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Abstract
Due to the key role played by gene trees and species phylogenies in biological studies, it is
essential to have as much confidence as possible on the available trees. As phylogenetic tools
are error prone, it is a common task to use a correction method for improving an initial tree.
Various correction methods exist. In this paper we focus on those based on the Duplication-Loss
reconciliation model. The polytomy resolution approach consists in contracting weakly supported
branches and then refining the obtained non-binary tree in a way minimizing a reconciliation
distance with the given species tree. On the other hand, the supertree approach takes as input
a set of separated subtrees, either obtained for separared orthology groups or by removing the
upper branches of an initial tree to a certain level, and amalgamating them in an optimal way
preserving the topology of the initial trees. The two classes of problems have always been
considered as two separate fields, based on apparently different models. In this paper we give
a unifying view showing that these two classes of problems are in fact special cases of a more
general problem that we call LabelGTC, whose input includes a 0-1 edge-labelled gene tree
to be corrected. Considering a tree as a set of triplets, we also formulate the TripletGTC
Problem whose input includes a set of gene triplets that should be preserved in the corrected
tree. These two general models allow to unify, understand and compare the principles of the
duplication-loss reconciliation-based tree correction approaches. We show that LabelGTC is a
special case of TripletGTC. We then develop appropriate algorithms allowing to handle these
two general correction problems.
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1 Introduction

Studying the functional specificities of gene copies, such as their role in metabolic pathways
of interest, usually requires a trusted gene tree. However, for various reasons related to the
specificities of phylogenetic software, the considered evolutionary models or errors in the
multiple alignments, constructed trees are usually not fully satisfactory. Consequently, most
tree construction methods integrate measures of statistical support obtained by bootstrapping
or jackknifing [3], reflecting the confidence we have on the prediction. A strong support on a
branch reflects a strong support on the clade (in case of a rooted tree) or the bipartition (in
case of an unrooted tree) represented by this branch. Results coming out from bioinformatics
pipelines should then be analyzed in light of this uncertainty in the considered trees.
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23:2 A general framework for gene tree correction

Alternatively, trees may be corrected before carrying on with the biological analysis. Due
to the fact that standard gene tree databases, such as Ensembl [15], are known to be error
prone, gene tree correction methods are frequently used upstream to obtain better trees for
gene families (c.f. for example NOTUNG [2], TreeFix [16], ProfileNJ[10], MowgliNNI [9],
ecceTERA [4], MRL [8]). Most are based on minimizing a reconciliation distance with
a given species tree, some including horizontal gene transfer. In this paper, we restrict
ourselves to the duplication-loss reconciliation distance that we simply call the reconciliation
distance. Moreover, we focus on polytomy-based and supertree-based correction methods
that cover a large set of correction methods, although not all (for example, TreeFix [16] relies
on exploring a space surrounding an initial tree, and cannot be categorized as a polytomy or
supertree-based correction method.)

Polytomy-based correction methods rely on contracting branches with weak support,
leading to a non-binary tree, and then resolving multifurcated nodes (polytomies) in a binary
way minimizing the reconciliation distance with the species tree [2, 5, 10, 12, 17]. The most
efficient algorithm for resolving a non-binary tree is linear in the size of the tree [5, 17].
Such a polytomy resolution approach preserves the subtrees in terms of topology and gene
content. In other words, the exhibited monophily of input gene clusters is not challenged by
a polytomy resolution method.

Other methods rather stand on amalgamating “trusted” partial trees into a single one
for the whole family [8, 14]. Such partial trees may be obtained by constructing them
independently for partial sets of orthologs, or by removing weakly supported branches of an
initial tree. In [6, 7], we have formalized this approach in terms of a supertree method for
gene trees. The defined SuperGeneTree (SGT) problem consists in constructing, from a set of
partial trees, a tree containing them all and minimizing the reconciliation distance. A simplest
version considering the duplication distance has been shown NP-hard [6]. Conceptually, the
supertree-based correction method is more general than the polytomy-based one, as only
the topology of initial trees should be preserved in the former case, while the latter requires
also to preserve the clades. Although it may be relevant to challenge the monophiletic
nature of input partial gene trees, SGT may lead to a drastic reorganization giving rise to a
tree grouping genes that are far apart in the original tree. To avoid this problem, we also
introduced the Triplet Respecting Supergenetree (TRS) problem [7], asking for a supertree
displaying all input subtrees, while preserving the topology of any triplet of genes taken from
three different subtrees (clades).

The polytomy-based and supertree-based models of gene tree correction have been
developed separately, considering separate assumptions and constraints. Some assumptions
are actually questionable such as the one considering upper branches as the ones that should
be removed in the case of a polytomy resolution, or alternatively kept in the case of TRS. In
fact, support can be strong or weak on any branch of the tree. Moreover, in the absence
of a unifying model, the conservative or permissive nature of each method with respect to
another one can only be tested empirically. Here, we show that all these methods can in
fact be considered in a unifying way, as special cases of a more general gene tree correction
problem taking as input a 0-1 edge-labelling derived from edge statistical supports.

In Section 3, we introduce the Label Respecting GeneTreeCorrection (La-
belGTC) Problem whose input includes a 0-1 edge-labelled gene tree to be corrected. We
show that the polytomy related and supertree related correction problems are all special cases
of this problem. In Section 4, we then define Triplet Respecting GeneTreeCorrection
(TripletGTC) Problem, a more general problem whose input includes a set of gene triplets
that should be preserved in the corrected tree. We show that LabelGTC is a special case of
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TripletGTC. As these problems include the SGT problem as a sub-problem, they are both
NP-hard for the duplication distance. In Section 5, we then exhibit a recursive algorithm for
LabelGTC and show how it can be used to define a heuristic algorithm for TripletGTC.
Finally, a variant of the LabelGTC Problem, allowing for an extended labelling, is presented
in Section 6. Developed algorithms have the same exponential time-complexity as the one
previously developed for the SGT problem [7], that is a particular case of the new problems
studied here. All missing proofs are given in Appendix.

2 Preliminaries on gene tree correction methods

Notations on trees: All considered trees are rooted. A tree is binary if each internal node
(all nodes except the leaves) has exactly two children, and non-binary otherwise. When
not mentioned explicitly, all trees are considered binary (except for the polytomy resolution
problem; we mention it explicitly in this case).

A tree T with leafset L(T ) = X is called a tree for X. If X is a set of species, then T is
a species tree. We denote by V (T ) the node set and by E(T ) the edge set of T . An edge of
E(T ) is written as a pair (x, y) of two adjacent nodes, where x is the closest to the root. A
node x is an ancestor of y if it is on the path from y to the root (excluding y). In this case,
y is called a descendant of x. Similarly, an edge (x′, y′) is an ancestor of an edge (x, y) if it
is on the path from (x, y) to the root. Given a node x, T [x] is the subtree of T rooted at x

and L(x) the leafset of T [x]. Two subtrees T [x] and T [y] are separated in T iff x 6= y and
none of x or y is an ancestor of the other. It follows that L(x) ∩ L(y) = ∅.

The lowest common ancestor of L′ ⊆ L(T ), denoted lcaT (L′), is the ancestor common
to all leaves in L′ that is the most distant from the root. T |L′ is the tree with leafset L′

obtained from the subtree of T rooted at lcaT (L′) by removing all leaves that are not in L′,
and then all internal nodes of degree 2, except the root of this tree. Let T ′ be a tree such
that L(T ′) = L′ ⊆ L(T ). We say that T displays T ′ iff T |L′ is label-isomorphic to T ′. In
this case, we also say that T preserves the topology of T ′.

A set T of trees, with possibly overlapping leafsets, is consistent if there is a tree T ′ on
the union of their leafsets displaying them all. Such a tree T ′ is called a supertree for T . For
example, in Figure 1, the tree T ′ is a supertree for the set of subtrees of T circled in blue color.

Gene tree and reconciliation: A gene family is a set of genes Γ accompanied with a
mapping function s : Γ→ Σ from each gene to its corresponding species in a set of species
Σ. Consider a gene family Γ where each gene x ∈ Γ belongs to a species s(x) of Σ. The
evolutionary history of Γ can be represented as a gene tree T for Γ. Each internal node of T

refers to an ancestral gene at the moment of an event, either speciation (Spec) or duplication
(Dup). Let S be a species tree for Σ. The mapping s is extended to be defined from V (T ) to
V (S) as follows: if x is an internal node of T , then s(x) = lcaS({s(x′) : x′ ∈ L(x)}).

When the type of event is known for each internal node, the gene tree T is said labelled.
Formally, a labelled gene tree for Γ is a pair (T, evT ), where T is a tree for L(T ) = Γ,
and evT : V (T ) \ L(T )→ {Dup, Spec} is a function labelling each internal node of T as a
duplication or a speciation node.

The lca-reconciliation (or simply reconciliation for short) of a gene tree T with a species
tree S is the labelled tree (T, evT ) obtained by labelling each internal node x of T with
children xl and xr as Spec iff s(xl) and s(xr) are separated in S, and as Dup otherwise. The
mapping function s and the node labelling also induce gene loss events on branches of the
gene tree (see Figures 1 and 2 for examples of lca-reconciliations of gene trees with species
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Figure 1 Left. A species tree S for Σ = {a, b, c, d, e}, a reconciled 0-1 edge-labelled gene
tree T for Γ = {a1, b1, c1, c2, d1, d2, d3, e1, e2, e3} where each leaf xi denotes a gene belonging to
species x, and a covering set T of subtrees for T indicated by circles around each subtree. Square
nodes are duplications and circular nodes are speciations. Internal nodes are labelled according to
corresponding ancestral species in S. Dotted lines are losses. Right. A supertree for T of minimum
reconciliation cost (cost of 5) respecting the edge labelling of T .

trees, and the induced loss events). The reconciliation cost of a labelled tree (T, evT ) is its
number of duplication nodes and induced loss events.

We end this section with a final definition. Let T and T ′ be two trees on Γ. If (x, y) is
an edge of E(T ) and there is an edge (x′, y′) in E(T ′) such that L(y) = L(y′), we say that
T ′ preserves the edge (x, y) of T .

3 A unifying view on gene tree correction problems

In the remaining of the paper, S is a species tree on a species set Σ and T is a gene tree for
a gene set Γ.

The correction problem asks for a “better tree” T ′ for Γ according to the reconciliation
cost. The various versions of the problem differ on the flexibility we have on modifying T .
Which parts of T should be preserved ? The most natural way to do is to preserve all well
supported branches, according to a given statistical support, and be allowed to modify all
weakly supported branches. Notice that the support on a branch (x, y) reflects the confidence
we have on the fact that L(y) represents a separate clade in the gene family.

The underlying representation is a 0-1 edge labelling of T edges, where 0 indicates a low
support and 1 a high support according to a certain threshold.

In addition, if the tree T contains a set of separated subtrees whose topologies are
“trusted”, they should be considered as an additional parameter. Such trusted topologies
may, for instance, be those obtained separately for different orthology groups agreeing with
the species tree, and used to build T .

Accordingly, the most general gene tree correction problem is formulated below, where a
covering set of subtrees T for T is a set of separated subtrees of T , T = {T [x1], T [x2], . . . , T [xn]}
such that ∪n

i=1L(xi) = L(T ), and a 0-1 edge labelling for T is a function l defined from the
set of edges E(T ) to {0,1}. In the following formulation, edge labels are ignored for the trees
of T (see Figure 1 for an illustration of the LabelGTC Problem).

Label Respecting GeneTreeCorrection (LabelGTC) Problem:
Input: A species tree S, a gene tree T , a covering set of trees T for T and a 0-1 edge
labelling l for T .
Output: A supertree T ′ for T of minimum reconciliation cost such that: if (x, y) ∈
E(T ) \ E(T ) is such that l(x, y) = 1, then there is an edge (x′, y′) in E(T ′) such that
L(y) = L(y′).

Notice that if no information on “trusted” separated subtrees is available, then each tree
of T is simply restricted to a leaf of T , in which case T simply refers to the leafset of T .
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Figure 2 Top left. Species tree S for Σ = {a, b, c, d, e}, gene tree T for Γ =
{a1, b1, c1, c2, d1, d2, d3, e1, e2, e3} with a covering set T of subtrees for T as in Figure 1 (without
the 0-1 labelling of edges). Bottom left. A polytomy resolution supertree for T of minimum
reconciliation cost (cost of 3). Bottom right. A supertree for T of minimum reconciliation cost
(cost of 3). Top right. A triplet respecting supertree for T of minimum reconciliation cost (cost of
5). Note that the three optimal supertrees for the TRS, SGT and PolyRes problems differ from
the optimal supertree for the LabelGTC problem depicted in Figure 1, because the implicit 0-1
edge-labellings differ from the one in Figure 1.

The above formulation is not the one actually considered in the literature. Some special
cases of the LabelGTC problem where the input covering set of trees T is the leafset of
T were considered in [2, 5, 10, 12] under the name of Polytomy Resolution problems, and
in [6, 7, 8, 14] under the name of Supertree problems. In the following paragraphs, we
recall these polytomy related and supertree related correction problems (see Figure 2 for an
illustration of the problems). We will show later that they are all special cases of the general
LabelGTC formulation.

The polytomy resolution problem:

The general version of the problem consists in contracting all weakly supported internal
branches of the input gene tree T , leading to a non-binary tree denoted by T nb, and then
finding a binary refinement of T nb minimizing the reconciliation cost. Formally, given a
non-binary gene tree T nb, a binary tree T ′ is a binary refinement of T nb if for any node x of
T nb, there exists a node x′ in T ′ such that L(x) = L(x′).

The simplest form of a non-binary tree is a polytomy defined as a set of leaves L, all
being adjacent to the root. Given a non-binary gene tree T nb, it has been shown that a
refinement of minimum cost for T nb can be obtained by a depth-first procedure iteratively
solving each polytomy T [x], for each internal non-binary node x of T nb. This is the reason
for the name given to the general problem formulated below. The restriction to a single
polytomy is formulated afterwards. It is also required in the main Theorems 1 and 6 of the
paper.

Mutiple Polytomy Resolution (M-PolyRes) Problem:
Input: A species tree S and a 0-1 edge-labelled gene tree T .
Output: A binary refinement of T nb minimizing the reconciliation distance.

As stated above, the simplest form of the problem is a single polytomy. It consists in
having a single non-binary node in T nb, the root, such that the subtrees rooted at the children
of the root are “trusted” partial trees that should remain rooted subtrees of the final tree
(see the tree obtained from PolyRes in Figure 2).
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Polytomy Resolution (PolyRes) Problem:
Input: A species tree S, a gene tree T and a covering set of trees T for T .
Output: A supertree T ′ for T of minimum reconciliation cost such that for any tree Ti ∈ T ,
T ′|L(Ti) = Ti.

The supertree resolution problem:

The above formulation of the polytomy resolution problem is a special case of the more
general supertree problem, where the constraint of preserving the monophily of input “trusted”
partial trees is relaxed. In [6], the SuperGenetree correction problem is formulated as follows.
SuperGenetree (SGT) Problem:
Input: A species tree S, a gene tree T and a covering set of trees T for T .
Output: A supertree T ′ for T of minimum reconciliation cost.

The triplet-respecting supertree problem:

To avoid having a supertree grouping genes that are far apart in the original tree, we
introduced, in [7], an alternative problem allowing to restrict the output space to supertrees
preserving the topology of any triplet of genes taken from three different input subtrees of T .
The triplet-based constrained supertree problem is the following.

Triplet-Respecting SuperGeneTree (TRS) Problem:
Input: A species tree S, a gene tree T and a covering set of trees T for T .
Output: A supertree T ′ for T of minimum reconciliation cost respecting the following
property: for any triplet (a, b, c) where a, b and c are genes of Γ being leaves of three different
trees of T , T ′|{a,b,c} = T|{a,b,c}.

For example, the tree which is a solution of the SGT Problem in Figure 2 is not a solution
of the TRS problem as the triplet (a1, c1, c2), where each gene belongs to a separate subtree
of the covering set T of T , has the topology (a1, (c1, c2)) in this tree while it has the topology
((a1, c1), c2) in T .

A unifying view:

The following Theorem shows that the polytomy related and supertree related problems are
in fact special cases of the general LabelGTC problem. Given a covering set of subtrees T
for T , we call a terminal edge an edge of E(T ) \ E(T ) which is adjacent to a tree of T . All
other edges of E(T ) \ E(T ) are called non-terminal edges (see Figure 3 for an illustration).

I Theorem 1. Let T be a 0-1 edge-labelled gene tree and T be a covering set for T . Then
the LabelGTC Problem is reduced to:

1. the M-PolyRes Problem if T = L(T ); Otherwise:
2. the PolyRes Problem if all non-terminal edges are labelled 0, and all terminal edges are

labelled 1;
3. the SGT Problem if all non-terminal and terminal edges are labelled 0;
4. the TRS Problem if all non-terminal edges are labelled 1, and all terminal edges are

labelled 0.

Proof. The problem LabelGTC on {T,L(T )} is reduced to:
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Figure 3 Top left. A gene tree T with a covering set T composed of 7 subtrees indicated as
triangles. The set E(T ) \ E(T ) contains 7 terminal edges (dotted lines) and 5 non-terminal edges
(solid lines). Four 0-1 edge labelling corresponding to: Top right. the PolyRes problem ; Middle
left. the SGT problem ; Middle right. the TRS problem ; Bottom left. a general input of
the LabelGTC problem. In all four cases, the largest covering set of edges of E(T ) that have no
ancestral edge labelled 1 are indicated with thicker red lines. Bottom right. The tree T ∗ built at
step 2.b.) of the LabelGTC algorithm (Theorem 8) for the general input (Bottom left).

1. M-PolyRes if T = L(T ), because there is a bijection between the edges of E(T ) labelled
1 and the set of nodes (excluding the root node) of the non-binary tree T nb obtained
from T by contracting all edges labelled 0 : an edge (x, y) of T labelled 1 corresponds
to a node y′ of T nb such that L(y) = L(y′). So a tree T ′ preserves the edges of E(T )
labelled 1 iff it is a binary refinement of T nb.

2. PolyRes if all non-terminal edges are labelled 0 and all terminal edges are labelled 1,
because a supertree T ′ of T preserves the terminal edges of E(T ) iff for any tree Ti ∈ T ,
T ′|L(Ti) = Ti.

3. SGT if all non-terminal and terminal edges are labelled 0, because the set of edges to be
conserved by LabelGTC is empty in this case.

4. TRS if all non-terminal edges are labelled 1 and all terminal edges are labelled 0, because
any triplet (a, b, c) of genes belonging to three different trees of T can be associated to
a non-terminal edge of E(T ) as follows: suppose that a and y = lca(b, c) are separated
w.l.o.g. and let x be the parent node of y, then the edge (x, y) of T is a non-terminal
edge of E(T ) because b and c belong to two different trees of T and (a, b, c) belongs to
Trp(x, y) (Definition 2). Now, it suffices to notice that a supertree T ′ for T preserves a
non-terminal edge (x, y) of T iff it preserves the topology of all triplets of Trp(x, y).

J

4 Relating gene tree correction problems to triplets

So far, the TRS Problem is the only one that was defined in terms of triplets. However, as a
rooted tree is fully determined by the topology of its set of leaf triplets, TRS can be seen
as a special case of a very natural general gene tree correction problem, that we formulate
below.
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We first need to introduce some definitions. Generalizing the notion used for the TRS
problem, a triplet of genes is a triplet (a, b, c) of distinct genes of Γ. By convention and
without loss of generality, we consider that a and lca(b, c) are separated in T . Let T and T ′

be two trees for Γ and Trp be a set of triplets. We say that T ′ is triplet respecting for Trp

as compared to T iff T ′ displays the same topology as T for each triplet of Trp. The general
gene tree correction problem is formulated as follows.

Triplet-Respecting GeneTreeCorrection (TripletGTC) Problem:
Input: A species tree S, a gene tree T , a covering set of trees T for T and a set Trp of
triplets;
Output: A supertree T ′ for T of minimum reconciliation cost respecting Trp.

The set Trp can be restricted to triplets with genes belonging to at least two different
trees of T , as the other triplets are necessarily displayed by a supertree for T . We call
TripletGTCleaves the TripletGTC problem in the special case where T = L(T ).

The following theorem makes the link between the LabelGTC problem and the Triplet-
GTC problem. First, we formally define the set of triplets associated to an edge and that
associated to a rooted subtree.

I Definition 2. Let (x, y) be an edge of E(T ). The set of triplets Trp(x, y) contains all the
triplets (a, b, c) such that a and y are separated and lca(b, c) = y.

I Definition 3. Let Ti be a subtree of T . The set of triplets Trp(Ti) contains all the triplets
(a, b, c) such that a, b and c are leaves of Ti.

For example, in the gene tree T depicted in Figure 1, if (x, y) is the non-terminal edge
such that L(y) = {d2, d3, e2, e3}, then Trp(x, y) = {(a, b, c) |a ∈ Γ\{d2, d3, e2, e3}and(b, c) ∈
{d2, d3} × {e2, e3}}, and = Trp(T [y]) = {(d2, d3, e2), (d2, d3, e3), (d2, e2, e3), (d3, e2, e3)}.

Note that a tree T ′ for L(T ) preserves an edge (x, y) of E(T ) \ E(T ) iff it preserves the
topology of all triplets in Trp(x, y). Similarly, it preserves the topology of a subtree Ti of T

iff it preserves the topology of all triplets in Trp(Ti).

I Theorem 4. Let T be a 0-1 edge-labelled gene tree, T be a covering set for T and Trp be
a set of triplets. Then, the TripletGTC Problem is reduced to the LabelGTC Problem iff
Trp = {Trp(x, y) | (x, y) ∈ E(T ) \ E(T ) and l(x, y) = 1}.

We now make the link between the various gene tree correction problems and the
TripletGTCleaves problem by analyzing the output of TripletGTCleaves depending on
the input set of triplets Trp. With respect to the set of initial subtrees T , a triplet (a, b, c) of
genes can either be included in a single subtree or distributed among two or three subtrees.
We formally define these three possibilities of triplet-respecting trees in the next definition.

I Definition 5. Let T be a gene tree and T be a covering set for T . Each of the following
sets of triplets contains all the triplets (a, b, c) where a, b and c are disjoint genes satisfying
the corresponding property:

Trp1: a, b, c all belong to the same tree of T ;
Trp2: a, b, c belong to two different trees of T ;
Trp3: a, b, c all belong to different trees of T .

The following theorem extends the result of Theorem 4.

I Theorem 6. Let T be a tree, T be a covering set of subtrees for T and Trp be a set of
triplets. Then the TripletGTCleaves Problem is reduced to:
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1. the Identity if Trp = Trp1 ∪ Trp2 ∪ Trp3 (no modification of the input tree); Otherwise:
2. if Trp = Trp1 ∪ Trp2, the PolyRes Problem;
3. if Trp = Trp1 ∪ Trp3, the TRS Problem;
4. if Trp = Trp2 ∪ Trp3, the M-PolyRes Problem with:

a. all non-terminal and terminal edges labelled 1 and,
b. all other edges (in E(T )) labelled 0;

5. if Trp = Trp1, the SGT Problem;
6. if Trp = Trp2, the M-PolyRes Problem with:

a. all terminal edges labelled 1;
b. all other edges (non-terminal and in E(T )) labelled 0.

7. if Trp = Trp3, the M-PolyRes Problem with:
a. all non-terminal edges labelled 1 and,
b. all other edges (terminal and in E(T )) labelled 0.

5 Algorithm for the LabelGTC Problem

In this section, we describe an algorithm for the LabelGTC problem in the general case of a
0-1 edge labelling that does not correspond to a pre-defined gene tree correction method, as
pointed out by Theorem 1. We will show later that it leads to a heuristic algorithm for the
more general TripletGTC problem.

The idea behind the algorithm for reconstructing the new tree T ′ from the input tree T is
the following. For any edge (x, y) in E(T ) \E(T ) such that l(x, y) = 1, by definition of the
LabelGTC Problem, there exists a node y′ of T ′ such that L(y′) = L(y). So the subtree
T ′[y′] of T ′ for the subset L(y) can first be constructed independently from the remaining of
the tree, and then grafted at the appropriate location in a way minimizing the reconciliation
cost. This leads to a recursive algorithm reconstructing and amalgamating iteratively, in
a bottom-up order, the subtrees of T ′ for subsets L(y) corresponding to the edges (x, y) in
E(T ) \ E(T ) verifying l(x, y) = 1. The root r(T ) of T is associated to a dummy edge (s, r)
such that l(s, r) = 1.

A covering set of edges for T is a set of separated edges E = {(x1, y1), (x2, y2), · · · , (xn, yn)}
such that E ⊆ E(T ) \ E(T ) and ∪n

i=1L(yi) = L(T ).
Lemma 7 describes a property of covering sets that will be useful for a formal description

of the algorithm solving LabelGTC.

I Lemma 7. Let (x, y) be an edge in E(T ) \E(T ) such that l(x, y) = 1, and E be the largest
covering set of edges of E(T [y]) that have no ancestral edge in E(T [y]) labelled 1. Then, any
edge of E labelled 0 is a terminal edge.

Given an edge (x, y) in E(T ) \E(T ) such that l(x, y) = 1, to compute the subtree T ′[y′]
of T ′ for L(y), first we look for the largest covering set of edges E for T [y] such that any
edge in E has no ancestral edge in E(T [y]) labelled 1 (see Figure 3 for illustration). Next, we
distinguish two possible cases. If all edges in E are labelled 0, then T ′[y′] can be obtained by
applying the SGT algorithm [7] (designed as SGT in Algorithm 1) on the set of subtrees
of T belonging to T [y]. Otherwise, E contains edges that are labelled 1. In this case, we
compute each of the subtrees of T ′[y′] corresponding to these edges labelled 1, yielding a set
of subtrees T′ and then we build T ′[y′] using the SGT algorithm again with the constraint
that the trees in T′ should remain unmodified.
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Algorithm 1 LabelGTC(S, T, T , l)
E = {(x1, y1), (x2, y2), · · · , (xn, yn)} is the largest covering set of edges for T in E(T )\E(T )
that have no ancestral edge labelled 1.
(Stop condition)
if all edges of E are labelled 0 then

return (SGT (S, T, T ))
end if
(Iterative step)
for (xi, yi) ∈ E such that l(xi, yi) = 1 do

T ′[y′i] = LabelGTC(S, T [yi], T|L(yi), l|E(T [yi]));
end for
T ∗ is obtained from T by contracting each subtree T [yi] such that (xi, yi) ∈ E and
l(xi, yi) = 1 to a single leaf node y∗i ;
T ∗ is the set of separated subtrees {T [yi] : (xi, yi) ∈ E and l(xi, yi) = 0} ∪ {y∗i : (xi, yi) ∈
E and l(xi, yi) = 1} of T ∗;
T ′∗ = SGT (S, T ∗, T ∗);
return (the tree obtained from T ′∗ by replacing each leaf node y∗i by T ′[y′i]);

I Theorem 8. Algorithm 1 solves the LabelGTC problem on an instance {S, T, T , l} in
time O(4k.(n + 1)k.k) where n = |Γ| and k = |T |.

Heuristic algorithm for TripletGTC:

A natural heuristic algorithm for the TripletGTC problem on a gene tree T with a covering
set T and a set of triplet Trp consists in first giving the label 1 to any edge (x, y) of
E(T ) \ E(T ) such that there exists a triplet (a, b, c) in Trp belonging to the set Trp(x, y).
Next the LabelGTC algorithm is applied to the obtained edge labelled tree. The corrected
tree resulting from this algorithm will preserve all triplets of Trp, but more largely all triplets
of the set {Trp(x, y) | (x, y) ∈ E(T ) \ E(T ) and l(x, y) = 1}, which includes Trp.

6 Accounting for the 0-1 edge labelling in partial subtrees

In the formulation of the LabelGTC problem, the 0-1 edge labels are ignored for the trees
of T , and only edges in E(T ) \ E(T ) labelled 1 have to be preserved. A natural extension
would be to preserve also the edges of T labelled 1.

This can be done by mean of Algorithm 1, but replacing the call to the SGT algorithm
by an algorithm solving the following problem.

Label SuperGenetree (LabelSGT) Problem:
Input: A species tree S, a gene tree T , a covering set of trees T for T and a 0-1 edge
labelling l for T .
Output: A supertree T ′ for T of minimum reconciliation cost such that: if (x, y) ∈ E(T ) is
such that l(x, y) = 1, then there is an edge (x′, y′) in E(T ′) such that L(y) = L(y′).

Before describing an algorithm solving the above LabelSGT problem, we first recall
some useful definitions and the algorithm described in [7] for the SGT problem.
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t1lt2l ! t1rt2r ! t1lt2r ! t1rt2l ! t1lt2 !   t1r ! t1l ! t1rt2 !

t1t2l ! t2r ! t2l ! t1t2r! t1 !   t2 !

Figure 4 The 7 bipartitions of a set B(t1, t2). The first 4 bipartitions are those in which L(t1l )
and L(t1r ) are separated.

Given a gene tree T and a species tree S, cost(T ) denotes the reconciliation cost of T with
S. If the root x of T has two children node, one of the subtree of T rooted at a child of x is
arbitrarily denoted by Tl and the other one by Tr. Given a set of gene subtrees {t1, . . . , tk}
and a bipartition (Ll, Lr) of

⋃k
i=1 L(ti), if T ′l and T ′r are two trees for Ll and Lr respectively,

then (Tl, Tr) denotes the tree T such that Tl = T ′l and Tr = T ′r. In this case, cost(Ll, Lr)
denotes the local reconciliation cost at the root x of the tree (Tl, Tr) counting the number of
losses on the two edges linking x to Tl and Tl, plus 1 if x is a duplication node.

IDefinition 9 (Reformulation of Property 1 from [7] ). Given a set of gene subtrees {t1, . . . , tk},
B(t1, . . . , tk) denotes the set of bipartitions (Ll, Lr) of

⋃k
i=1 L(ti) such that each subtree

ti, 1 ≤ i ≤ k, satisfies either: 1) L(ti) ⊆ Ll; or 2) L(ti) ⊆ Lr; or 3) L(til
) ⊆ Ll and

L(tir
) ⊆ Lr; or 4) L(til

) ⊆ Lr and L(tir
) ⊆ Ll.

B(t1, . . . , tk) contains exactly 4k

2 − 1 bipartitions. For example, for k = 2 subtrees, the 7
bipartitions are depicted in Figure 4.

The following is the recurrence formulae of the dynamic programming algorithm described
in [7] for the SGT problem.

I Lemma 10 (Reformulation of Lemma 3 from [7]). The following algorithm solves the SGT
problem on an instance {S, T, T } such that T = {t1, . . . , tk} in time O(4k.(n + 1)k.k) where
n = |

⋃k
i=1 L(ti)|.

1. (Stop condition) If |
⋃k

i=1 L(ti) | = 1, then SGT (t1, . . . , tk) is the gene tree composed of
the corresponding single node;

2. Otherwise, SGT (t1, . . . , tk) = (T ′l , T ′r) where T ′l = SGT (t1|Ll
, . . . , tk|Ll

) and T ′r =
SGT (t1|Lr

, . . . , tk|Lr
) such that:

(Ll, Lr) = argmin
(Ll,Lr)∈B(t1,...,tk)

{cost(Ll, Lr) + cost(T ′l ) + cost(T ′r)}

Let T be a 0-1 edge-labelled gene tree, and T be a covering set of subtrees for T . In
order to preserve the edges in T labelled 1, it suffices to consider, at each step of the
above algorithm, only the bipartitions that do not separate L(til

) and L(tir
) for any subtree

ti, 1 ≤ i ≤ k such that ti = Tj [y] and (x, y) is an edge of E(Tj) labelled 1, unless k = 1. For
example in Figure 4, if t1 is such a subtree, then the four first bipartitions that separate
L(T1l

) and L(T1r
) are discarded.

Given a set of gene subtrees {t1, . . . , tk} of T , we define BLabel(t1, . . . , tk) as the subset
of B(t1, . . . , tk) containing all bipartitions that do not separate any subtree ti, 1 ≤ i ≤ k such
that ti = Tj [y], Tj is a tree of T and (x, y) is an edge of E(Tj) labelled 1.

I Theorem 11. The algorithm described in Lemma 10 in which any set B(t1, . . . , tk) is
replaced by the set BLabel(t1, . . . , tk) solves the LabelSGT problem on T with the same time
complexity as the initial algorithm, i.e. in time O(4k.(n + 1)k.k).
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7 Conclusion

This paper provides a unifying view allowing to reconcile apparently heterogeneous gene
tree correction methods. The general LabelGTC and TripletGTC approaches have the
advantage of not being dependent upon particular assumptions on trees. We present the
first general algorithm allowing to correct a tree according to an arbitrary 0-1 edge-label, or
more generally to an arbitrary set of triplets whose topology should be preserved. These
algorithms have the same exponential time-complexity as the one previously developed for
the SGT problem [7], which has been proved NP-hard for the duplication distance. Although
no proof of complexity for the more general reconciliation distance exists, it is unlikely that
adding losses makes the problems more tractable. We conjecture the SGT problem, and
more generally the LabelGTC and TripletGTC problems, remain NP-hard in this case.

The 0-1 edge-labelling considered in this paper can be seen as a first step towards integ-
rating knowledge on edge statistical support in a gene tree correction algorithm. Generalizing
the edge-labelling function l to an arbitrary domain would require a complete reformula-
tion of the problems. It may be more intuitive in this case to use a heuristic algorithm
exploring a tree space around the input tree, and among statistically equivalent trees, take
the one minimizing a combination of values accounting for both sequence alignment cost
and reconciliation cost. Several such methods using species tree information in addition to
sequence information, have been developed (e.g. TreeBeST [13], TreeFix [16], PhylDog [1],
SPIMAP [11], ProfilNJ [10]). However, a formal conceptual framework, as the one developed
in this paper, remains to be developed for the gene tree correction problem with a non-binary
edge-labelling function.
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A Proofs

Proof of Theorem 4. Let T be a 0-1 edge-labelled gene tree, T be a covering set of subtrees
for T and Trp be a set of triplets. If Trp =

⋃
{Trp(x, y)|(x, y) ∈ E(T )\E(T )andl(x, y) = 1},

then the TripletGTC problem on {T, T , T rp} is reduced to LabelGTC because a supertree
T ′ of T preserves an edge (x, y) of E(T ) \E(T ) iff it preserves the topology of all triplets in
Trp(x, y). J

Proof of Theorem 6. The proof follows directly from the following three equalities:
(1) Trp1 =

⋃
{Trp(Ti) | Ti ∈ T } ;

(2) Trp2 = {Trp(x, y) | (x, y) is a terminal edge of T} ;
(3) Trp3 = {Trp(x, y) | (x, y) is a non terminal edge of T}.

So a tree T ′ for L(T ) preserves the topology of all trees Ti ∈ T iff it preserves Trp1 ; It
preserves all terminal edges of E(T ) iff it preserves Trp2 and it preserves all non-terminal
edges of E(T ) iff Trp3. The combination of the inclusion or exclusion of Trp1, Trp2 and
Trp3 in Trp (except the case where Trp = ∅) results in the 7 cases of the theorem. J

Proof of Lemma 7. Let (x, y) be an edge in E(T ) \ E(T ) such that l(x, y) = 1, and E be
the largest covering set of edges of E(T [y]) that have no ancestral edges in E(T [y]) labelled
1. Suppose that E contains an edge (s, t) labelled 0 that is not a terminal edge and denote
by tl and tr the two children of the node t. Then the edges (t, tl) and (t, tr) belong to
E(T ) \E(T ) and satisfy the condition that they have no ancestral edges in E(T [y]) labelled
1. So (E ∪ {(t, tl), (t, tr)}) \ {(s, t)} is also a covering set of edges of E(T [y]) that have no
ancestral edges in E(T [y]) labelled 1, which contradicts the assumption that E is the largest
such covering set of edges. J

Proof of Theorem 8. Let T be a 0-1 edge-labelled gene tree, T be a covering set of subtrees
for T and E = {(x1, y1), (x2, y2), · · · , (xn, yn)} be the largest covering set of edges for T that
have no ancestral edge labelled 1.
1. If all edges of E are labelled 0, then by Lemma 7, all the edges of E are terminal edges.

Since E covers T , then all edges of E(T ) \ E(T ) are labelled 0. So, by Theorem 1, the
problem is reduced to SGT.

2. Otherwise, let T ′ = LabelGTC(S, T, T , l), and for any edge (xi, yi) of E labelled 1 and pre-
served in T ′, let y′i be the node of T ′ such that L(y′i) = L(yi). Since T|L(yi) is a complete
subtree of T , then T ′[y′i] is also a complete subtree of T ′ that can be constructed inde-
pendently of the remaining of the tree T ′ as T ′[y′i] = LabelGTC(S, T [yi], T|L(yi), l|E(T [yi]))
(computed at Step 2.a. of the algorithm). Next, the obtained subtrees must be adequately
grafted on branches of a supergenetree of the remaining trees {T [yi] ∈ T | (xi, yi) ∈
E and l(xi, yi) = 0}. In this case, the problem is also reduced to the SGT problem on
T ∗ = {T [yi] : (xi, yi) ∈ E and l(xi, yi) = 0} ∪ {y∗i : (xi, yi) ∈ E and l(xi, yi) = 0} where
each tree T ′[y′i] computed at Step 2.a. is contracted into a single leaf node y∗i associated
to the leafset L(T ′[y′i]) (computed at Steps 2.b. to 2.e. of the algorithm).

The worst case of the algorithm is the stop case where it is directly reduced to the SGT
algorithm whose time complexity is in O(4k.(n + 1)k.k). J

Proof of Theorem 11. The algorithm described in Lemma 10 solves the SGT problem by
exploring the set of all possible supergenetrees for T . The set of supergenetrees is explored by
considering all possible bipartitions (Ll, Lr) for each set

⋃k
i=1 L(ti) where each ti is a subtree

of a tree of T . So, replacing any set B(t1, . . . , tk) by the set BLabel(t1, . . . , tk) will only discard
the bipartitions (Ll, Lr) that prevent the preservation of an edge of E(T ) labelled 1. So the
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modification of the algorithm will return a supergenetree for T of minimum reconciliation
cost preserving all edges of E(T ) labelled 1. The time complexity of the modified algorithm
remains the same as that of the initial algorithm. J
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