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Abstract

Several methods have been developed for identifying more or less complex RNA struc-
tures in a genome. All these methods are based on the search for conserved primary and
secondary sub-structures. In this paper, we present a simple formal representation of a
helix, which is a combination of sequence and folding constraints, as a constrained reg-
ular expression. This representation allows us to develop a well-founded algorithm that
searches for all approximate matches of a helix in a genome. The algorithm is based on
an alignment graph constructed from several copies of a pushdown automaton, arranged
one on top of another. This is a first attempt to take advantage of the possibilities of
pushdown automata in the context of approximate matching. The worst time complexity
is O(krpn), where k is the error threshold, n the size of the genome, p the size of the
secondary expression, and r its number of union symbols. We then extend the algorithm
to search for pseudo-knots and secondary structures containing an arbitrary number of
helices.

1 Introduction

Following the complete or partial sequencing of a large variety of genomes, one of the major
challenges is to decode this huge amount of information by identifying the different genes in the
new sequenced genomes. According to different empirical methods, biochemical techniques,
multiple sequence alignment and dynamic programming algorithms, some common secondary
structures of certain RNA families and other genetic elements have been determined. Sev-
eral methods have been developed to search for such structures in a genome. Some of them
are tailor-made for searching specific families, like FAStRNA [5] and tRNAscan [7, 13] for
tRNAs, CITRON [12] for group I introns, SNOSCAN and others for snoRNAs [14, 19, §].
Other methods are more general, such as RNAMOTIF [15], RNABOB [4] and PALINGOL
[1]. Stochastic context-free grammars (SCFGs) [3, 22] have also been used to represent RNA
structures. Whatever the method, it is always based on the identification of various conserved
primary and secondary sub-structures. The primary sub-structures are usually deduced from

*Corresponding author: Département d’informatique et de recherche opérationnelle, Université de
Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec H3C 3J7. Tel: 1-514-343-7481. E-mail:
mabrouk@iro.umontreal.ca.

tCNRS - Equipe Génome et Informatique, Evry, and ENS, 46 rue d’Ulm, Paris, France. E-mail: raf-
finot@genopole.cnrs.fr.

tDépartement d’informatique et de recherche opérationnelle, Université de Montréal

$Département d’informatique et de recherche opérationnelle, Université de Montréal

fcar



a preliminary alignment of homologous sequences in different genomes. They represent a con-
sensus for motifs approximately repeated in all the sequences of the alignment. For example,
a primary representation of the T'W(C region by the consensus “YVNNRGTTCRADYCY” has been
deduced from an alignment of about 500 tRNA sequences [5]. Each letter denotes a particular
subset of {A,C,G, T} (see Table 1, [2]). The meaning of the consensus is: the first position
is either a C or a T in all the tRNA sequences of the alignment, the second position can
be anything except a T', etc. Such consensi are network expressions (regular expressions not
containing a Kleene closure). Myers and Miller [18] developed an O(np) algorithm for approx-
imately matching a sequence G of size n to a regular expression R of size p. This algorithm is
based on an alignment graph obtained by concatenating n + 1 copies of a non-deterministic
finite automaton recognizing R.

Symbol | Significance || Symbol | Significance
A A N A[C[G|T
B Cl|G|T R A | G (purine)
c c s cle
D A|G|T T T
G G v AlC|G
H Alc|T W AT
K G|T Y C | T (pyrimidine)
M AjcC

Table 1: Symbols used to define sets of nucleotides. The standard TUPAC code.

However, for RNA molecules, consensi are usually defined by a combination of spatial
structure and sequence motif, and folding constraints can be stronger than sequence con-
straints. The most common type of such secondary sub-structures is a helix, that is a se-
quence of stacked pairs, bulges and internal loops followed by a loop (see Figures 1 and 2). In
the literature, this kind of structure is sometimes referred to as a stem-loop or a palindrome.

In contrast with secondary structure prediction, few algorithms have been dedicated to
helix search. One of the most adapted algorithms for searching helices with indels and mis-
matches is that of Sagot-Viari [21]. However, as it is designed to identify all possible folding
regions in a genomic sequence, it does not allow for complex definitions of helices. Consider,
for example, the TUC region of the tRNA, for which primary structure constraints have been
described above. This region has a folded part, and it would have been more appropriate to
represent it by the secondary expression shown in Figure 2.(a). This expression accounts for
correlated constraints due to base-pairings. For example, the nucleotide numbered 2 (Fig-
ure 2) should be a T if nucleotide 1 is an A, a C if nucleotide 1 is a G, and a G if nucleotide 1
is a C. HyPaLib database project [10] aims to enumerate many of such secondary expression
patterns in a specific description grammar. A secondary expression can be represented by a
context free grammar. In [16], Myers gave an O(Pn?) algorithm for approximately matching
a string of length n and a context-free language specified by a grammar of size P.

Despite all the existing methods described above, a rigorous formalisation of a helix is
missing. In this paper, our aim is to provide a simple formal representation of a helix allowing
for a flexible search with errors in a nucleic acid sequence. We present a specific algorithm to
search for a secondary expression S that is extensible to pseudo-knots and general secondary
structures. This algorithm reports the final positions of all the approximate occurrences
of S up to k errors. The allowed errors are insertion, deletion and substitution of single
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Figure 1: An example of a helix. A,C,G,T are the four nucleotides (or bases) and | is a Watson-Crick (A-T
or C-G) base-pairing. The helix contains a loop of 6 nucleotides, a stem of 7 stacked pairs, a bulge (unpaired
nucleotides at one side of the stem) and an internal loop (unpaired nucleotides at both sides of the stem).
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Figure 2: (a): A secondary expression representing a consensus for the T¥C region of tRNAs; (b): An
occurrence of the secondary expression (a).

nucleotides (edit distance). We have extended the method of Myers and Miller [18, 17]. The
algorithm is based on an alignment graph constructed from several copies of a pushdown
automaton, arranged one on top of another. As in [18], the approximate search problem is
reduced to finding least error paths in this graph. However, the problem we face is more
complex. Indeed, as secondary expressions are constrained network expressions, we need
to restrict the least error computation to a specific set of paths, that can not be defined a
priori. Therefore, instead of using a non-deterministic finite automaton as in [18], we use a
pushdown automaton. To our knowledge, this paper is a first attempt to take advantage of
the possibilities of these pushdown automata in the context of approximate matching. An
array of k + 1 sets of stacks is associated to each node of the alignment graph to control the
different paths leading to an acceptance. The worst time complexity of our new algorithm
is O(krpn), where k is the error threshold, n is the genome size, p the size of the secondary
expression S, and r the number of | (union symbol) in S.

The approach easily generalizes to pseudo-knots and more complex structures contain-
ing an arbitrary number of helices. This allows searching for large and complete secondary
structures. We define such structures and explain these extensions.

This paper is organized as follows. We formally define a secondary expression in Section 2.
In Section 3, we describe our pushdown automaton, and in Section 4, we introduce the notion
of alignment graph. In Section 5, we present our approximate matching algorithm, and we
analyze its complexity. We also specify how to actually report the occurrences. We then
extend our approach to pseudo-knots and generalized secondary expressions in Section 6.
Finally, in Section 7, we report experimental results for the search for tRNAs and RNase P
RNA sub-structures in two genomes.

A preliminary extended abstract of this work has been published in [6]. The present
version contains important corrections, modifications and extensions.



2 Problem and definitions

A string is a sequence of nucleotides, i.e. of characters from N = {A,C,G,T}. A genome is a
long string on this alphabet. Given a secondary expression S and a genome G, the problem is
to find all the approximate occurrences of S in G. This formulation hides different concepts
that have to be defined formally: what do we mean by a secondary expression? What do we
mean by an approximate match? To define our concept of a secondary expression, we need
the following preliminary definitions.

Definition 1 (network expression) The set NetSet of network ezpressions over the al-
phabet N is defined recursively by: (1) The empty pattern € is a network expression; (2) Any
character of N U {e} is a network expression (called an atomic expression); (3) If E; and
Ey are two network expressions, then E1|Ey and E1FEs are network expressions.

For example, RM (Table 1) represents the network expression (A|G) (AIC). A network
expression E is formally a specification of a set of sequences, the language L(E). For instance,
the sequences matched by E = RM are those of the set L(E) = {AA,AC,GA,GC}.

Definition 2 (complement) The complement of the network expression E over the al-
phabet N, denoted F,_z's the network expression defined recursively by: (1) € = ¢; (2) A=T,
T=A,C=GandG = C; (3) If E = E\Ey, then E = B, Ey; (4) If E = Ey|Es, then
E =B

For example, if E = RM, then E = KY. This definition considers only the more stable base
pairs, that is the Watson-Crick base pairs. To allow for wobble pairs G — T as well (G —U in
RNAs), it suffices to modify the rule (2) by (2°): A=T,T = (A|G), C = G and G = (C|T).

A secondary expression is a formal description of a helix containing paired and unpaired
regions. Unpaired regions can be modeled by network expressions, and paired regions by pairs
formed by a network expression and its complement. To distinguish between the different
parts of a secondary expression, we need to specify the type of each network expression by
an element of {p, sl, sr}. A network expression marked by a p represents an unpaired region,
and an expression marked by an sl (resp. sr) represents a left strand (resp. a right strand)
of a paired region.

Definition 3 (secondary expression) A secondary expression is a sequence of elements
of NetSet x {p, sl,sr}. The set of secondary expressions is defined recursively by:

e If E is a network expression (possibly €), then S = (E,p) is a secondary expression;

o If E1, Fs, E3 are network ezpressions_(possibly e) and S’ is a secondary expression, then
the sequence S = (E1,p)(F2,sl) S' (Ea,sr)(Es,p) is a secondary expression.

For simplicity, successive network expressions specifying unpaired regions are reduced to
only one unpaired region. Similarly, paired regions specified by successive E;, F;11 -+ E; on
the left strand and successive E; - - - Ej; 1 E; on the right strand are reduced to only one paired
region.

The structure in Figure 3 is an example of a secondary expression. The loop, bulges
and internal loops are unpaired regions. Our definition of a secondary expression allows for
an empty loop. Notice also that, from the definition of a secondary expression, there is no



network expression marked s/ after a network expression marked sr in the sequence defining
a secondary expression S. In other words, a secondary expression represents a single helix.
We generalize our definitions and algorithms to secondary structures containing more than
one helix in Section 6.

1 24 5 7N 8
G
FAGENR T Ry
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1 34 6 7
Figure 3: A rough representation of group II intron’s domain V. The formal representation of this secondary

expression is: S = (1,sl)(2,p)(4,sl)(5,p)(7,sl)(8,p)(7,sr)(6,p)(4,sr)(3,p)(1,sr), where each number
represents the network expression under (or over) it. For example, the number 1 represents RAGC.

Let S = (Ej,t;)1<i<n be a secondary expression such that for each i, E; € NetSet and
t; = p, sl or sr. The network expression E1Fs---E, obtained by concatenating all E;s
is the network expression of S denoted NetEzp(S). Notice that S does not have the
same conceptual meaning as NetFzp(S). The formal definition of a language described by a
secondary expression is given below.

Definition 4 The language L(S) specified by a secondary expression S is defined recursively
by:

e If S=(E,p), then L(S) = L(E);

o IfS = (E1,p)(Es,sl)S'(Ey,sr)(E3,p), such that E1, B3, E3 are network expressions and
S" is a secondary expression, then L(S) = {u € N* | u = vwzwz forv € L(E1), w €
L(E), z € L(E3) and x € L(S")}.

For example, in Figure 2, the helix (b) is an occurrence of the secondary expression (a).

Given a genome G and a secondary expression S, the “approximate matching problem”
is to find all positions in G corresponding to an approximate occurrence of a pattern in £(.5).
The notion of “approximate occurrence” is tightly related to a distance §, and to a threshold
k. Let A=ay---ap and B = by ---by be two sequences over N. For a,b € N, 6(a,b) gives
the value of aligning a with b, (e, b) that of leaving b unaligned in B, and §(a,e) that of
leaving @ unaligned in A. The value of an alignment of A with B is the sum of the values
assigned by 4 to its aligned pairs and unaligned symbols. We denote by d(A, B) the score of
a minimal-cost alignment of A with B.

In this paper, we consider the edit distance, that is:

0(a,b) =1 ifa,b € N, a #b (substitution)
d(a,a) =0 a €N (match)
0(a,e) =d(e,a) =1 a€N (insertion, deletion)

Formally, the set of sequences approximately matching a secondary expression S within
kis Ls(S, k) ={A /I B € L(S), 6(A,B) < k}. The problem of approximately matching S
to G within a threshold % is to find, in G, all occurrences of sequences of L5(S, k).



Remark : Although scores are assigned to pairs of symbols of the alphabet (not to helix
pairings or bonds), they allow to account, not only for primary structure divergence by for
secondary structure mispairings as well. Consider, for example, the first pairing (R — Y)
of the structure of Figure 3. Here the user requires to have a purine on the left strand, a
pyrimidine on the right strand, and the two nucleotides should be correctly paired (A — T or
G — C). If the purine/pyrimidine restriction is respected but with an uncorrect pairing, this
accounts for a secondary structure error (score of 1). Conversaly, if the purine/pyrimidine
restriction is not respected, this accounts for a primary structure error (score of 1 or 2). If
the primary structure constraint is not important (allow for a pyrimidine—purine pairing as
well), then this pairing should be defined as an N — N pairing.

Though the notion of an approximate occurrence given in this paper may seems uncom-
plete, the goal is to use a score that provides a simple and intuitive way to define a helix and
search it in a database.

3 A pushdown automaton recognizing a secondary expression

The language generated by a secondary expression S is a regular language recognized by
a finite automaton. However, the size of this automaton is exponential in 7 (number of |
in S). Using a pushdown automaton allows a condensed representation of the paths in the
automaton and a more efficient approximate matching algorithm.

We use a particular non-deterministic, state-labeled, representation of a finite pushdown
automaton. Such an automaton will be referred to as an e-NFPA. Formally, an e-NFA PushA
consists of:

e an input alphabet IV;

a stack alphabet I';

a set V of vertices called states;

a set F of directed edges between states;

a function A assigning a label A(s) € N U {e} to each state s;

a function 7 from V x (N U {e}) x I to a finite subset of V' x I'*;

an initial state 8 € V;

a final state ¢ € V;
e a particular stack symbol I € T' called the start symbol.

The interpretation of y(¢,a, Z) = (s, ) where t and s are states, a € N U{e}, Z is a stack
symbol and a € T'*, is that the automaton in state ¢, with input symbol a and Z the top
symbol on the stack, can enter state s and replace symbol Z by a. We adopt the convention
that the leftmost symbol of a will be placed highest on the stack.

The automaton PushA is a vertex-labeled directed graph with a stack associated to each
state. The notation ¢ — s means that there is an edge in PushA from state t to state s.
For a state t, w € N* and a € T, we say (t,aw, Za)—(s,w, fa) if v(t,a,Z) = (s,8). For
simplicity, if the stack content is not required, we just denote a transition by (¢, aw)—— (s, w).



We use — for the transitive closure of —s. The language accepted by PushA is defined
as:
L(PushA) = {w | (0,w,I) — (¢,¢,)}.

. FRS:

Fris:
F:
Fs

Figure 4: Constructing the e-NFA recognizing a network expression. Black states are e-states.

The construction of the e-NFPA recognizing a secondary expression S is based on the
construction of the e-NFA (non-deterministic finite automaton) denoted .A(S), recognizing
the network expression NetEzp(S). Figure 4 depicts the inductive construction (originally
from Thompson [25]) of an e-NFA recognizing a network expression (atomic, of form RS or
R|S). Figure 5 gives an example of an automaton A(S).

Left strand, sl-states Right strand, sr-states

Figure 5: The e-NFA recognizing NetEzp(S), for S = (E1, sl)(E2, p)(Ex1, sr), with E1 = ((AC)|G)(A|C) and
E> = T. Numbers corresponding to marked states are shown. States 1 and 3 are up-states, whereas states 2
and 4 are down-states.

The language specified by S is a subset of that specified by NetEzp(S). Indeed, the
right strand of a secondary structure depends on its left strand. Therefore, the pushdown
automaton recognizing S should keep track of the paths traversed in the left strand. To do
S0, we use an appropriate numbering of the states of S, that we define after some preliminary
notations.

Let s be a state of A(S). The state s corresponds to an atomic expression of a network
expression E of NetEzp(S). If E is marked sl, then s is an sl-state; if F is marked p, then s is
a p-state; if £ is marked sr, then s is an sr-state. If s is an si-state, we denote by 3 the state
corresponding to the complement atomic expression in E. By extension, the complementary
of a subpath £ = s189...541s £ =34...5257.

Let r be the number of symbols | in all the network expressions of S labeled sl. Let
(l1,-+-,|r) be the sequence obtained by annotating them from left to right. As each |; is
a binary operator, it is applied to two expressions: an “up” expression E;1, and a “down”
expression E; o (by reference to Thompson representation, see Figure 4). Any state of F;;



or m, for any i, is called an up-state, and any state of F;9 or m is called a down-
state. For each i, 1 <14 <, let s; 1 be the state corresponding to the last atomic expression
of E; 1, s;2 the one corresponding to the last atomic expression of FE;. For each s;;, let
v(si;) = v(5i;) = 2(i—1)+j. A state is said marked if it belongs to {s1,1, 51,2, 87,1, 87,2} U
{511,512, " - 571, 5r2}, and unmarked otherwise (see Figure 5). The stack alphabet is the
set of marks I' = {0,1,---2r — 1}, where I = 0 is the stack start symbol.

We have now all the notations and concepts to define the e-NFPA PushA(S) that recog-
nizes £(S). It is obtained from A(S) by defining the ~ transition function as follows.

Definition 5 Let Z be the top symbol on the stack, a be any character of N U {c}, s any
state, and t — s any edge leading to s. The transition y(t,a,Z) is defined if and only if
a = X(s). In that case:

Try If s is a p-state or an unmarked state, then v(t,\(s),Z) = (s, Z).
Try If s is a marked sl-state, then y(t,A(s), Z) = (s,v(s)Z).
Trs If s is an sr-state such that v(s) = Z, then v(t,A(s), Z) = (s,€).

Roughly, if we enter a marked sl-state s, then we push v(s) on the stack (T'r9); if we
enter a marked sr-state s, then we remove the top symbol of the stack (T'r3); if we enter any
other state, we do not change the stack (7'r1). Notice that, as soon as the stack begins to be
emptied, it can not grow again. This is due to the fact that an sr-state can not be followed
by an sl-state.

To prove that our automaton PushA(S) recognizes L£(S), we need to introduce a specific
subpath decomposition. The decomposition of a marked si-part is built by subpath extension
using the following rules:

(a) at the beginning, each marked state s represents a distinct subpath & = [sipr =
S, Sright = 3];

(b) each subpath is extended to the left by adding one after the other the state s’ having
at most a single incoming edge and an outgoing edge leading to sjcf;. The automaton
construction insures that s', if it exists, is unique. Then, s;.; becomes s’ and so on;

(c) each subpath is extended to the right by concatenating one after the other the state s”
having at most a single outgoing edge and an incoming edge from s;;45;. The rightest
state Spigns then becomes s” and so on.

The decomposition of an unmarked si-part is the unique path from the initial state to the
final one. Figure 6 is an illustration of this decomposition. Notice that subpaths can overlap.

The decomposition of an sl-part of a secondary expression S induces a symmetric decom-
position for the corresponding sr-part. Figure 7 shows the symmetric decomposition of that
in Figure 6.

Lemma 1 Let £ be a path from 0 to ¢ in the e-NFPA PushA(S). Let (&1,...,&) be the
sequence of sl-subpaths of . Then (&, ...,&1) is the sequence of sr-subpaths of €.

Proof. The path & goes through the automaton in two steps: 1. & goes through si-states
(marked or unmarked) or p-states (corresponding to the automaton built on the left part of



Figure 7: Symmetric subpaths decomposition of the sr-part of PushA(S), for S of Figure 6.

S) ; 2. £ goes through sr-states (marked or not) or p-states (corresponding to the automaton
built on the right part of S).

At each subpath &; of £, the mark z; of the last state of £; is pushed on the stack Z by the
transition rule T'ro, leading to the stack Z = z1,29,..., 2, at the end of step 1. Notice that
these marks are the only ones pushed in the stack. The only way to reach the final state ¢
with an empty stack is to pop out each z; using the transition rule 7'r3, which means entering
into the sr-subpath numbered z;, the complementary of the sl-subpath numbered z;.

By induction, emptying Z means that we went through the complementaries of all the
subpaths &; that led to the stack elements, in reverse order O

Lemma 2 The e-NFPA PushA(S) recognizes the language generated by the secondary ez-
pression S.

Proof. ‘=’. Let u be a word recognized by PushA(S) and &, be the corresponding path.
As PushA(S) is based on A(S), the Thompson automaton recognizing NetEzp(S), u €
L(NetEzp(S)). To prove that u is in the language £(S), it only remains to verify that the sec-
ondary constraints are satisfied. Let us prove the lemma by induction. S = (FE1,p)(FE»,sl) S’
(E, sr)(E3,p). The path &, is of form &, = & p&2 s1€s7&2,6r€3p. But from Lemma 1, &5 =
£2,51- &u = &1p€0,51€5: 82,5183 p- By induction, the secondary constraints are satisfied along all
the path &,, proving that u € £(S).

‘<", Let u be a word in £(S). As L(S) C L(NetEzp(S)), u labels a path in the Thompson
automaton built on NetFzp(S), and thus u is recognized by PushA(S) O




4 Alignment graph

For the problem of aligning a network expression F to a sequence G of size n within a threshold
k, Myers and Miller showed in [18] that it is easier to reduce the problem to one of finding
a shortest source-to-sink path in a weighted and directed alignment graph depending on
E and G. The graph is constructed from n + 1 copies of the e-NFA recognizing F, arranged
one on top of another. We use a similar representation for secondary expressions. Let S
be a secondary expression and NetEzp(S) be its network expression. The alignment graph
AlGraph(S, G) is constructed from n+1 copies of the e-NFA PushA(S) recognizing NetEzp(S)
(Figure 8). Formally, the vertices of the graph are all the pairs (i,s) for 0 <7 <mand s € V.
For every (i, s), there are up to 5 edges directed into it:

e If i > 0, then there is a deletion edge from (i — 1, s) leading to 1 error;

e If s # 0, then for each state ¢ such that ¢ — s, there is an insertion edge from (i,1)
leading to 1 error;

e If i > 0 and s # 0, then for each state t such that ¢ — s, there is a substitution edge
from (i — 1,¢) leading to 0 or 1 error, depending on the matched characters.

Figure 8: The alignment graph for G = AT versus NetEzp(S) = (A|C)T(T|G).

Myers and Miller [18] show that the problem of aligning G to NetEzp(S) is equivalent to
finding a least cost path between source vertex (0, §) and sink vertex (n, ¢). The cost of a path
is the sum of the costs of its edges. Moreover, all substitution and deletion edges entering
e-labeled vertices except 6 can be removed without destroying the property of there being a
path corresponding to every alignment. With this simplification, for every vertex (i, s) of the
graph, the maximal number of edges directed into it is reduced to 3: at most two insertion
edges and no others for e-states, and one of each kind of edge for any other state.

For any state s of PushA(S), let Lp(s) be the set of words recognized by PushA(S) from
0 to s. For any path from 6 to s, we denote by II(s) the sequence obtained by concatenating
the labels A of the states on this path. Let II(,s) = (i1 = 0,s1 = 0)(42,52) - - (ip =4, 5p = )
be any path from (0,6) to (i,s), and II(s) be the corresponding path in PushA(S) (each
maximal sequence of identical states s; = s;31 = - -+ = sy, is replaced by the unique state s;).
Then II(7, s) spells an alignment between the prefix G[1,4] of size i of G and II(s). A path
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modeling such an alignment is a valid path iff II(s) is a word of Lp4(s). Now, every valid
alignment, that is an alignment between G[1,] and a pattern of Lpa(s), is spelled by at
least one valid path. Thus, the problem of approximately matching a prefix of size i of G to
a prefix II(s) of a word of L(S) is equivalent to finding a least cost valid path between source
vertex (0,0) and (i, s).

In order to select valid paths, we associate an array of k + 1 sets of stacks to each node
(i,8) of AlGraph(S,G). More precisely, for any state (7, s) we consider, for each e, 0 < e <k,
the set of stacks:

Stack (i,s,e) = {a€T*|3 apath II(s,s) of cost e
such that (6,T1(s),I) — (s,&,a)}

Note that Stack (i, s,e) can be empty, which is different from a set of stacks containing
only the empty stack e.

To compute the set of stacks of error level e at each node (i, s), we have to consider all
possible transitions (among three transitions) that are likely to give rise to e errors at node
(,8). We define the set of valid tails to take into account this consideration.

Definition 6 The set of valid tails VT(i,s,e), for a node (i,s) and a cost e, is a set of
triplets defined as follows:

e s is an sl-state or a p-state;

— if (4,t) — (4,8) is an insertion or deletion edge and Stack (j,t,e — 1) # 0, then
(j,t,e — 1) is a valid tail;

—if (j,t) — (i,8) is a substitution edge then: if a; = A(s) and Stack (j,t,e) # 0,
(4,t,€) is a valid tail; else if a; # A(s) and Stack (j,t,e — 1) # 0, (j,t,e—1) is a
valid tail;

® s is an sr-state;

— if (4,t) = (4,8) is a deletion edge and Stack (j,t,e — 1) £ 0, then (j,t,e — 1) is a
valid tail;

— if (4,t) — (i, 8) is an insertion edge and Stack (j,t,e — 1) # 0 then (j,t,e—1) is a
valid tail if s is unmarked, or s is marked and there is a stack in Stack (j,t,e — 1)
with top symbol A(s).

— if (4,t) — (4,8) is a substitution edge then:

* if a; = A(s) and Stack (j,t,e) # 0, then (j,t,e) is a valid tail if s is unmarked,
or s is marked and there is a stack in Stack (j,t,e) with top symbol \(s).

* if a; # A(s) and Stack (j,t,e — 1) # 0, then (j,t,e — 1) is a valid tail if s is
unmarked, or s is marked and there is a stack in Stack (j,t,e — 1) with top
symbol A(s).

We denote by VTP (i,s,e), VT (i,s,e) and VI°(i,s,e) the subsets of VT'(i,s,e) built,

respectively, from the deletion, insertion and substitution edges. Note that each of these
subsets contain at most one “Stack” each.

11



4.1 Representing the stacks

Before describing how to update the sets of stacks, we give a condensed and useful represen-
tation of a set of stacks as a binary tree.

An empty set of stacks is represented by (). Otherwise it is represented by a binary tree P,
that is a linked structure in which each node has one integer value, contained in the field P.val,
and two link fields P.left and P.right, representing its left and right children, respectively,
or are null pointers, denoted NULL. A leaf node is characterized by having null values for
both left and right. Note that an empty tree NULL represents the set of stacks {e}.

We define the following operations on these trees.

e INSERT (P, num) creates a new node P’ such that: (1) P'.val = num; (2) P'.left = P
and P'.right = NULL. The procedure sets P = P'.

¢ REMOVE(P) removes the top element of P. It can be used only when P.right =
NULL. Set P = P.left.

e COMBINE(P;, P,) creates a new note P such that Pwal = 0, Pleft = P, and
P.right = P,. This function returns the address of the node P.

e MERGE(P,, P,) creates a new binary tree P by recursively merging pairs of left nodes
and pairs of right nodes. At each step the trees P;, P» being merged should verify the
property: one of the two trees is empty, or P;.val = Ps.wal. In the first case, P is the
non-empty tree (P; or P,), and in the second case, P.val = Pj.val, and left and right
nodes of P are created by MERGE(P;.left, Py.left) and MERGE(P;.right, Py.right)
(see Figure 9).

To simplify the description of the algorithm, we extend these operations to take as input
an empty set. In that case, all that is done is to return an empty set.

N N N
{ ¢ 4 ¢ {
0/ \3 (/ 0/ \3 - 0/ \3 0/ \3
1/ 1/ \2 1/ \2 1/ \2 1/ \2

Figure 9: Merging two trees by recursively merging pairs of left nodes and pairs of right nodes.

The trees are initialized with the node NULL. For the source vertex (0,6) and 0 < e < k,
P(0,0,e) = NULL .

4.2 Updating the stacks

We denote by P(i, s, e) the binary tree representing Stack (i, s,e). Roughly, P(i,s,e) is ob-
tained by merging the binary trees associated to the triplets of VT'(i,s,e). To simply the
notation and the description of the algorithm, these binary trees will simply be denoted
by VT(i,s,e) (and similarly for the binary trees associated to VTP (i,s,e), VT (i,s,e) and
VT5(i,s,¢)).
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For any e-state (i, s), as no deletion or substitution edge leads to (i, s), for each e, 0 <
e < k, VT(i,s,e) contains at most two triplets, and the tree P(i,s,e) is computed by the
following procedure:

Procedure Update-c-Stack(i,s)
1. For e=0...k Do

2. If VT(i,s,e) ={(i,t,e)} Then

3. P(i,s,e) = P(i, t,e)

4. Else /* VT(i,s,e) = {(i,t1,€), (i,t2,€) }, with
(i,t1) up-state, and (i,t2) down-state */

5. P(i,s,e) =COMBINE(P(i, t1,€), P(i, t2,€));

6. End of if

7. End of for

Consider now a non e-state (%, s). The triplets of VT'(i, s, ) give rise to at most one deletion
edge (i—1,s) — (i,s), one insertion edge (7,t) — (7, s), and one substitution edge (i —1,¢) —
(i,s). Therefore, P(i,s,e) is obtained by combining at most three binary trees P(i,s,e)?,
P(i,s,e)! and P(i,s,e)®, corresponding respectively to the potential insertion, deletion, and
substitution edge (possibly coming from other error levels). Each of these trees is considered
if and only if the tail of the corresponding egde belongs to V'T'(i, s, e). Procedures Update-p-
u-Stack, Update-sl-Stack and Update-sr-Stack shown in Figure 10 describe the construction
of these trees, and the construction of the resulting P(i, s, e) trees for 0 < e < k.

Lemma 3 Let P(i,s,e), for 0 < e < k, be the binary tree obtained by procedures Update-
{e,p — u, sl, sr}-Stack at node (i,s) for the error level e. Then a € P(i,s,e) if and only if
there exists an e-error path T1(i,s) such that (0,TI(s),I) — (s, €, a).

Proof. “<” Let TI(i,s) : (,II(s), I) — (s,€, ) be an e-error path from (0,8) to (i,s). This
path models an alignment between the prefix of size ¢ of G and II(s), a word of Lp(s). We
proceed by recursion on the size of II(i, s).

Consider a path of size 1, that is a path containing an unique edge E = (0,0) — (i, s),
where 1 = 0 or 1, and s is a state of PushA(S) reachable from 6 in one step. In this case,
e € {0,1}. The state s should be either a p-state or a marked or an unmarked si-state.

If s is a p-state or an unmarked state, from 7T'r; (Definition 5), a = I. The e-level tree
of a p-state is computed by Update-p-u-Stack, or by Update-e-Stack if s is an e-state. As
P(0,6,e) is initialized with the “empty tree” I, these two procedures combine or merge at
most three empty trees, and thus give rise to an empty stack for state (i, s, e).

If s is an sl-state, the edge E can not be a deletion, and thus @ = v(s). The e-level set of
stacks of a marked si-state is computed by Update-si-Stack. Lines 6 and 7 of Update-sl-Stack
insert v(s) on top of the empty trees VI (i,s,e), VI(i,s,e). These trees are then merged
in Lines 8, leading to a binary tree restricted to v(s).

Consider now an e-error path II(i,s) = II(j,t)E, where II(j,t) = (0,6) — (j,t) and
E = (j,t) > (4, s). Pi(j,t) should be an e’ error-path, with ¢’ = e or e—1. Let (0,TI(¢),I) —
(t,e,aq), and (¢, A(8), ar) —> (8,€, ). From the recurrence hypothesis, oy is in P(j,t,€).

1. If s is a p-state or an unmarked state, then from 7T'r; (Definition 5), as; = a;. The e-level
tree of a p-state is calculated either by Update-p-u-Stack or by Update-c-Stack. These
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Procedure Update-p-u-Stack(i,s) /* If s is a p-state or an unmarked state */
1. For e=0...k Do

2. P(i,s,e) =MERGE(VT (i, s, €))

3. End of for

Procedure Update-si-Stack(i,s) /*If s is an sl-state */
For e=0...k Do

P(i,s,e)P = VTP (i,s,¢e)
P(i,s,e)! =INSERT(VT!(i,s,¢e),v(s));
P(i,s,e)® =INSERT(VT?(i, s,€), v(s));

P(i,s,e) =MERGE(P(i,s,e)?, P(i,s,e), P(i,s,e)”)
End of for

~— e

4
5
6.
7.
8
9

Procedure Update-sr-Stack(i,s) /* If sis an sr-state */
10. For e=0...k Do

11. P(i,s,e)? = VTP(i,s,e)

12. P(i,s,e) = 0; P(i,s,e)5 = 0;

13. If s is an up-state Then

14. P(i,s,e)l = VTI(i,s,e).left;

15. P(i,s,e)° = VTS(i,s,e).left;

16. Else

17. P(i,s,e)! = VTL(i,s,e).right;

18. P(i,s,e)s = VTS(i,s,e).right;

19. End of if

20. If P(i,s,e)!.val # 0 Then

21. P(i,s,e)l =REMOVE((VT!(i,s,e));
22. End of if

23. If P(i,s,e)°.val # 0 Then

24. P(i,s,e)* =REMOVE(VT?(i, s,e));
25. End of if

26. P(i,s,e) =MERGE(P(i,s,e)?, P(i, s, e)!, P(i, s,e)®)

27. End of for

Figure 10: Updating the stacks. Each type of state needs its own updating procedure.
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procedures build the e-level tree P(i, s, e) by merging the trees of VT'(i, s,e). From the
definition of VT'(i,s,e), (j,t,€') € VT'(i,s,e). As as = ay and oy € P(j,t,€'), then we
have a5 € P(i,s,e).

2. Suppose now that s is a marked si-state. (i) If E is a deletion edge, then oy = o.
By the recurrence hypothesis, P(j,t,¢€') contains ay. As VT'P(i,s,e) contains (j,t,¢€'),
Line 5 of Update-si-Stack insures that oy is in the tree P(i,s,e)”. Therefore, after the
merging of Line 8, a4 is in the tree P(i, s, e).

(ii) If F is an insertion or a substitution edge, then from Try, as = v(s) a;. By the
recurrence hypothesis, P(j,t,¢') contains oy. As VT'(i,s,e) or VT°(i,s,e) contains
(4,t,€"), Lines 6 and 7 of Update-si-Stack insert v(s) at the top of P(4,t,¢e'). Therefore,
after the merging of Line 8, v(s) o is in the tree P(i, s, e).

3. Suppose now that s is a marked sr state. (i) If F is a deletion edge, then a; = 4.
In that case, Update-sr-Stack is equivalent to Update-sl-Stack, and thus the proof is
identical to (2.i).

(i) If F is an insertion or a substitution edge, then from T'rs, if oy = v(s) &/, a5 = .
By the recurrence hypothesis, P(j,t,¢') contains a;. As VT!(i,s,e) or VT9(i,s,e)
contains (j,t,¢€’), Lines 12 to 18 keeps oy in P(i,s,e)! or P(i,s,e)®, and then Lines 19
to 24 remove v(s) out of the top of the stack a;. Therefore, after the merging of Line 25,
o' is in the tree P(i,s,e).

“=" Let a € P(i,8,e). The a comes from a set of alignments, all corresponding to a single
path II(s) in the e-NFA PushA(s). This path is obtained by removing all the insertion edges,
and considering substitution and deletion edges as valid transitions of PushA(s), without
considering the error level. By Lemma 2, this path is valid. As VT'(i, s, e) is defined in order
to increase the number of errors according to the edit distance, there exists an alignment,
that reduces to II(s) in PushA(s), with e-errors O

5 Approximate matching algorithm

5.1 Basic algorithm

In the last section, the problem under consideration has been that of computing the value of
the best alignment between G and a word of £(S). Our initial problem, however, is that of
finding all occurrences of £(S) in G, with at most & errors. In the case of the classical dynamic
programming method, Sellers [23] noticed that it suffices to modify the initial conditions. We
reuse this approach here, initializing P(i,6,e) to the empty tree NULL for all 1 < i < n
(not only for ¢ = 0). This has the effect of making every §-vertex a source vertex as opposed
to just (0,0). By applying the dynamic programming paradigm, one can compute the sets
of stacks for every node (i, s) in increasing order of 7 and any topological order of V. The
complete algorithm is given in Figure 11.

Theorem 1 The value ¢ computed by Scanall is the value of a least error valid path ending

at (%, ).

Proof. By Lemma 3, for 0 < i < k, the resulting set of stacks for the error level e at terminal
state (i,¢) corresponds to valid e-error paths, and conversely, each e-error path ending in
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Algorithm Scanall(G,S,k)
1. Fore=0...k Do P(0,0,e) = NULL End of for
2. Fori=0...nDo

3 For each state s in topological order Do

4. Update-(e-p-u-sl-sr )-Stack (i, s);

5. End of for

6 Let ¢ = min{k + 1,{e | VT (i, d,€) # 0} };

7 If ¢ < k Then reports i as the position

8 of a c-occurrence of S in G.

9. End of for

Figure 11: Complete algorithm for searching for a secondary expression S in a genome G with at most k
errors.

(i, ¢) leads to a stack in P(i, ¢, e). Consecutively, by taking as ¢ the smallest level of error for
which there exists a set of stacks (Line 7 of Scanall), if ¢ < k, then c is the value of a least
error valid path ending at (i, ¢) O

5.2 Complexity

Let p be the size of the secondary expression S (the number of all characters of the network
expression NetEzp(S)), and r be the number of symbols | in S. Let n be the size of the
genome being traversed.

Let us first consider the complexity of upgrading one binary tree at a single node. Each
operation INSERT, REMOVE and COMBINE takes O(1) time, and operation MERGE takes
time proportional to the size of the final merged tree, which can not be more than O(r). Thus
upgrading a tree takes worst case O(r) time.

For each node, each procedure Update-(e-p-u-sl-sr)-Stack updates exactly k + 1 binary
trees. Thus, the worst time complexity of these procedures is O(kr).

There are O(pn) nodes in the alignment graph, and therefore the worst case time com-
plexity of the whole algorithm is O(krpn).

5.3 Reporting the occurrences

The algorithm Scanall reports all right ends of approximate matches (within a threshold k)
of the secondary expression S in the genome G. Let J be the set of such right ends. The first
problem is to find the set of left ends corresponding to J. In the case of a network expression
R, Myers and Miller [18] noticed that the left ends are obtained by building an automaton
for the reverse R™ of R !, and scanning G in reverse. A similar result holds for secondary
expressions, with the following definition of the reverse of a secondary expression:

Definition 7 (reverse) The reverse S” of the secondary exzpression S is the secondary
expression inductively defined by:

e If S=(E,p), then S" = (E",p), where E" is the reverse of the network expression E;

!The reverse of a network expression R is the expression R" that matches the reverse of every word matched
by R. It is obtained by inductively applying the rules (RT)" = T"R" and (R|T)" = R"|T".
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o If S = (E1,p)(Es,sl) S' (Ey,sr)(Es,p), such that Ey, Eo, E3 are network expressions
and S is a secondary expression, then S™ = (E5,p)(Ez ,sl) (8')" (E3,sr)(E},p).

Now, to find the set of left ends corresponding to each right end j € J, it suffices to run
the algorithm Scanall on the reverse S” of S and on the substring G[j - - - j —r — k] of G where
r is the length of the longest possible exact match to S”, by initializing the sets of stacks to
NULL only for the new origin j. More precisely, P(j,0,e) = NULL.

6 Extension to pseudo-knots and generalized secondary ex-
pressions

Let S be a secondary expression. By definition of a secondary expression, there is no network
expression marked sl after a network expression marked sr in S. We define the left part of S,
denoted by S;, as the prefix of S ending with the last sl network expression. The right part
of S, denoted by S, is the remaining suffix of S.

6.1 Pseudo-knots

A specific grammar for expressing RNA motifs including pseudo-knots has been defined in
[20]. We present a simpler representation using two nested secondary expressions, for simple
pseudo-knots.

Definition 8 (pseudo-knot) A pseudo-knot is an expression of form Sll Sl2 S} S2, where S*
and S? are two secondary expressions.

To search for a pseudo-knot with at most k errors, we directly extend Scanall (Figure 11)
by managing two blocks of k + 1 sets of stacks, one for Sl1 S!, and the other for Sl2 S2.
As these two “pseudo-helices” do not constrain one another, these two stack blocks can be
managed independently. More precisely, for each node (4, s), if s corresponds to a state of one
pseudo-helix, then the sets of stacks corresponding to the second pseudo-helix are transferred
without any change. This is done by procedure Update-neutral-Stack.

Procedure Update-neutral-Stack(i,s)
1. For e=0...k Do

2 P(i,s,e) =MERGE{P(j,t,e), where (j,t) = (i, s)
3. is an insertion, deletion or substitution edge}
4. End of for

Figure 12: Transferring the stacks of one pseudo-helix to a state corresponding to the second pseudo-helix.

Theorem 2 The value ¢ computed by Pseudo-knot is the value of a least error valid path
ending at (i, ).

Proof. The main argument is that Update-neutral-Stack ensures that the stacks corresponding,
respectively to S} S} and S? S? are independent.
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Algorithm Pseudo-knot(G,S!,S2,k)

1. Fore=0...k Do P'(0,0,e) = NULL ; P?(0,6,e) = NULL End of for
2. Fori=0...nDo

3 For each state s in topological order Do

4. If s is in S* Then

5. Update' - (e-p-u-sl-sr )-Stack(i, s);

6 Update? -neutral-Stack (i, s);

7 Else

8 Update' -neutral-Stack(i, s);

9. Update? - (e-p-u-sl-sr )-Stack(i, s);

10. End of if

11. End of for

12. Let ¢! =min{k + 1,{e | VT'(i,p,e) # 0} };

13. Let ¢ = min{k + 1,{e | VT?%(i,p,e) # 0} };

14. If ¢ = ¢! + ¢ < k then reports i as the position
15. of a c-occurrence of S} S S} S? in G.

16. End of for

Figure 13: Searching for a pseudo-knot S} S7 S} S? in a genome G with at most k errors. P! (respec. P?)
represents the set of k + 1 stacks corresponding to S* (respec. S?). VT' (respec. VT?) corresponds to the
valid tails linked to the nodes of S* (respec. 5’2). Update! (respec. UpdateQ) corresponds to the procedures
of Figure 10 applied to P! (respec. P?).

In consequence, by computing ¢! (respec. c?) (Lines 12, 13 of Pseudo-knot) exactly as in
Scanall, c* (respec. c?) corresponds to the value of a least error path traversing Sl1 S! (respec.
S? S?2). Therefore, ¢ = c' + ¢? is the value of a least error valid path ending at (4, §).

Conversely, suppose there exists a least c-error valid path ending at (i, ¢), such that ¢ < k.
This path goes through Sl1 Sl and Sl2 S? in an independent way, that is the two parts of the
path do not constrain one another. Suppose one of the two parts is not a least error path.
This would contradict the fact that ¢! and ¢? are the minimum of such error paths O

6.2 Generalized secondary expressions

All the concepts and algorithms described above for searching a single helix can be generalized
to secondary expressions representing complex structures with an arbitrary number of helices.
Such a generalized secondary expression is defined as follows.

Definition 9 (generalized secondary expressions) S is a generalized secondary expres-
sion if and only if one of the three recursive conditions is verified:

e S is a secondary expression;

o S=(E,sl)S'(E,sr) where S' is a generalized secondary ezpression and E is a network
expression;

o S =515 where S1 and Sy are two generalized secondary expressions.

An example of such a generalized secondary expression is shown in Figure 14. The e-
NFPA recognizing a generalized secondary expression S is based on the e-NFA recognizing
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the network expression NetEzp(S), and constructed in a similar way than for a simplified
secondary expression, except that the automaton is not restricted to one left strand and one
right strand. Indeed, each helix of the generalized secondary expression has a left strand and
a right strand (with possibly unpaired regions). The states are then pushed and popped from
the k + 1 sets of stacks depending on their type (sl-state, sr-state, p-state) in the same way
than for simple secondary expressions (Figure 10).

Figure 14: A generalized secondary expression representing a complete tRNA cloverleaf. The formal rep-
resentation is: GS = (F,sl)S15253(F, sr) where E is a network expression and Si,S2,S3 are secondary
expressions.

7 Practical evaluation

The algorithm has been implemented as a prototype called BIOSMATCH (for BIOlogical
Secondary MATCHing), with a graphical interface allowing to represent the structure in a
natural way. The program reports the final positions of all the occurrences of a helix in a
genome.

We do not compare our program to Eddy and Durbin’s program [3], as they are concep-
tually different, and should be used in different contexts. The Eddy and Durbin’s stochastic
approach requires a family of RNAs, and deduces a stochastic context free based model from
a multiple alignment of these RN As, whereas BIOSMATCH is a deterministic program that is
helpful when the user knows the consensus structure that is looking for. The only algorithms
that are conceptually similar to ours are RNAMOT [9], RNABOB [4] and RNAMOTIF [15].
They are all based on the same approach, though RNAMOTIF is the most matured pro-
gram, allowing for mismatches, mispairings, and regular expressions. The helix is modeled
as a grammar of primary and secondary constraints, and a backtracking search strategy is
considered.

We compared the results of BIOSMATCH and RNAMOTIF, as well as the flexibility of
the helix representation, for the 5S ribosomal RNA subunit. This gene, about 120 nucleotides
long, is formed of 5 regions, the most conserved one being region III. It constitutes a good
anchor for a research strategy. Figure 15 gives a bacterial consensus of region III, as reported
in [24].
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parms

5! w il e += gu
AC CYGN
descr

TC GRCN Q h5(len=2, seq=""AC$")

3! N N h5(len=4, seq=""CYGN$")
ss(seq=""YCCCATNCCGAAC$")
h3

Lo op=Y CCATNCCGAAC ss(len=2)
h3

Figure 15: The mitochondrial consensus of the 5S TRNA helix III, as reported in [24]. The left figure is
the BIOSMATCH graphical representation, and the right figure is the corresponding RNAMOTIF descriptor
without errors

Table 2 gives the false positive and false negative results for a set of completely sequenced
and annotated bacterial genomes from different taxonomic families. These results are obtained
by comparing the algorithms outputs with the annotated sequences of 5S rRNA. We first
notice that helix III is a very good anchor in a general strategy for RNA 5S identification.
Indeed, except in the case of running BIOSMATCH with 5 errors, the obtained specificity
and sensitivity are close to 100% with BIOSMATCH.

To search for approximate occurrences with RNAMOTIF, we have to specify the number of
mispairings and mismatches allowed in each part of the structure. A general score constraining
the total number of errors can also be defined. The first part of Table 2 gives the results
obtained by RNAMOTIF when we allow for three errors in each part of the structure, and
three errors in total. These results are comparable to those obtained by running BIOSMATCH
with one and two errors. All missed genes, except those in C. jejuni that highly diverge from
the consensus, are obtained by running BIOSMATCH with three errors.

The difference between the results obtained by RNAMOTIF and BIOSMATCH with three
errors is due to the fact that RNAMOTIF does not allow for insertions and deletions. It is
possible to modify the RNAMOTIF descriptor in order to find these structures. However, we
should know, in advance, in which part of the structure insertions/deletions are located. In
other words, RNAMOTIF should be run many times with different descriptors.

RNAMOTIF BIOSMATCH BIOSMATCH BIOSMATCH BIOSMATCH

3 errors 1 error 2 errors 3 errors 5 errors

Organism False | Missed || False | Missed || False | Missed || False | Missed || False | Missed
M. thermo 0 2 0 2 0 2 1 0 78 0
Halobacterium sp. 0 1 0 1 0 1 0 0 284 0
S. solfataricus 0 0 0 1 0 1 0 0 13 0
B. subtilis 0 0 0 0 0 0 0 0 82 0
M. leprae 0 1 0 1 0 0 1 0 278 0
C. jejuni 0 3 0 3 0 3 0 3 3 0
C. diphtheriae 0 5 0 5 0 5 2 0 128 0
E. coli 0 0 0 0 0 0 0 0 167 0
P. aeruginosa 0 0 0 0 0 0 1 0 653 0
S. pneumoniae 0 0 0 0 0 0 0 0 27 0

Table 2: Results of searching for the consensus of the 53 rRNA helix ITI (Figure 15) in a collection of bacterial
genomes taken from GenBank. “False” correspond to the sequences that have been found by the algorithm,
but do not correspond to annotated 5S rRNAs. “Missed” correspond to annotated 5S RNAs sequences that
have not been found by the algorithm.
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Figure 16: A possible secondary expression representing the P4 region of the RNase P RNA.

To test BIOSMATCH on a helix with a large loop, we have searched for the P4 region
of the RNase P RNA (Figure 16 (b)) in the two strands of the Reclinomonas americana
mitochondrial genome (AF007261 entry name in GenBank - 141 KB - 1 annotated RNase
P RNA). The experiments have been performed on a PC running Linux 3.0.3-8 Red Hat,
with an 1.2 GHz Intel Pentium4 processor. Table 3 shows the results. The P4 secondary
expression has been deduced from [11].

Error(s) 0 1 2
Fpos | Fneg | Time | Fpos | Fneg | Time || Fpos | Fneg | Time
[RNaseP|] 0] 0]1:34] 0] 0]2:21]] O[] 0]9:45]

Table 3: Results of searching RNase P RNA’s P4 domain in the two strands of Reclinomonas americana (141
KB - 1 RNase P RNA). Times are given in minutes and seconds.

These experiments show the flexibility of our approach to search for different kinds of
helices in a reasonable time, even for helices with large loops, weak constraints (several N
and N7) and when allowing indel/mismatches.

8 Conclusion

We have presented a method to search for conserved secondary structures in a sequence. It
allows for a flexible representation of helices: each position is defined by a class of characters
or by any other network expression, stems and loops can be of variable length, loops can
be very large, and bulges and internal loops can be specified. The algorithm accounts for
a possible deviation from the consensus. Moreover, the method is naturally extendable to
pseudo-knots and general structures containing an arbitrary number of helices.

To our knowledge, this work represents the first attempt to take advantage of the possibil-
ities of pushdown automata in the context of approximate matching or RNA representation.
As a pushdown automaton recognizes a context free langage, an alternative approach would
have been to use a context free grammar representation, as considered in [16].

This method is a well founded framework for secondary structures approximate matching.
As for the case of simpler patterns, this is a prerequisite for developing efficient filters that
allow faster searches in practice. As a drawback, developing such filters is more difficult for
secondary structures than for network expressions, since the type of filtering must depend on
the nature of the constraints in the secondary expression.
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