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ABSTRACT
Motivation: The diversity of a haplotype, represented as a
string of polymorphic sites along a DNA sequence, increases
exponentially with the number of sites if recombinations are
taking place. Reconstructing the history of recombinations
compared with that of the polymorphic sites is thus extremely
difficult. However, in the human genome, because of the rel-
atively simple pattern of haplotype diversity dominated by a
few ancestral haplotypes, the complexity of the recombina-
tional network can be reduced, thus making its reconstruction
feasible. We focus on the problem of inferring the recombina-
tion pathways starting with putative ancestral haplotypes and
leading to new rare recombinant haplotypes.
Results: We describe classes of recombinations that repres-
ent the whole set of minimal recombination pathways leading
to a new haplotype. We present an O(n2) algorithm that out-
puts such representative recombination pathways. We apply it
to haplotypes of the 8 kb dystrophin gene segment dys44.
Availability: A software implementing the algorithm and some
other extentions has been developed on a Java platform
(JDK 1.3.1). It is freely available at http://www.iro.umontreal.
ca/~mabrouk/
Contact: mabrouk@iro.umontreal.ca

1 INTRODUCTION
The diversity of the human genome, seen across individuals
in populations, is quantal rather than continuous. Mutations
lead to discrete new alleles, whereas recombinations, redis-
tributing these alleles among homologous segments, create
discrete haplotypes. Haplotypes can thus be represented as
strings of alleles at polymorphic sites along DNA segments.
Historically, the focus was on the mutation process, but
recombinations, influencing allelic relations between adja-
cent variant sites, get increasing attention. The effect of the
latter can be described quantitatively in term of linkage dis-
equilibrium or qualitatively by cataloguing the underlying
haplotypes.

∗To whom correspondence should be addressed.

The evolutionary history of human species can be repres-
ented by a long stationary phase characterized by an effective
population size of about 10 000 followed by rapid, almost star-
like, population expansion (Heyer et al., 2001), well reflected
in mitochondrial DNA (Di Rienzo and Wilson, 1991; Rogers
and Harpending, 1992) and microsatellite data (Gonser et al.,
2000). This is also consistent with a number of studies examin-
ing nuclear loci where a relatively simple pattern of diversity
is observed: a few frequent haplotype variants dominate over
a flat distribution of rare haplotypes due to recent recombina-
tions or new mutations (Fullerton et al., 2000; Harding et al.,
1997; Jaruzelska et al., 1999; Kaessmann et al., 1999; Labuda
et al., 2000). The dominating common haplotypes are likely to
represent the founder ancestral haplotypes issued either from
the early stationary phase or from subsequent founder effects
following expansion. New haplotypes derived through cross-
overs or by mutation from common haplotypes are usually
rare and have a limited geographic distribution.

Prior work on recombination has largely focused on stat-
istical tests estimating recombination events (Hudson and
Kaplan, 1985; Myers and Griffiths, 2002), or on reconstruct-
ing the coalescent in the presence of recombination (Griffiths
and Marjoram, 1996; Wiuf and Hein, 1999a,b). Hein (1990,
1993) was the first to consider designing algorithms to recon-
struct the history of a genomic segment with recombination.
Recently, there is a renewed interest in the analysis of haplo-
type diversity and the underlying recombinations, based on
different theoretical evolutionary models (Kececioglu and
Gusfield, 1998; Ukkonen, 2002; Wang et al., 2001; Wu and
Gu, 2001).

In this paper, we focus on the problem of reconstruct-
ing the most parsimonious recombination pathways from the
putative ancestral frequent to new rare haplotypes, thus recon-
structing their plausible genealogies. It is the first step in the
attempt to establish a recombination network that explains
the observed haplotype diversity. In Section 2, we formal-
ize the problem and describe various, well-defined classes
of recombinations that are representative of the whole set of
minimal recombination pathways. In Section 3, we present
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an O(n2) algorithm that outputs such a set of representative
recombination pathways. It has been implemented as a tool
with a graphical interface. In Section 4, we apply our tool to
haplotypes comprising 35 segregating sites from the 8 kb dys-
trophin gene segment dys44 described in Labuda et al. (2000)
and Zietkiewicz et al. (2003).

The essential proofs can be consulted at http://www.iro.
umontreal.ca/~mabrouk/

2 METHODS
2.1 Formalizing the problem
A haplotype of n sites is a string of nucleotides of size n. It
models a chromosomal segment with n polymorphisms due
to nucleotide substitutions, termed as single nucleotide poly-
morphisms (SNPs). SNPs are usually bi-allelic such that in a
population only two nucleotides are observed at each site: the
ancestral and the new (derived) allele.

A recombination between two haplotypes X and Y can
be modeled as an operation that breaks and exchanges the
opposite parts of X and Y . That is, it is an operation of the
form: X5X3, Y 5Y 3 −→ X5Y 3, Y 5X3 where X = X5X3,
Y = Y 5Y 3 (5 and 3 denote the 5′- and 3′-terminal segments
of X and Y ) and X5, Y 5, as well as X3, Y 3, have the same
length.

In the human model considered here, only one of the res-
ulting haplotypes is transmitted. Therefore, a recombination
can be represented as X, Y −→ Z, where Z is a recombinant.

Let C = {C1, . . . , Ch} be a set of common haplotypes, and R

be a new recombinant one. The problem is to find a minimal
recombination pathway (minimal series of recombinations)
generating R from a subset CR of C. A recombination
X, Y −→ Z in such a pathway is such that: X and/or Y is in
CR , or is generated from previous recombinations of elements
of CR .

We say thatR is allelic withC if and only if, for any position i

in R, there exists a haplotype Ck of C such that R[i] = Ck[i],
where, for any haplotype X, X[i] denotes the i-th element
of X. For example, the haplotype:

R = C A C T T G A A C G

allelic with C = {C1, C2, C3, C4, C5}:
C1 = A C G T C T G A T T

C2 = C A G A T G G A C G

C3 = C C G A T G G C C G

C4 = A A C T T T G A C T

C5 = A C C T C G A A T G

If R is not allelic with C, then R cannot be generated from C
by recombination. Non-allelic sites require new mutations.
Conversely, it is evident that if R is allelic with C, then R can
be generated from C by a series of recombinations.

Table 1. The set HAP corresponding to the haplotypes C of the last section

Hk pos
1 2 3 4 5 6 7 8 9 10

HAP1 0 0 0 1 0 0 0 1 0 0
HAP2 1 1 0 0 1 1 0 1 1 1
HAP3 1 0 0 0 1 1 0 0 1 1
HAP4 0 1 1 1 1 0 0 1 1 0
HAP5 0 0 1 1 0 1 1 1 0 1

2.2 Haplotypes recoding
To simplify the ensuing algorithmic developments, we model
haplotypes as binary strings of 0s and 1s, and reformulate
the problem as one of generating the unitary haplotype, i.e.
the haplotype H such that H [i] = 1 for any i. To do so,
we recode the haplotypes by computing the set HAP =
{HAP1, . . . , HAPh} such that for any k and any position pos,
HAPk[pos] = 1 if and only if R[pos] = Ck[pos] (Table 1).

There is a one-to-one correspondence between the recom-
bination pathways generating R from C and those generating
the unitary haplotype H from HAP.

2.3 Canonical pathways
A canonical pathway generating H from HAP is a sequence
of recombinations that does not contain any event on two new
(i.e. R) haplotypes. Namely, it is a pathway of the form:

H1, H2 −→r1 R2

R2, H3 −→r2 R3

: :
Rp, Hp+1 −→rp H

where {H1, . . . , Hp+1} ⊂ HAP and R2, . . . , Rp are new or
extinct (i.e. not seen in the population sample) haplotypes. The
ordered series (H1, . . . , Hp, Hp+1) of all haplotypes of HAP
appearing in the pathway is called its associated haplotype
table.

The reason behind considering canonical recombination
pathways is that a recombination between two common or
between a common and a new rare haplotype is much more
likely than a recombination of two new rare haplotypes.
Moreover, any pathway generating R from C can be ‘reduced’
to a canonical pathway (Lemma 1) such that we can limit our
considerations to canonical pathways only, as illustrated in
Figure 1.

By reordering a pathway of haplotype table T we mean
creating a new pathway with a haplotype table being a
permutation of T .

Lemma 1. Any minimal pathway generating R from C can
be reordered into a canonical pathway.
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Fig. 1. A canonical recombination pathway generating H from the set HAP of Table 1.

2.4 Greedy pathways
We call a strip the maximal substring of 1s in a haplotype,
and the strip prefix of a haplotype its longest prefix of 1s. A
recombination ri : Ri , Hi+1 −→ Ri+1 is said to be greedy
iff Ri+1 has a prefix inherited from Ri , and the strip prefix of
Ri+1 is longer than the strip prefix of Ri . In other words, a
greedy recombination creates a new haplotype with the largest
possible strip prefix. Each recombination shown in Figure 1
is greedy whereas the following recombination is not greedy:

0 1 | 1 1 1 0 0 1 1 0, 1 1 | 0 0 1 1 0 1 1 1

−→ 0 1 0 0 1 1 0 1 1 1.

The problem is reduced to greedy pathways as follows.

Lemma 2. A minimal canonical pathway can be reordered
into a greedy pathway.

From Lemmas 1 and 2, if one is interested in all the haplo-
type sets leading to H , rather than in the precise order of
haplotypes, then it is sufficient to generate the set of all min-
imal canonical pathways of perfectly greedy recombinations.
This is reasonable as there are no criteria that allow one par-
ticular table of haplotypes, among all those corresponding to
the same set, to be favored.

2.5 Perfectly greedy recombinations
Two haplotypes can recombine at different positions yet lead-
ing to the same resulting haplotype. Two recombinations are
said to be equivalent if they involve the same parental hap-
lotypes and give rise to the same daughter haplotype. For
example, the following recombination r ′

1 is equivalent to the
first recombination r ′

1 of Figure 1:

HAP2 = 1| 1 0 0 1 1 0 1 1 1,

HAP4 = 0 |1 1 1 1 0 0 1 1 0

−→r ′
1 R′

2 = 1 1 1 1 1 0 0 1 1 0.

Among all possible equivalent recombinations, we only con-
sider the perfectly greedy ones that cut the strips at their
last position. For example, among r1 and r ′

1, r1 is the one
chosen. This simplifies the presentation. However, all equi-
valent recombinations can be generated as well, as offered
by the software provided: one option outputs only perfectly
greedy recombinations, the other all greedy recombinations.

3 ALGORITHM
In the following, a solution is a haplotype table associated to
a minimal pathway of min perfectly greedy recombinations.
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Fig. 2. The graph obtained by Construct-graph for the set of haplo-
types listed in Table 1. There are two paths: P1 = (0, 1, 5, 8, 10) and
P2 = (0, 2, 5, 8, 10). Each edge of these paths is labeled by the set
of associated haplotypes. The two solutions that are associated to P1

are (H3, H4, H5, H2) and (H3, H4, H5, H3), and the two associated
to P2 are (H2, H4, H5, H2) and (H2, H4, H5, H3).

The algorithm is based on an oriented graph G(V , E) con-
taining an initial vertex and a final vertex. Each vertex is
labeled with a position (the site number, from 0 to n). The ini-
tial vertex has the default label 0, and the final one is labeled n.
As two different vertices are labeled differently, we do not dis-
tinguish between a vertex and its label. A path is a sequence
of vertices beginning with vertex 0, ending with vertex n and
connected by edges of the graph. Roughly speaking, an edge
represents a set of perfectly greedy recombinations, and a path
a set of solutions. More precisely, the edge (0, v1) indicates
that the first haplotype to be considered should have a strip
beginning at position 1 and ending at v1. Each following edge
(vi , vi+1) indicates that the next recombination should be per-
formed on a common haplotype with a strip beginning at or
before position vi , and ending at position vi+1. We label each
edge (vi , vi+1) by such associated haplotypes.

The graph is constructed in a breadth-first manner. We begin
by constructing the initial vertex pos = 0. Then, for each
position corresponding to the end of a strip begining at or
before position pos + 1, if it does not yet correspond to a
vertex of the graph, we construct it and we link it to pos by a
new edge directed from pos to that vertex. These new vertices
are said to be of level one, because they are reachable from 0
by a path of one edge. We repeat the procedure with each new
vertex of level one, and construct vertices of level 2. We stop
the procedure as soon as the terminal vertex is added to the
graph, and all the vertices of the preceding level are treated
(Fig. 2).

Please check
the citation to
Figure 2.

Proposition 1. A haplotype table is a solution if and only
if it is associated to a path of G(V , E).
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Fig. 3. The software output for the haplotype B022. A recombination path is obtained by choosing a path from source to sink (here from 0
to 34), and one haplotype from the haplotype set labeling each edge. In this output, the best path (red labels) has been chosen on the basis of
the crossover probability at each site.

Complexity Let h be the number of haplotypes of HAP and
n be the size of each haplotype. The preprocessing required to
find the strip positions of all haplotypes can be done by travers-
ing, one after the other, each column of the table representing
HAP. Therefore, this step has a time complexity O(nh). The
graph construction can then be done in a time proportional
to the total size of the graph, i.e. O(n). Therefore, the time
complexity of the algorithm is O(nh).

4 AN APPLICATION
Labuda et al. (2000) analyzed haplotypes comprising 34 poly-
morphisms from the dys44 segment of the dystrophin gene
(see also Zietkiewicz et al., 2003). In the genealogical recon-
structions involving recombinations of the most common
haplotypes, they were able to derive rare and presumably
young non-African haplotypes through at most two recom-
bination events. In contrast, the haplotypes found only in the
sub-Saharan Africans could not be simply related to the set of
common frequent haplotypes (e.g. B022, B047, b059).
Here, we show plausible pathways for B022 starting from a
parental sample of the 15 most frequent haplotypes that occur

in the African sample (Fig. 3). Figure 4 shows one particular
path of this network.

However, not all of these pathways are equally probable
given the genetic distances between sites (i.e. recombination
probabilities) and/or the population frequencies of the parental
haplotypes involved. Various approaches can be considered to
choose the most likely pathway among the ones found:

(1) Minimize the number of different haplotypes in an
optimal recombination pathway.

(2) Weight each recombination by its crossover probability.

(a) An easy way to compute such a probability is to
consider the nucleotide distance between the two
sites flanking the crossover. For example, 417 nt
separate sites 13 and 14, while only 258 nt sep-
arate sites 6 and 7. Therefore, a recombination
within a segment following position 13 is 417/258
more probable than that within a segment follow-
ing position 6, provided the same recombination
rate per nucleotide. Thus, in Figure 3, the path

4



“bio441” — 2004/6/29 — page 5 — #5

Haplotypes histories as pathways of recombinations

B002 : 

B009 : 

B010 : 

B022 : A A G C T A C T T A C C T G T A T G T A A G A C A T T C T C C G

A T A T G T A A T A C A C T C T T T A A A G C T A C T T A C C T

G T

C C G A T A C T T G C C T A D A T G T A A G A C A T T C T C C G

C C G A T A C T T G C C T         A G G C A A G A A G T T C T C C C 
r1

r2

Fig. 4. The recombination pathway (r1, r2) corresponding to the red path of Figure 3 and its haplotype table (B002, B009, B010)

(0, 13, 15, 34) (red labels) is more likely than
(0, 6, 15, 34). More appropriate would be to use
genetic rather than physical distances, once this
information is available.

(b) Weight each common haplotype by its frequency in
the population. Choose a recombination pathway
through a path of maximal length, where the length
of a path is the sum of weights of the common
haplotypes of the pathway.

The software allows to choose one of the above criteria
to select the most appropriate pathway among all possible
ones. However, other statistical considerations can be used to
weight the edges of the graph, without any modification to the
algorithm.

5 DISCUSSION
Our algorithm represents the first attempt to establish a net-
work of recombinations reconnecting observed haplotypes
of a locus to explain their diversity. The output is a num-
ber of pathways showing a representative set of all the most
parsimonious ways to derive a new haplotype from a set of
common ones. Here, a recombination pathway is character-
ized only by the set of known haplotypes that participate in
these recombinations. If the likelihood of a recombination
pathway depends only on the frequency and/or geographical
distribution of these observed haplotypes, this restriction is
made without any loss of generality. However, if the unequal
probability of crossover-sites along the haplotype plays a
major role in the evaluation of different solutions, then our
algorithm does not guarantee finding of the most likely recom-
bination pathway. In that case, we have to output all possible
recombination pathways, not only the perfectly greedy and
canonical ones. Removing the ‘perfectly greedy’ condition is
straightforward and has been implemented in the accompany-
ing software. However, removing the ‘canonical’ and ‘greedy’
conditions gives rise to a much larger set of possible solutions,
where all possible crossover-sites are considered.

Intermediate haplotypes involved in solutions produced by
the algorithm are ignored. Such haplotypes can be considered
as rare ones that are missing in the data set, and could be

eventually added to the set of ancestral haplotypes for sub-
sequent analysis. Finally, it should be emphasized that in this
model only recombinations are considered. However, over
small distances, double recombinants can be produced by
gene conversion as well (Andolfatto and Nordborg, 1998;
Przeworski and Wall, 2001). We envisage generalizing the
algorithm to encompass evolutionary scenarios that involve
both simple recombination and gene conversion.
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