the set of all unordered pairs of VR. It is

not hard to see that R′ and R′′ are both feasible solutions of MaxES and
of MaxEC. For each {u, v} ∈

(
VR
2

)
\X, the u, v relation in R agrees with

exactly one of R′ or R′′, and for each {u, v} ∈ X, the u, v relation agrees
with both R′ and R′′. It follows that

A(R,R′) +A(R,R′′) ≥
(
n

2

)
But then, for this inequality to hold, at least one of R′, R′′ must have
an agreement value of at least 1

2

(
n
2

)
, hence an optimal solution of MaxES

and MaxEC has an agreement value of at least 1
2

(
n
2

)
≥ n2

8 . ut
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