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Abstract

Most biologival discoveries can only be made in light of evolution.
In particular, functional annotation of genes is usually deduced from
the orthology, paralogy or xenology relation between genes, which is
inferred from the comparison of a gene tree with a species tree. As,
for a variety of reasons, sequence-only methods for gene tree recon-
struction often do not allow to confidently discriminate one tree from
another, more recent construction methods, designated here as “Inte-
grative methods”, include information from the species tree. The idea
is to consider, in addition to a value measuring the fitness of a tree
to a sequence alignment, a measure reflecting the evolution of a whole
gene family through gene gain and loss. A standard measure of fitness
between a gene tree and a species tree is computed in terms of a “rec-
onciliation” cost, i.e. the cost of a gain and loss scenario explaining the
incongruence between the gene tree and the species tree.

This chapter begins with a comprehensive review on reconciliation
distances and deterministic algorithms for various evolutionary models
for gene families involving duplication, loss, Horizontal Gene Transfer
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(HGT) events, possibly in presence of Incomplete Lineage Sorting (ILS),
for rooted or unrooted, binary or non-binary gene and species trees.

We then review the integrative methods for correcting a gene tree,
based on various strategies for exploring an input tree neighborhood.
The considered algorithms are those based on polytomy resolution, tree
amalgamation and supertree reconstruction. The goal is to provide a
comprehensive and understandable overview of existing methods with
algorithms presented in concise form, usually illustrated with a figure.
The reader is referred to original papers for more details and proofs of
complexity.

Keywords: Phylogeny, Gene tree, Duplication, Loss, Horizontal gene trans-
fer, Incomplete lineage sorting, Reconciliation.

1 Introduction

Genes are the molecular units of heredity holding the information to build
and maintain cells. They are key for understanding biological mechanisms,
identifying genetic variation and designing appropriate gene therapies.

In the course of evolution, genes are mutated, duplicated, lost and passed
to organisms through speciation or Horizontal Gene Transfer (HGT), the ex-
change of genetic material among co-existing species. Therefore, most biolog-
ical discoveries can only be made in the light of evolution. Genes originating
from the same ancestral copy are called homologs . Homologous genes are
grouped into gene families , usually via sequence similarity methods. More-
over, they can be orthologs if their most recent common ancestor has been
subject to a speciation event, paralogs if it has been subject to a duplication
event and xenologs if they diverged via a HGT event.

Homologous sequences tend to have similar structure and function, and
are often located in homologous genomic regions. These properties can be
exploited in various biological applications, making deciphering the relation
between genes essential for several biological analyses. For example, because
homologous genes can be used as markers, they are essential in comparative
genomics studies based on gene order, a field widely explored by renowned
researchers in computational biology. In particular, Bernard Moret has led
the development of highly efficient tools for comparing gene orders [56, 5, 55].

Methods for inferring gene relations are subdivided into tree-based and
tree-free methods. Tree-free methods are mostly based on gene clustering ac-
cording to sequence similarity, (cf. e.g. the COG database [88], OrthoMCL [51],
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InParanoid [10]). They are often unable to detect the full set of relations be-
tween members of a gene family and fail to differentiate orthologs from paralogs
and xenologs. On the other hand, tree-based methods consist in reconstructing
a phylogenetic tree for the gene family and then inferring the nature of internal
nodes (duplication, speciation or HGT) from a reconciliation, i.e. an embed-
ding of the gene tree into the species tree. Methods relying on reconciliation,
the focus of this chapter, usually yield more accurate gene relations. However,
they are very sensitive to the quality of the input trees, a single misplaced
branch likely leading to a completely different evolutionary scenario.

Tree reconciliation can be performed through different biological models of
evolution, the most common being the Duplication (D), Duplication-Loss (DL)
or Duplication-Loss and Transfer (DTL) models. Incomplete lineage sorting
(ILS), i.e. imperfect segregation of alleles has also been considered, mainly
for reconciliation with a non-binary species tree. While most reconciliation
methods are based on the parsimony principle of minimizing the number or
the cost of induced operations, probabilistic models seeking for a reconciliation
with maximum likelihood or maximum posterior probability have also been
developed [2, 77, 86] (see [87] for a review). Although relying on more realistic
models of gene family evolution through gains and losses, these methods are
much slower than parsimony methods. This chapter is dedicated to parsimony
methods for reconciliation.

As mentioned above, accurate inference of the true evolutionary history of
a gene family through reconciliation strongly depends on the accuracy of the
considered gene and species trees. This is the main reason for the continuing
effort made to reduce errors in gene tree reconstruction. In particular, standard
phylogenetic methods standing solely on sequence alignment (e.g. PhyML [34],
RAxML [79], MrBayes [72], PhyloBayes [49]) are often error-prone as they are
subject to, among other systematic errors [70], the quality of the dataset (e.g.
quality of gene annotations, gene family clustering and alignment). Indeed,
gene sequences often do not contain enough differentiation (substitutions) to
resolve all the branches of a phylogeny, or alternatively, too much such that the
substitution history is saturated. The resulting low resolution of gene relations
can usually be assessed with measures of statistical support (e.g. bootstrap
and posterior probability) on tree branches.

To address the limitation of standard methods, other reconstruction meth-
ods, accounting for fitness with the species tree, have been developed. These
methods, designated as integrative methods , report gene trees with better ac-
curacy compared to sequence-only methods [14, 27, 61, 90]. Most of them rely
on a two-steps approach: first compute a tree, or a set of trees, with the best
fit to the sequences, and then “correct” the initial tree, or set of trees, ac-
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cording to the reconciliation cost. Four main strategies are considered for the
second step: (1) Select neighboring gene trees of an initial tree by perform-
ing some branch swapping, typically Nearest Neighbor Interchange (NNI),
Subtree Pruning and Regrafting (SPR) or Tree Bisection and Reconnection
(TBR) (e.g. GeneTree [63], TreeFix [95], TreeFix-DTL [8], MowgliNNI [59],
Notung [18]); (2) Contract branches of weak support and resolve the obtained
polytomies (non-binary nodes) (e.g. NOTUNG [18], ProfileNJ [60]); Finally,
select a set of trees or clades (leafsets) and construct (3) an amalgamated tree
(e.g. ecceTERA [37], ALE [27]) or (4) a supertree (e.g. MinSGT [45, 47]).

Contract weakly 
supported branches

Polytomy
Resolution

Tree
Reconstruction

NNI/SPR/TBR
on branches with

weak supports

1

2

3
4

Figure 1: Different strategies for gene tree construction and correction. A
single gene tree is constructed from the sequences of all the genes of the gene
family: in (1), tree rearrangement methods around weakly supported branches
are used to search an alternative tree minimizing with a better reconciliation
cost; in (2), branches with weak support are rather contracted and the ob-
tained non-binary nodes resolved according to the reconciliation cost with the
species tree. (3) Amalgamation: a sample of gene trees is first reconstructed
from a single gene family, then a single gene tree is reconstructed based on
“trusted” clusters of the tree sample. (4) Supertree: The gene family is first
subdivided into a set of, possibly overlapping, groups of genes (usually, groups
of orthologs), a tree is reconstructed for each group and these trees are then
combined into a single supertree displaying all of them.

The first strategy, relying on tree rearrangement events (NNI, SPR, TBR)
near poorly supported branches, concists in searching for alternative topologies
of an initial gene tree with a better fit to the species tree. Methods based
on this strategy explore the tree space often by using search heuristics such
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as branch-and-bound and hill-climbing. Some of them restrict the candidate
alternative topologies to those that cannot be rejected by sequence data. Their
main drawback stems from the performance of the criteria used to stop the
tree space exploration, which in the worst case can result in exploring the
complete exponential-size tree space.

In this chapter, while we focus on the second step of integrative methods,
we only present the less straightforward methods based on strategies (2), (3)
and (4). After introducing the preliminary notations in Section 2, the following
sections are dedicated to the various formulations of the reconciliation problem
depending on the considered trees and evolutionary model (with or without
HGTs, considering or disregarding ILS). Section 3 is dedicated to the classical
reconciliation between a binary gene tree and a binary species tree, Section 4
presents an extension to non-binary species trees and Section 5 deals with
the polytomy resolution problem, namely the reconciliation of a non-binary
gene tree with a binary species tree. This latter section is related to strategy
(2) described above for integrative methods. We then move, in Section 6, to
strategy (3) and (4), taking advantage of a set of gene trees rather than a
single input gene tree, through amalgamation or supertree methods, as illus-
trated in Figure 1. Section 7 then presents, for the DL model, a unifying view
simultaneously considering polytomy resolution and supertree reconstruction
in a single framework for gene tree correction. We end this chapter with a
discussion in Section 8.

2 Trees

We denote respectively by V (T ), E(T ) and L(T ) the set of nodes, edges
and leaves of a tree T . Notice that L(T ) ⊂ V (T ). We say that T is a tree on
L(T ). Unless stated differently, all trees considered in this chapter are rooted ,
i.e. they admit a single node r(T ) called the root of T .

Let x be a node of V (T ); y is an ancestor of x if y is on the path from
x to the root; y is a descendant (respec. proper descendant) of x if y is on
the path from x to a leaf of T including x (respec. excluding x); x and y are
incomparable if y is neither an ancestor nor a descendant of x. If (x, y) is an
edge of T , then x is the parent p(y) of y and y is a child of x (y ∈ Ch(x)).

For a tree T , we denote by Tx the subtree of T rooted at x ∈ V (T ). Two
subtrees Tx and Ty of T are separated iff x and y are incomparable nodes of T .
Given a subset L of leaves, we call the lowest common ancestor (LCA) of L in
T and denote by lcaT (L) the common ancestor of L in T that is the farthest
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from the root. We also denote by T |L the tree with leafset L∩L(T ) obtained
from the subtree of T rooted at lcaT (L∩L(T )) by removing all leaves that are
not in both L and L(T ), and then all internal nodes with a single child.

A tree T ′ is said to be an extension of a tree T if it can be obtained by
a sequence of graftings, where each grafting consists in subdividing an edge
(x, y) of E(T ) by creating a new node z between x and y, then adding a leaf
l with parent z.

In this chapter, all considered trees have internal nodes with at least two
descendants. An internal node x of T is binary if it has exactly two descen-
dants. A binary tree is a tree with all internal nodes being binary nodes. A
non-binary tree has at least one internal node which is a polytomy , i.e. a node
with more than two descendants.

Definition 1 (binary refinement) A binary refinement B = B(T ) of a tree
T , is a binary tree such that V (T ) ⊆ V (B) and such that for every x ∈ V (T ),
L(Tx) = L(Bx).

In other words, a binary tree B(T ) is a binary refinement of T if whenever
a node x is an ancestor of y in T , x is also an ancestor of y in B(G).

Gene and species trees: Two types of trees are considered: species trees
and gene trees (see Figure 2). A species tree S for a set Σ = {σ1, · · · , σt} of
species represents an ordered set of speciation events (the separation of one
species into two different species) that have led to Σ.

Inside the species’ genomes, genes undergo speciation when the species to
which they belong to, but also duplication i.e. the creation of a new locus, loss
of a locus, and Horizontal Gene Transfer (HGT) when a gene is transmitted
from a source species to an unrelated but co-existing target species.

A gene family Γ is a set of genes sharing a common ancestor, and a gene
tree G is a tree on a gene family Γ. We denote by s(x) the genome of Σ to
which x belongs.

When no distinction needs to be made between gene copies in the same
genome, genes can just be identified by their corresponding genome, and thus
a gene tree can be represented as a tree on Σ with possibly repeated leaf-labels
(see Figure 3).
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Figure 2: Top: A speciation (black circle), duplication (white rectangle), loss
(dotted line) and HGT (white circle) events. For the speciation event, σl and
σr refer to the two species descendent from the species σ; for the HGT event, σ1
is the source and σ2 the target unrelated species. Bottom: (left) A gene tree
G for the gene family Γ = {a1, a2, b1, b2, c1}, where each lower case denotes
a gene belonging to the corresponding genome in upper case; (middle) an
evolutionary history of Γ embedded in the species tree S = (A, (B,C)); (right)
the reconciliation R(G,S) corresponding to the given evolutionary history.
Each internal node and grafted leaf x of R(G,S) is labeled with s(x). The
edge (B, a2) is a HGT edge.

3 Reconciliation of a binary gene tree with a

binary species tree

The evolutionary history of a gene family is usually inferred from the embed-
ding of its corresponding gene tree into the species tree, through a process
called reconciliation explaining incongruities between gene and species trees
by gene evolution events.

More precisely, a reconciliation R(G,S) of a gene tree G with a species
tree S (if no ambiguity arises, we will just write R) is a node-labeled extension
of the gene tree G reflecting a history of speciation and gene gain and loss in
agreement with S (see Figure 2). Each node x of V (R) (internal or leaf) is
mapped to a node s(x) ∈ V (S). Some branches of R may also be labeled as
transfer edges. A formal definition follows.

7



Definition 2 (Reconciled gene tree) Let G be a binary gene tree and S be
a binary species tree. A reconciliation R(G,S) of G with S is an extension of
G such that, for each internal node x of R(G,S) with two children xl and xr,
one of the following cases holds:

1. s(xl) and s(xr) are the two children of s(x), in which case x is a specia-
tion node;

2. s(xl) = s(xr) = s(x) in which case x is a duplication node representing
a duplication in s(x);

3. one of s(xl) and s(xr) is equal to s(x) and the other is incomparable
to s(x). Let y corresponds to the element of {xl, xr} such that s(y) is
incomparable to s(x). Then x is a HGT node representing a HGT event
with source genome s(x) and target genome s(y), and (x, y) is a HGT
edge.

Each grafted leaf x corresponds to a loss in s(x).

Two genes are said orthologs if their LCA in R(G,S) is a speciation event,
paralogs if it is a duplication event and xenologs if it is a HGT. For example
in Figure 2, b2, c1 are orthologs, b2, a1 are paralogs and a2, b1 are xenologs.

Remark 1 A more flexible definition of xenologs, where two genes are said to
be xenologs if the history since their LCA involves a HGT, is also considered in
the literature [28]. With this definition, a pair of xenologous genes can diverge
through speciation, duplication or transfer. For example with this definition,
genes a1, b1 in Figure 2 are xenologs that diverged through a speciation. To
avoid further ambiguity, a new classification of xenologs into subtypes, which
takes into account the evolutionary events at the divergence of gene pairs and
the relative timing of transfer and speciation events, was also recently pro-
posed [20]. In this chapter, we will consider the simplest event-based definition
of xenologs through divergence via a transfer event, inducing an unique assign-
ment type for each pair of genes into orthologs, paralogs or xenologs. Notice
that with this definition, orthologs are not restricted anymore to genes from
different species (see [20] for a discussion). For example, in Figure 2, a1 and
a2 are orthologs although they are found in the same present-day species A.

The standard parsimony criteria used to choose among the large set of
possible reconciliations are the minimum number of duplications (D), duplica-
tions and losses (DL), or duplications, losses and HGTs (DTL) events induced
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by the reconciliation. The first two distances can be computed in linear time
using the LCA mapping [31, 97, 100] (see section 3.1 below). An algorithm
enumerating all solutions for general costs with different event penalties was
described in [23] for the DL model and extended to DTL in [16].

3.1 DL reconciliation

The LCA-mapping between a gene tree G and a species tree S maps each node
x ∈ V (G) towards a genome s(x) ∈ V (S), such as L(Ss(x)) is the smallest set
of genomes to which all genes in L(Gx) belong. Formally, s(x) = lcaS({s(y) :
y ∈ L(Gx)}) in the species tree. Note that the LCA-mapping is unique for
any given pair (G,S).

Given that mapping, each internal node x of G can be labeled as a duplica-
tion node if s(xl) = s(x) and/or s(xr) = s(x), otherwise it is a speciation node.
The total number of losses correspond to the minimum number of grafting on
G required to have a reconciliation R(G,S). The reconciliation induced by
the LCA-mapping, called LCA-reconciliation is optimal for both D and DL
distances. It is also the unique reconciliation minimizing the DL distance (see
Figure 3.1 for an example).

We highlight two types of duplication nodes inferred from LCA mapping.
Consider each gene of G as simply identified by the genome it belongs to. Let
x be a duplication node of G with children xl and xr. It is a Non-Apparent
duplication (NAD) iff L(Gxl) ∩ L(Gxr) = ∅. In other words, the reason for x
being a duplication node is not the presence of paralogs in the same genome,
but rather an inconsistency with the species tree. A duplication which is not
a NAD is an Apparent Duplication (AD) node, i.e. a node with the left and
right subtrees sharing a common leaf-label.

For example in Figure 3.1, the lower duplication node of G is a NAD,
while the upper duplication node is an apparent duplication, as its left and
right subtrees each contains a leaf labeled b.

While apparent duplications are supported by the presence of paralogs, in
the same genome, that are necessarily the result of duplication, NAD nodes
have been flagged as potential errors in many studies, and in particular in the
Ensembl Compara gene tree database [29]. The distinction between these two
types of duplication nodes is required for certain formulations of the gene tree
correction problem [44], or for considering an optimal history accounting for
ILS, as we will see later.
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Figure 3: Three different reconciliations for the species tree S and the gene tree
G, for the gene family Γ = {a, b, b, c, d}, where each lower case denotes a gene
belonging to the corresponding genome in upper case; (1) An evolutionary
scenario optimal for the D and DL distances (two duplications and 5 losses);
G is labeled according to the LCA-mapping; (2) A DTL-scenario with two
HGTs and two losses. This scenario is cyclic, and is therefore infeasible; (3)
An alternative and acyclic DTL-scenario with two HGTs and one loss. This
scenario is still biologically unfeasible as it is not date-respecting according to
the considered speciation times.

3.2 DTL reconciliation

In contrast with the DL reconciliation framework, the optimal DTL reconcili-
ation is not unique, and cannot be computed by means of the LCA mapping.
With HGTs, a gene evolution is not restricted anymore within the parental
edges of its genome in the species tree. As such, to the standard vertical
transmission of genes from one ancestor genome to its descendants, there is
an additional need to consider transmission between incomparable nodes of
the species tree. Such transmissions are represented in the reconciliation by a
transfer edge (x, y) corresponding to a gene transfer from a source genome s(x)
to a target genome s(y). For a HGT to be biologically feasible, both genomes
are required to be contemporary at the time of the transfer event. Therefore,
a “consistent” HGT scenario should allow a total temporal ordering of the
internal nodes of the species tree S. As demonstrated by Tofigh et al. [92],
this requires the DTL-reconciliation to be acyclic, as defined below.
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Definition 3 A reconciliation R(G,S) is acyclic if and only if there is a total
order < on V (S) such that:

(1) if (s, s′) ∈ E(S) then s < s′ and
(2) if (x, y) and (x′, y′) are transfer edges in G such that y′ is a descendant

of y in R(G,S), then p(s(x)) < s(y′).

For example, scenario 2 in Figure 3.2 is a cyclic DTL-scenario, as the
ordering defined by the above definition would lead, for the two transfer edges
of G, to α < α. On the other hand, scenario 3 (Figure 3.3) is acyclic.

The problem of finding a most parsimonious acyclic, i.e. time-consistent
DTL-scenario, is NP-hard [22, 24, 35, 62]. However, the problem becomes poly-
nomial if the acyclicity requirement is dropped [7, 92]. In that case, the main
idea for computing an optimal DTL-reconciliation is to consider all possible
mappings of G nodes to S nodes, using a dynamic programming approach.

More precisely, let c(x, s) be the minimum cost of a reconciliation of Gx

with S such that x is mapped to s ∈ V (S). The gene tree G is processed
in post-order traversal, with the base case corresponding to leaves x ∈ L(G),
treated as follows:

For x ∈ L(G), c(x, s) =

{
0, If s = s(x),
+∞, Otherwise.

As for an internal node x with children y and z, we have to consider the
three possibilities of x being labeled as a speciation, duplication or HGT node,
with cs(x, s), cd(x, s) and ct(x, s) representing these three mutually exclusive
cases. Then, c(x, s) = min{cs(x, s), cd(x, s), ct(x, s)}. Finally, the minimum
cost of a reconciliation of G with S is mins∈V (S) c(r(G), s).

For simplicity, we report below the recurrences when considering the cost
of reconciliation as being the number of duplications and HGT [92].

cs(x, s) =


min{c(y, t) + c(z, u) for all t, u incomparable

and such that lca(t, u) = s}, If s is an internal node of S,
+∞, Otherwise.

cd(x, s) = min{1 + c(y, t) + c(z, u) for all descendants t, u of s in S}

ct(x, s) = min{1 + c(y, t) + c(z, u) for all t being descendant of s in S
and all u being incomparable to s}

A straightforward implementation of these recurrences lead to an algorithm
in O(mn2) time, where m = |V (G)| and n = |V (S)|. This time complexity
has been further improved to O(mn) [91].
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Notice that losses may be essential for distinguishing between duplications
and HGT events. The above recurrences have to be adapted to handle losses.
David and Alm [21] have described an algorithm for the DTL distance running
in O(mn2), while Bansal et al. [7] described RANGER-DTL, an algorithm
running in O(mn).

When divergence time information, or a temporal ordering of internal
nodes, is available for S, then the DTL-scenario must respect this ordering
(i.e. HGT events are constrained to occur only between co-existing species). A
DTL-scenario respecting a dated tree is called a date-respecting DTL-scenario.
Bansal et al. [7] show how the definition of a reconciliation and the above re-
currences can be adapted to solve this problem. They give an algorithm with
O(mn log n) time complexity.

For example, scenario 3 of Figure 3 is not date-respecting. Notice that
a date-respecting DTL-scenario is not necessarily time consistent. In fact,
scenarios may be locally consistent (i.e. HGT events occurring between co-
existing species), but globally inconsistent. Global consistency may be ob-
tained by subdividing the species tree S into slices and exploring slices one
after the other. This strategy has been first used in [52], leading to an O(nm4)
algorithm. Later, Doyon et al. [22] have improved the computation of a most
parsimonious time consistent DTL-reconciliation with a dated species tree to
O(mn2).

3.3 Binary gene tree reconciliation in presence of ILS

When a population of individuals undergoes a series of speciations in a short
period of time, different alleles for the same gene locus may remain present in a
given lineage, and then eventually fixed differently in descendant lineages [53].
This phenomenon, known as deep coalescence or Incomplete Lineage Sorting
(ILS) may also explain discrepancies between a gene tree and a species tree.
For example in Figure 4, the subtree ((a, b1), c1) of G, which is incongruent
with the species tree (A, (B,C)), may be explained from the history depicted
in the left backbone of (i), which involves no duplication, but simply the fact
that the allele inherited in C is different from the one inherited in A and B.

In the absence of paralogous genes in the same genome, inconsistencies
between a gene tree and a species tree can always be explained through ILS.
Wu and Zhang [94] have shown that a unique reconciliation with minimum
deep coalescence cost can be obtained in that case, using LCA-mapping. It
is however necessary to take duplication events into account as ILS cannot
explain the presence of additional loci. For example, in Figure 4, while the
NAD (non-apparent duplication) in G can be adequately explained through
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Figure 4: Gene family evolution and incomplete lineage sorting. (i) Evolution
of a gene family inside a species tree S = (A, (B,C)), in the context of a
population. Each species tree backbone contains the evolution of a single locus
and each row represents a generation of individuals in a population. The lines
inside the tree backbones represent the evolution of the gene family leading to
the tree G in (ii). In this example, the evolution of two loci (black and green)
are depicted. Two alleles of the black locus are present at the time of speciation
1. The first allele is fixed in A and B, whereas the second is only fixed in C.
The green locus was created after an ancestral duplication occurring just before
speciation 1, and was lost in genome A; (ii) The resulting gene tree G for the
gene family Γ = {a, b1, b2, c1, c2} is the represented reconciled tree R(G,S),
ignoring losses (dotted lines) and internal node labeling. Duplication nodes,
inferred from the LCA-mapping, are not coherent with the true evolutionary
history of the gene family. (iii) A different representation of R(G,S) reflecting
the number ns of gene copies in each genome s. For example, for the branch
(0, 1), we have n0 = 1 and n1 = 3. (iv) A different scenario able to explain
incongruities between the gene and species tree through duplication, loss and
deep coalescence. This more parsimonious history involves one duplication,
a loss, and a deep coalescence event. It relies on the labeled coalescent tree
model which simultaneously describes the species, locus and gene trees, as
well as the reconciliations between them. (v) The locus tree (LT) induced by
the scenario shown in (iv). (vi) Enumeration of the possible locus maps for
each branch of the species tree. Each locus is shown with a different color and
new locus are created by duplications. Only some locus maps for branches
(0,1) and (1,A) are shown. The mapping is based on the total number of gene
lineages at the start and end of each edge of the species tree, which can be
determined with LCA-mapping.
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ILS, the apparent duplication node above it necessarily involves the creation
of a second locus. As seen in Figure 4.iii-iv, ILS-aware reconciliation methods
may produce evolutionary histories with fewer losses, highlighting the need of
models jointly considering duplication, loss, HGT and ILS events. In a recent
paper, Bork et al. [13] have shown that the duplication-loss-ILS reconciliation
problem is NP-hard, even when only duplications are to be minimized.

Very few papers have attempted to jointly model ILS and other macro-
evolutionary events during gene and species tree reconciliation. In two papers
by Durand’s group [82, 93], the problem is reformulated as a reconciliation be-
tween a binary gene tree and a non-binary species tree minimizing the DL/DTL
cost. Their algorithm first requires contraction of short branches of the species
tree into polytomies and ILS are only allowed at those unresolved nodes and
remain unpenalized. Section 4 is dedicated to this algorithm.

On the other hand, Kellis et al. [69, 96] have considered a coalescent
model for reconciling a binary gene tree with a binary species tree, accounting
for duplications, losses and deep coalescence. They first devised a proba-
bilistic algorithm, called DLCoal [69]. Although efficient, this algorithm is
highly parameterized, making it impracticable. Subsequently, they proposed
a parsimony-based algorithm, called DLCpar [96], introducing the concept of
a label coalescent tree (LCT) (see Figure 4.iv), which simultaneously describes
the reconciliation between a gene tree, a locus tree, and a species tree. This
latter algorithm proceeds in the following steps:

1. Use the LCA-mapping between G and S to determine all implied spe-
ciation nodes and count, for each branch (x, y) of the species tree, the
numbers nx and ny of gene copies at x and y.

2. For each branch (x, y), in a pre-order traversal of S, enumerate all possi-
ble scenarios of DL and ILS events leading from nx to ny gene copies (see
Figure 4(vi)). This yields the set of possible species-specific locus maps
that associates each node of the gene tree to the locus in which it evolves.
The event cost for each branch of S can be computed by counting the
number of additional loci and lost loci, respectively corresponding to du-
plications and losses, as well as the number of extra lineages caused by
deep coalescence (see Figure 4(vi)). In practice, some histories are not
considered since they are never most parsimonious.

3. Perform a post-order traversal of S, and for each branch (x, y) and each
assignment (nx, ny), use dynamic programming to determine the min-
imum cost on the subtree of S rooted as x, computed as the cost of
the branch (x, y) plus the minimum cost of the left and right subtrees
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rooted at y, where y is assigned ny loci. The minimum among all possi-
ble choices is selected as the most parsimonious reconciliation. Optimal
loci at the start and end of each branch can then be assigned with a
traceback starting from the root of the species tree.

Although not explicitly given in the paper, the complexity of the algo-
rithm strongly depends on the size of the locus maps set and on the choices
considered for each branch of the species tree. This part is not detailed in the
paper. In particular, the method is supposed to search over the entire space
of reconciliations, but it is not clear whether it leads to a heuristic or to an
exact algorithm.

In a follow-up paper, Rogers et al. [71] further attempt to extend the LCT
model in order to address one of its shortcomings, namely the assumption of
a single haploid sample for each species. More recently, Chan et al. [15] have
proposed the first FPT (fixed-parameter-tractable) algorithm that computes
the most parsimonious time-consistent reconciliation fully accounting for ILS,
duplications, HGTs and losses (IDTL). This algorithm is an extension of the
DTL-reconciliation described in [22] with modifications to allow ILS, and has
a total complexity of O(|VG|(|VS|2 + |VS|nk2kS)2ks), where k is the number of
branches in the largest ILS subtree (i.e. subtrees of the species tree where ILS
occur) and nk the number of ILS subtrees.

4 Reconciliation with a non-binary species tree

The LCA-mapping can naturally be generalized to a non-binary species tree.
However, the LCA-reconciliation used for binary gene and species trees will
not produce correct gene evolution history when applied to non-binary species
trees. In fact, a node of G and its child mapping to the same non-binary node
of the species tree does not necessarily indicate a duplication. In [99], Zheng
et al. proved that the general reconciliation problem of a gene tree G with a
non-binary species tree S via binary refinement is NP-hard, even when only
duplications are considered. In the same paper, they proposed a heuristic for
the problem also allowing for polytomies in the gene tree.

We can distinguish two reasons for the presence of non-binary nodes in a
species tree. They can either represent “true” evolutionary events, i.e. adap-
tive radiations leading to the emergence of a set of species from a single an-
cestral one, or can be caused by a lack of resolution in the species tree, due to
methodological reasons. Such non-binary nodes are called hard in the former
case and soft in the latter case. A soft polytomy may be due to short time
since speciation, leading to genetic drift.
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In either case, non-binary nodes of a species tree often correspond to pop-
ulations with substantial genetic diversity, and coexisting multiple alleles. It
is expected that some gene families might exhibit imperfect segregation of all
their alleles (in other words ILS) at these nodes. Therefore a subtree of the
gene tree whose root maps to a polytomy in the species tree may be differ-
ently explained by speciation, duplication or ILS, depending on the considered
resolution of that polytomy.

Vernot et al. [93] have considered the problem of finding a most parsimo-
nious DL scenario explaining the differences between a binary gene tree G and
a non-binary species tree S, assuming that disagreements between the two
trees can stem from either duplication or ILS. Their algorithm only considers
the possibility of ILS at non-binary nodes of S. The main idea of their al-
gorithm is to identify required duplications , i.e. those disagreements with the
species tree that can only be explained by a duplication. Clearly, these nodes
are those in G that would be labeled as duplication in all resolutions of S.
However, as shown in [93], there is no need to try all the resolutions of S.

The procedure described in [93] consists in a post-traversal of G during
which each node x of V (G) \ {r(G)} is labeled by the set N(x), which is the
subset of {h : h ∈ Ch(s(p(x)))} such that each element h ∈ N(x) has at
least one descendant in {s(l) : l ∈ L(Gx)}. This set represents the minimum
set of nodes in V (S) that would be traversed from s(x) to the mapping of
x’s children, regardless of the resolution of S. Consequently, a node x with
children xl and xr is a required duplication if and only if N(xr) ∩ N(xl) 6= ∅
(see Figure 5 for an example).

The set labeling a node of G is of size O(kS) where kS is the maximum out-
degree in S. Based on this fact, Vernot et al. [93] have described an algorithm
for the D distance running in O(|V (G)|(kS +hS)) time, where hS is the height
of S (i.e. maximum number of nodes from the root to any leaf of S). However,
inferring the induced minimum number of losses is not as straightforward as
for binary species trees. In fact, for a loss associated to a polytomy, it is not
generally possible to determine the exact lineage in the gene tree in which the
loss has occurred, and several edges of G have to be tested. An exponential
algorithm running in O(|V (G)|kS22kS) was described.

In [82], Stolzer et al. further extended the framework to HGT events
and developed an algorithm running in O(|V (G)|(hS + kS)(V |S| + nk2

kS)2).
Although their algorithm does not guarantee a time-consistent reconciliation,
temporal feasibility of each scenario is evaluated a posteriori. Both DL and
DTL algorithms are implemented in NOTUNG.
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Figure 5: A species tree S for the genome set Σ = {A,B,C,D}; A gene tree
G for the gene family Γ = {a, a, b, c, d}, where each small letter designs a gene
belonging to the corresponding genome in upper case. The tree G is labeled
according to LCA-mapping suggesting 3 duplication nodes (rectangles). How-
ever, according to the N(x) labeling in brackets, only two duplications are
required, while the third (striped rectangle/circle) can be explained through
ILS instead (see history in the right side), leading to a most parsimonious DL
scenario involving two duplications and four losses.

5 Reconciliation of a non-binary gene tree with

a binary species tree

We will detail the most efficient algorithms for DL reconciliation, and end up
with a brief discussion on extensions to DTL reconciliation of a non-binary
gene tree G with a binary species tree S.

This problem is motivated by the gene tree correction problem, where
a non-binary gene tree can be obtained from an initial tree by contracting
weakly supported branches. In other words, the polytomies of G are considered
soft, i.e. reflect non-resolved parts of the tree. The goal is then to find an
appropriate refinement (as defined in Section 2) of this non-binary gene tree.

Definition 4 (Resolution) A resolution of G with respect to S is a recon-
ciliation R(B, S) between a binary refinement B of G and S. The set of all
possible resolutions of a tree G is denoted R(G).

The optimization problem follows.

Minimum Resolution Problem:
Input: A binary species tree S and a non-binary gene tree G.
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Output: A Minimum Resolution of G with respect to S (or simply Minimum
Resolution of G), e.g. a resolution of G of minimum reconciliation cost with
respect to S.

As first noticed by Chang and Eulenstein [17], each polytomy of G can
be considered independently and a minimum resolution of G can be obtained
by a depth-first procedure that iteratively solves each polytomy Gx for each
internal node x of G.

An O
(
|V (S)||V (G)|3

)
algorithm for the resolution of a non-binary gene tree

minimizing duplications and losses was first considered in NOTUNG [25]. The
same year, Chang and Eulenstein [17] also described an algorithm with a better
complexity, running in O

(
|V (S)||V (G)|2

)
. In 2012 [41], we developed the

first linear-time algorithm for resolving a polytomy (a single unresolved node),
leading to an overall quadratic-time algorithm for a whole tree. An algorithmic
result extending linearity to a whole gene tree was later obtained by Zheng
and Zhang [98]. The key idea is to resolve each polytomy with a species
tree restricted to the smallest necessary set of genomes. Their algorithm does
not allow however to output all solutions and is restricted to unit cost for
duplications and losses. Based on the same optimization idea, we developed
PolytomySolver [46] which is a generalization of the dynamic programming
algorithm given in [41], allowing for both event-specific and species-specific
costs. Time complexity of PolytomySolver is linear for the unit cost and
quadratic for the general cost, which outperforms the best known solutions so
far by a linear factor.

In the rest of this section, we describe the dynamic programming of Poly-
tomySolver for the resolution of a single polytomy under the DL distance with
unitary event costs. More details, complexity improvement, extension to other
costs and to a full non-binary gene tree, can be found in [46].

5.1 PolytomySolver

In the following, to prevent penalizing losses in genomes with no descendant
genes in G, the species tree is restricted to S|{s(x) : x∈L(G)} and we will simply
continue to refer to it as S.

PolytomySolver proceeds with a recursion made on the subtrees of S. De-
fine the multiplicity m(s) of s ∈ V (S) in G as the number of times it appears
in G, i.e. m(s) = |{x ∈ L(G) : s(x) = s}|. An (s, k)-resolution of G is a forest
of k reconciled gene trees T = {T1, . . . , Tk} such that, for each 1 ≤ i ≤ k,
s(r(Ti)) = s, and each leaf x of G with s(x) being a descendant of s is present
as a leaf of some tree of T (see Figure 6 for an example). All leaves of trees
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Figure 6: A polytomy G and a species tree S. Squares on trees illustrate
duplications, whereas speciation are denoted by a black circle. To the right of
table M , the forests corresponding to an (a, 1) and (a, 3)-resolution are given,
where the gray circled a illustrates a loss. We illustrate the (d, 1)-resolution,
rooted at a speciation node, corresponding to Cd,1 = 3 (obtained from the
vertical arrows in table M), and an optimal (d, 1)-resolution, obtained from a
(d, 2)-resolution (horizontal arrow in M). The optimal cost for the resolution
of G (Me,2 = 2) is highlighted in blue.

in T that are not in L(G) represent losses. Also, some trees of T may be
restricted to a single node which is either a leaf x of G with s(x) = s, or a
loss in s. The cost of T , denoted c(T ), is the sum of reconciliation costs of all
Ti ∈ T .

Denote by Ms,k the minimum cost of an (s, k)-resolution for a given node
s of S and a given integer k ≥ 1 (Ms,k = +∞ for k < 1). The final cost of a
minimum resolution of G is given by Mr(S),1. The table M is computed, line
by line, for all nodes of S, in a bottom-up traversal (begining with leaves).
Although k is unlimited (number of gene losses is unlimited), we have shown
in [46] that there is no need to consider values larger than |V (G)| − 1.

The following lemma gives the base case for the leaves of S. It follows from
the fact that, if k is larger than the number of available leaves, then additional
leaves have to be added (corresponding to gene losses); otherwise, leaves have
to be joined under duplication nodes. This lemma is illustrated in Figure 6,
where it is used to compute the first three lines of M .

Lemma 1 (Base case) For a leaf node s of S, if k > m(s) then Ms,k =
k −m(s); otherwise Ms,k = m(s)− k.

The rest of this section focuses on the computation of a line Ms of M for an
internal node s of S, from the lines Msl and Msr . We require an intermediate
cost table Cs,k, defined for internal nodes of S, accounting only for speciation
events. That is, Cs,k represents the minimum cost of an (s, k)-resolution in
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which every tree is rooted at a speciation node with two children (which may
both be losses), or consists of a node which is a leaf of G already mapped
to s. For k > m(s), an (s, k)-resolution of cost Cs,k can only be obtained
from an (sl, k −m(s))-resolution and an (sr, k −m(s))-resolution by creating
k speciation nodes, each joining a pair (sl, sr), then adding the m(s) trees
already mapped to s (see for example the (d, 1)-resolution corresponding to
Cd,1 in Figure 6; in this case m(d) = 0). Thus we define:

Cs,k = Msl,k−m(s) +Msr,k−m(s) if k > m(s) and Cs,k = +∞ otherwise (1)

As nodes mapped to s are not necessarily speciation nodes but can also
correspond to duplications, it is readily seen that Ms,k ≤ Cs,k. A recurrence
for computing Ms,k follows.

Lemma 2 For an internal node s of S, Ms,k = min(Ms,k−1 + 1,Ms,k+1 +
1, Cs,k).

In this lemma, the first term of Ms,k corresponds to a loss and the second
to a duplication at s.

The recurrence cannot however be used as such to compute C and M , as
it induces both a left and right dependency. That is, Ms,k depends on Ms,k+1

and vice-versa, leading to a chicken-and-egg problem as to which value should
be computed first. This dependency can be avoided by considering a strong
property on lines of M . In [41] we show that each line Ms is characterized by
two values k1 and k2 such that, for any k1 ≤ k ≤ k2, all Ms,k have a single
minimum value, for any k ≤ k1, Ms,k−1 = Ms,k + 1, and for any k ≥ k2,
Ms,k+1 = Ms,k + 1. In other words, Ms has a slope of −1 until k1, a slope
of 0 until k2, then a slope of 1. In particular, Ms can be treated as a convex
function fully determined by k1, k2 and its minimum value γ. We say Ms has
a minimum plateau between k1 and k2. For example, line Md in Figure 6 is
fully determined by k1 = 2 and k2 = 3.

Theorem 1 (Recurrence 1) Let k1 and k2 be the smallest and largest val-
ues, respectively, such that Cs,k1 = Cs,k2 = mink Cs,k. Then,

Ms,k =


Cs,k if k1 ≤ k ≤ k2

min(Cs,k,Ms,k+1 + 1) if k < k1

min(Cs,k,Ms,k−1 + 1) if k > k2

Theorem 1 provides the way for computing a row Ms for an internal node
s of S: for each k, compute Cs,k using recurrence 1 and keep the two columns
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k1 and k2 setting the bounds of the convex function’s plateau. Extend to the
left of k1 using Ms,k = min(Cs,k,Ms,k+1 + 1), and to the right of k2 using
Ms,k = min(Cs,k,Ms,k−1 + 1). These recurrences, with the base case for S
leaves given in Lemma 1, describe the dynamic programming algorithm of
PolytomySolver.

Algorithm 1 describes the computation of table M . We refer the reader
to [41] for the reconstruction of a solution from M , which is accomplished
using a standard backtracking procedure. Moreover, we show in [46] that k1
and k2 for each M(s) can be computed in constant time from Msl and Msr

vectors. This implies a linear time algorithm for the computation of Mroot(S),k.

Algorithm 1 Compute M(G,S)

for each node s ∈ V (S) visited in post-order do
if s is a leaf then
Ms,k = |k −m(s)| for each k;

else
Compute Cs,k = Ms1,k−m(s) +Ms2,k−m(s) for each k;
find k1, the smallest index such that Cs,k1 is minimum;
find k2, the largest index such that Cs,k2 is minimum;
Ms,k = Cs,k for each k1 ≤ k ≤ k2;
for each k < k1 do
Ms,k = min(Cs,k,Ms,k+1 + 1)

end for
for each k > k2 do
Ms,k = min(Cs,k,Ms,k−1 + 1)

end for
end if

end for

Unrooted trees: If the gene tree is unrooted, an exhaustive testing of all
roots can be done with PolytomySolver, ProfileNJ [60] and NOTUNG [18]. A
series of papers by Gorecki et al. also consider the properties of the plateau
to avoid exploring all branches [32, 33] of unrooted gene trees.

5.2 Extensions to DTL reconciliation

The dated and undated formulations of the DTL reconciliation have been
shown to be NP-hard for non-binary gene trees [39]. Kordi and Bansal [40] have
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also shown that the problem is Fixed Parameter Tractable (FPT) in the max-
imum degree k of the gene tree, and explored a O

(
2kkk(|V (S)|+ |V (G)|)o(1)

)
algorithm testing all possible resolutions of the gene tree. A similar algorithm,
implemented in NOTUNG [48], also tries all possible resolutions of each poly-
tomy before computing the DTL distance for each resolution. Heuristics for
the problem, including exploration of the tree-space surrounding an initial res-
olution were also implemented in NOTUNG. One such possibility consists in
selecting a best tree for the DL reconciliation, and then exploring alternative
topologies at a given maximum NNI distance from the initial topology. Finally
Jacox et al. [38] have also proposed an algorithm improving the time complex-
ity to O

(
(3k − 2k+1)(V (|S|) + V (|G|))o(1)

)
by using amalgamation principles

(see section 6). Although this algorithm improves the running time by an ex-
ponential factor, it runs in O(2k) space compared to the algorithm described
in [40] requiring polynomial space complexity.

6 Infering a gene tree from a set of trees

We now move to a slightly different gene tree correction strategy, which consists
in taking advantage of a set of gene trees rather than a single input gene tree.

6.1 Amalgamation: Gene tree inference from a set of
clades

As sequence information may contain limited signal, phylogenetic reconstruc-
tion often involves choosing among a set of equally likely trees. This idea has
inspired the amalgamation procedure for reconstructing a tree from the clades,
i.e. subtree leafsets, of a set of gene trees. This principle was first introduced
by David and Alm [21] and a heuristic for correcting an initial gene tree based
on this idea has been described. The amalgamation principle was extended
by Szöllősi et al. [27] in a probabilistic method called ALE (for Amalgamated
Likelihood Estimation) considering conditional clade probabilities (introduced
in [36]) and a joint sequence-reconciliation likelihood score.

An alternative deterministic algorithm, called TERA (for Tree Estimation
using Reconciliation) has been developed by Scornavacca et. al [75]. This
algorithm “amalgamates” the most parsimonious DTL reconciled gene tree
from an initial set of gene trees and achieves similar accuracy than ALE, while
being much faster.

We start with some definitions, before presenting the outline of TERA.
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Definition 5 Given a tree T and a node x of T , we call L(Tx) the clade of T
at x and denote by C(T ) the set of all clades of T . If x is an internal node with
children xl and xr, a tripartition at x is defined as πx = (πx[1], πx[2], πx[3]) with
πx[1] = L(Tx), πx[2] = L(Txl) and πx[3] = L(Txr). Given a set G of k gene
trees on the same gene family Γ, we denote by C(G) the set of all the clades of
G, and by Π(G) the union of all tripartitions of G. For a given clade c ∈ C(G),
Π(c) corresponds to the set of tripartitions π of Π(G) such that π[1] = c.

Definition 6 (Amalgamation) An amalgamation of G is any gene tree G
on Γ such that C(G) ⊂ C(G).

Most Parsimonious Amalgamation problem
Input: A set G of gene trees on the gene family Γ, and C(G) the set of all the
clades of G.
Output: An amalgamation of G minimizing the reconciliation cost with re-
spect to S.

The TERA algorithm solves the amalgamation problem by computing the
optimal reconciliation of each clade (i.e. polytomy with clade as leafset) with
each node of S. For that purpose, the algorithm performs a joint traversal of
the species tree S and the clades of C(G). In an initial step, it computes the
reconciliation of each clade c ∈ C(G) with the leaves of S. Then S is traversed
bottom-up, and for each node s ∈ V (S), the reconciliation cost of each tripar-
tition of c with s is computed. For each pair (c, s), the algorithm computes
the cost of reconciling the clade c with s by testing all possible tripartitions
π in Π(c). As each non-trivial tripartition π can be seen as an internal node
of an amalgamated tree with children π[2] and π[3], the cost of reconciling
a tripartition π with s can be computed, using the recurrences of the DTL-
reconciliation algorithm [22] (see Section 3), from the cost of reconciling π[2]
and π[3] respectively with nodes of V (Ss). The output of TERA is the most
parsimonious reconciliation at one of the root clades.

The TERA algorithm is part of a unifying software called ecceTERA [37]
accounting for a variety of evolutionary events including duplications, losses,
transfers, transfer-loss and transfers from/to an unsampled species (not repre-
sented by the set of genes). The software also handles fully or partially dated,
as well as undated, species trees.

6.2 Supertree: Inferring a tree from a set of subtrees

Homology-based search tools are usually used to seek all homologs of a given
gene in a set of genomes. The resulting gene family may be very large, in-
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volving distant gene sequences that may be hard to align, leading to weakly
supported trees. Alternatively, gene copies may be grouped into smaller sets of
orthologs and inparalogs, using clustering algorithms such as OrthoMCL [51],
InParanoid [10], Proteinortho [50] or many others 1. Trees obtained for such
partial gene families should then be combined into a single one using a su-
pertree method .

Supertree methods have been mainly designed to reconstruct a species tree
from gene trees obtained for various gene families (see for example [6, 11,
58, 65, 66, 73, 81, 84]). However, they can have applications for gene tree
reconstruction as well. In this case, a gene tree is constructed from a set of
subtrees for partial, possibly overlapping, subsets of the gene family. Ideally,
the obtained tree should display each of the input trees, which is only possible
if the partial trees are consistent , i.e. exhibit the same topology for each triplet
of genomes (assuming genes are simply represented by the genome they belong
to).

The simplest formulation of the supertree problem is therefore to state
whether an input set of trees is consistent, and if so, find a compatible tree,
called a supertree, displaying them all. This problem is NP-complete for un-
rooted trees [74, 80], but solvable in polynomial time for rooted trees [1, 19, 57,
76]. The BUILD algorithm [1] can be used to test, in polynomial-time, whether
a collection of rooted trees is consistent, and if so, construct a compatible, not
necessarily fully resolved, supertree. This algorithm has been generalized to
output all supertrees [19, 57, 76], which may be exponential in the number of
genes.

Supertree methods can also be used to correct gene trees, by removing
weakly supported upper branches and then constructing a supertree from the
set of terminal subtrees. In contrast with the polytomy resolution approach,
neither the input subtrees, nor the gene clusters of those subtrees are necessar-
ily preserved. In other words, the exhibited monophyly of input gene clusters
can be challenged. This is particularly relevant, because it has been shown that
genes under negative selection, while exhibiting the true topology, might be
wrongly grouped into monophyletic groups (see for example [54, 78, 89, 83]).
Using a supertree method might therefore be beneficial, as it preserves the
topology of subtrees, while allowing to group genes from different subtrees.

In [45, 47], we introduced the MinSGT problem defined as follows.

Minimum SuperGeneTree (MinSGT ) Problem:
Input: A species set Σ and a species tree S for Σ; a gene family Γ of size n,

1see Quest for Orthologs links at http://questfororthologs.org/
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a set Γi,1≤i≤k of potentially intersecting subsets of Γ such that
⋃k
i=1 Γi = Γ,

and a consistent set G = {G1, G2, · · · , Gk} of gene trees such that, for each
1 ≤ i ≤ k, Gi is a tree for Γi.
Output: Among all trees G for Γ and compatible with G, one of minimum
reconciliation cost.

Under the D distance, we have shown that this problem is NP-hard to
approximate within a n1−ε factor, for any 0 < ε < 1, even for instances in
which there is only one gene per species in the input trees, and even if each
gene appears in at most one input tree. Although it has not been proven yet,
MinSGT is conjectured NP-hard for the DL reconciliation cost, as accounting
for losses in addition to duplications is unlikely to make the problem simpler.

We developed a dynamic programming algorithm for MinSGT with the
DL reconciliation cost, which has a time complexity exponential in the number
of input trees. The algorithm constructs the supertree G from the root to the
leaves. At each step, i.e. for each internal node x being constructed in G,
all possible bipartitions (Bl(x), Br(x)) that could be induced by x are tried,
and the iteration continues on each of Bl(x) and Br(x). For example, at the
root, the goal is to find the best bipartition of Γ, i.e. the one leading to the
minimum DL reconciliation cost. At each step, this cost is computed from a
local reconciliation cost at x, and from the best reconciliation cost of the two
created clusters. A key observation is that the constraint of being compatible
with the input gene trees induces a strong constraint on the bipartitions, hence
only a subset of the bipartition set has to be tested at each step.

Property 1 Let G = {G1, . . . , Gk} be a set of gene trees. The root of a
supertree G compatible with G subdivides

⋃k
i=1 L(Gi) into a compatible bipar-

tition (Bl, Br), i.e. a bipartition such that, for each i s.t. 1 ≤ i ≤ k, either:
1) L(Gi) ⊆ Bl; or 2) L(Gi) ⊆ Br; or 3) L(Gil) ⊆ Bl and L(Gir) ⊆ Br; or 4)
L(Gil) ⊆ Br and L(Gir) ⊆ Bl.

Let B(G1, . . . , Gk) be the set of all possible combinations of choices result-
ing from Property 1 (see Figure 7 for an example). Notice that not all such
combinations are valid bipartitions. For instance in Figure 7, the top-left bi-
partition cannot be valid if G1 and G2 share a leaf with the same label, as a
gene cannot be sent both left and right. These cases, however, can be detected
easily by verifying the leafset of Bl and Br.

Denote by MinSGT (G1, . . . , Gk) the minimum DL reconciliation cost of a
supertree compatible with G = {G1, . . . , Gk}. The main recurrence formula of
the dynamic programming algorithm is stated as follows.
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Figure 7: An illustration of the seven valid bipartitions for two treesG1 andG2.
Each bipartition is obtained by “sending” L1 ∈ {L(G1), L(G1,l), L(G1,r), ∅} in
the left part, and the complement L(G1) \L1 in the right part. The same pro-
cess is then applied to G2. The set B(G1, G2) consists in the set of all possible
combinations of choices, after eliminating symmetric cases and partitions with
an empty side.

Theorem 2 Let G = {G1, . . . , Gk} be a set of gene trees.

1. MinSGT (G1, . . . , Gk) = 0 if |
⋃k
i=1 L(Gi) | = 1 (Stop condition);

2. Otherwise, MinSGT (G1, . . . , Gk) =

min
(Bl,Br)∈B(G1,...,Gk)


cost(Ll, Lr)+
MinSGT (G1|Bl

, . . . , Gk|Bl
)+

MinSGT (G1|Br , . . . , Gk|Br)


Note that, given a bipartition (Bl, Br) ∈ B(G1, . . . , Gk), for each i such

that 1 ≤ i ≤ k, Gi|Ll
and Gi|Lr are equal either to ∅ or Gi or Gil or Gir . Thus,

Gi|Ll
and Gi|Lr are always either empty trees or complete subtrees of Gi.

Note also that, at each step, the existence of a compatible bipartition fol-
lows from the fact that the input gene trees are assumed to be consistent, as
stated in the formulation of the MinSGT problem. In the absence of this as-
sumption, we have to add a third equation to Theorem 2: If |

⋃k
i=1 L(Gi) | > 1

and | B(G1, . . . , Gk) | = 0, MinSGT (G1, . . . , Gk) = +∞.

In [47], we show that |B(G1, . . . , Gk)| ≤ (4
k

2
) − 1. The time complexity of

the overall algorithm is O((n+ 1)k×4k×k), where n is the maximum number
of nodes in a tree Gi.
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7 A unifying view for the DL model

The polytomy-based and supertree-based framework for gene tree correction
have been developed separately, considering separate assumptions and con-
straints. In the absence of a unifying model, the conservative or permissive
nature of each framework with respect to the other can only be tested em-
pirically. A conceptual breakthrough is the discovery that, for the DL model,
the two framework are in fact two special cases of a more general one: Label-
GTC expressed in terms of a 0-1 edge-labeled gene tree [26], and TripletGTC
expressed in terms of preserving triplets [26]. Here, we focus on LabelGTC.

Given an initial tree G for a gene family Γ, the correction problem asks for
a “better tree” G′ according to a reconciliation cost. The various versions of
the problem differ on the flexibility we have in modifying G. Which parts of G
should be preserved ? The most natural way is to preserve all well supported
branches, and be allowed to modify weakly supported branches. Notice that
the support on a branch (x, y) reflects the confidence we have on the fact that
L(Gy) represents a separate clade in the gene family.

The underlying representation is a 0-1 edge-labeling of E(G), where 0 in-
dicates a low support and 1 a high support according to a given threshold.

In addition, if G contains a set of separated subtrees whose topologies are
“trusted”, they should be preserved during correction. Such trusted topologies
may, for instance, be those obtained separately for different ortholog groups
agreeing with the species tree, and used to build G.

Accordingly, the most general gene tree correction problem is formulated
below (and illustrated on Figure 8), where a covering set of subtrees CS for
G is a set of separated subtrees of G, CS = {Gx1 , Gx2 , . . . , Gxn} such that⋃n
i=1 L(Gxi) = L(G), and a 0-1 edge-labeling for G is a function f defined

from the set of edges E(G) to {0, 1}. In the following formulation, edge labels
are ignored for the trees of CS. For an extension that considers edge-labeling
inside the covering set, see [26].

Label Respecting Gene Tree Correction (LabelGTC) Problem:
Input: A species tree S, a gene tree G, a covering set of trees CS for G and
a 0-1 edge-labeling f for G.
Output: A supertree G′ for CS of minimum reconciliation cost such that: if
(x, y) ∈ E(G) \ E(CS) and f(x, y) = 1, then there is an edge (x′, y′) in E(G′)
such that L(Gy) = L(G′y′).

Notice that if no information on “trusted” separated subtrees is available,
then each tree of CS is simply restricted to a leaf of G, in which case CS refers
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to the leafset of G.
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Figure 8: Left. A species tree S for Σ = {a, b, c, d, e}, a reconciled 0-1 edge-
labeled gene tree G for Γ = {a1, b1, c1, c2, d1, d2, d3, e1, e2, e3} where each leaf
xi denotes a gene belonging to genome x, and a covering set CS of subtrees for
G indicated by blue circles around each subtree. Rectangular nodes represent
duplications, black dots are speciations and dotted lines are losses. Right.
A supertree for CS of minimum reconciliation cost (cost of 3) respecting the
edge-labeling of G

In the following, we reformulate the polytomy related (Section 5) and
supertree related (Section 6.2) correction problems according to a 0-1 edge-
labeled gene tree (see Figure 9 for an illustration of the problems). We then
show that they are special cases of the general LabelGTC problem.

The general version of the polytomy resolution problem consists in con-
tracting all weakly supported internal branches of the input gene tree G, lead-
ing to a non-binary tree denoted by Gnb, and then finding a binary refinement
of Gnb minimizing the reconciliation cost.

Mutiple Polytomy Resolution (M-PolyRes) Problem:
Input: A species tree S and a 0-1 edge-labeled gene tree G and the tree Gnb

obtained from G by contracting edges labeled 0;
Output: A binary refinement of Gnb minimizing the reconciliation cost.

The simplest form of the problem is a single polytomy. It consists in having
a single non-binary node at the root of Gnb, such that the subtrees rooted at
the children of r(Gnb) are “trusted” partial trees that should remain subtrees
of the final tree (see the tree obtained from PolyRes in Figure 9).

Polytomy Resolution (PolyRes) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CS for G.
Output: A supertree G′ for CS of minimum reconciliation cost such that for
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Figure 9: A species tree S for Σ = {a, b, c, d, e} and a gene tree G for Γ =
{a1, b1, c1, c2, d1, d2, d3, e1, e2, e3} with a covering set CS of subtrees for G as
in Figure 8 (without the 0-1 labeling of edges). Bottom left. A polytomy
resolution for CS of minimum reconciliation cost (cost of 3). Bottom right.
A supertree for CS of minimum reconciliation cost (cost of 2). Top right.
A triplet respecting supertree for CS of minimum reconciliation cost (cost of
5). Note that the solutions for the TRS, SGT and PolyRes problems may
differ from the optimal supertree for the LabelGTC problem, because of the
0-1 edge-labeling. In this particular case, the optimal supertree for the SGT
problem is identical to the one returned for LabelGTC in Figure 8.

any tree Gi ∈ CS, G′|L(Gi)
= Gi.

Now recall the MinSGT correction problem introduced in Section 6.2, but
in the simplest case of separated gene trees.

SuperGenetree (SGT) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CS for G.
Output: A supertree G′ for CS of minimum reconciliation cost.

To avoid having a supertree grouping genes that are far apart in the original
tree, we also introduced, in [47], an alternative version of the problem restrict-
ing the output space to supertrees preserving the topology of any triplet of
genes taken from three different input subtrees of CS. The triplet-based con-
strained supertree problem follows.

Triplet-Respecting SuperGeneTree (TRS) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CS for G.
Output: A supertree G′ for CS of minimum reconciliation cost respecting
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the following property: for any triplet (a, b, c) where a, b and c are genes of Γ
being leaves of three different trees of CS, G′|{a,b,c} = G|{a,b,c}.

For example, the tree which is a solution of the SGT Problem in Figure 9
is not a solution of the TRS problem as the triplet (a1, c1, c2), where each gene
belongs to a separate subtree of CS, has the topology (a1, (c1, c2)) in the SGT
solution while it has the topology ((a1, c1), c2) in G.
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Figure 10: (1) A gene tree G with a covering set CS composed of 7 subtrees
indicated as triangles. The set E(G)\E(CS) contains 7 terminal edges (dotted
lines) and 5 non-terminal edges (solid lines). (2), (3) and (4) are three 0-1 edge-
labeling corresponding respectively to the PolyRes, SGT and TRS problems.
(5) is a general input of the LabelGTC problem.

A unifying view: The following Theorem shows that the polytomy related
and supertree related problems are in fact special cases of the general Label-
GTC problem. Given a covering set of subtrees CS for G, we say that an edge
(x, y) of E(G) \ E(CS) is a terminal edge if y is the root of a tree in CS. All
other edges of E(G) \ E(CS) are called non-terminal edges (see Figure 10 for
an illustration).

Theorem 3 Let G be a 0-1 edge-labeled gene tree and CS be a covering set
for G. Then the LabelGTC Problem is reduced to the:
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1. M-PolyRes Problem if CS = L(G); Otherwise:

2. PolyRes Problem if all non-terminal edges are labeled 0, and all terminal
edges are labeled 1;

3. SGT Problem if all non-terminal and terminal edges are labeled 0;

4. TRS Problem if all non-terminal edges are labeled 1, and all terminal
edges are labeled 0.

Finally, we have developed an algorithm, called LabelGTC, handling the
general version of the problem, not represented by any of the special cases
reflected in Theorem 3. For any edge (x, y) in E(G) \ E(CS) labeled 1, there
should exist a node y′ in the final corrected tree G′ such that L(y′) = L(y).
So the subtree G′y′ of G′ for the subset L(Gy) can first be constructed inde-
pendently of the remaining nodes of G′, and then grafted at the appropriate
location in a way minimizing the reconciliation cost. The LabelGTC algorithm
proceeds iteratively, in a bottom-up order, on subtrees Gy with parental edge
(x, y) fitting the above criterion, and is recursively called to reconstruct G′y′ .
Each solution G′y′ is implicitly treated as a leaf in subsequent calls to avoid
modifying its content.

In [26], we showed that time complexity of the algorithm is related to time
complexity of MinSGT , which makes it exponential in the number of terminal
subtrees. Namely, the algorithm runs in time O(4k.(n+ 1)k.k), where n = |Γ|
and k = |CS|.

8 Discussion

Efficient pipelines for gene tree inference should typically include accurate
gene sequence alignment tools and use inference methods combining informa-
tion from both micro-evolutionary (sequence level) and macro-evolutionary
(genome level) information. In the recent years, new algorithms improving
accuracy of sequence alignment and gene tree inference have been described.

In particular, probabilistic gene tree construction methods relying on com-
plex evolutionary models that account for both sequence and species tree data
have been developed [2, 4, 27, 67, 68, 77, 85]. These methods unfortunately
present some drawbacks inherent to probabilistic methods, namely the huge
computational time associated with the numerical integration of the likelihood,
and the prior analyses required to satisfy the input requirements (e.g. dating
the species tree).
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In practice, alternative parsimony-based approaches, a posteriori correct-
ing gene trees inferred from sequence only data with species tree information,
are used instead. Such algorithms, although limited in some aspects when
compared to probabilistic ones, have consistently produced trees with high
accuracy, while being much faster. This time efficiency allows applying the
correction method to a wide set of data. For example, in [60], we used Pro-
fileNJ to correct the PhyML trees built on the whole Ensembl Compara gene
families (20519 families in total). According to several criteria, including likeli-
hood, reconciliation score and ancestral genome content, these corrected trees
constitute an arguably better dataset than the one stored in the Ensembl
database.

Another advantage of parsimony methods is that they can be easily ex-
tended to consider other sources of information. For example, gene order may
provide information on gene orthology and paralogy. In fact, two synteny
blocks, i.e. two chromosomal segments (in the same genome or in two differ-
ent genomes) containing genes form the same gene families, are likely to have
a common ancestor. Depending whether they diverged from a speciation or
a duplication event, gene pairs in the two synteny blocks will either be all
orthologs or all paralogs. This information has been considered for correcting
a gene tree in [42, 43].

Alternatively, functional similarity between genes is also, usually, a good
indicator for orthology [3, 30]. We are presently exploring ways to efficiently
use scores based on GeneOntology annotations to establish terminal preserved
trees in LabelGTC.

The main difficulty remains how to integrate all the developed algorithmic
tools, each handling a given type of information on genes and trees, into a
single robust framework for gene tree reconstruction. In addition, rather than
applying corrections in an incremental manner, with the risk of obtaining very
different trees depending on the order of execution, the challenge is to consider
the variety of sequence, functional, order and evolutionary information all to-
gether in a single algorithm. The LabelGTC algorithm, considering polytomy
resolution and supertree reconstruction in a unifying framework is an effort in
this direction. However, fitness to sequence information may still be lost after
correction, unless we constraint the output to be statistically equivalent to the
best maximum likelihood tree.

Therefore, approaches suitable for the resolution of Multi-Objective Op-
timization Problems (MOOP) have to be explored. In this context, we have
developed GATC [61], a genetic algorithm minimizing a measure combining
both tree likelihood (according to sequence evolution) and a reconciliation
score that accounts for HGT. An advantage of this approach is its ability
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to improve search efficiency by exploring a population of trees at each step.
Although much slower than deterministic methods for correction, GATC out-
performs all these methods in terms of accuracy.

Figure 11: (i) The same evolution with ILS represented in Figure 4; (ii) The
locus tree inferred by DLCpar [96], inducing one duplication at the root and
one loss. (iii) An alternative explanation of the gene tree with ILS, the duplica-
tion occurring lower in the species tree, and no loss. This most parsimonious
DL history with ILS is not inferred by DLCpar, however the hill climbing
heuristic described in the same paper did find it.; (iv) The gene tree/species
tree reconciliation leading to two duplications and four losses; (v) The set of
largest speciation subtrees in the gene tree; (v) The tree obtained by MinSGT
reflecting the most parsimonious history represented in (iii).

From an algorithmic point of view, a lot remains to be done. Unifying the
diversity of evolutionary models and datasets is still far from being reached
and raises the interesting problem of how we can simultaneously account, in
the same evolutionary model, for sequence evolution as well as duplications,
losses, HGTs, recombination, hybridization and ILS. Interestingly, some of the
methods developed for these events, often taken separately, might be more re-
lated than expected. For example, as we show in Figure 11, the parsimony
method described in [96] for reconciling a binary gene tree with a binary species
tree, while accounting for duplications, losses and ILS (see Section 3.3), may
be compared to the strategy using MinSGT that we explored in Section 6.2.
This latter consists in removing upper branches of the gene tree, keeping speci-
ation trees , i.e. subtrees with only speciation nodes, and then using a supertree
method to reconstruct a most parsimonious supertree containing them all. To
which extent the two methods are comparable from a theoretical point of view
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? How can the supertree method be applied to account for ILS? Can we take
advantage of the similarity between the two problems to design more efficient
algorithms than the exponential dynamic programming algorithm developed
for MinSGT? These are few questions that will be considered in future de-
velopments.

As we have no direct access to the past, it is difficult to objectively evaluate
the accuracy of gene tree reconstruction methods. The most intuitive way is to
compare inferences on simulated gene families, where the “true” evolutionary
histories according to some given model of evolution with controlled param-
eters, are known. Aside from tree topology comparison using metrics such
as the Robinson-Foulds distance [64], we can also assess how close the evolu-
tionary scenarios inferred are to the true ones. In [60], we have additionally
considered metrics based on ancestral gene content inferred from reconcilia-
tion, and ancestral gene adjacencies [9]. The latter is particularly useful as
measure for gene tree accuracy for linear genomes, given that at most two
adjacencies per gene copy should be expected.

Since good results on simulated datasets do not guarantee the same on
real ones, as they may not conform to the evolutionary model used for simula-
tions, well studied gene families for which good trees are available have been
used to construct reference datasets. In this regard, several ongoing works,
such as the SwissTree [12] project, are undertaking great efforts to provide
manually curated “gold standard” gene trees. However, the number of avail-
able “gold standard” remains extremely low (19 in SwissTree) and does not
allow extensive covering of the many and intricate pathways of gene evolution.
Therefore, developing new sophisticated frameworks, accounting for various
gene characteristics for producing good benchmarks, is still needed.
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[37] E. Jacox, C. Chauve, G. J. Szöllősi, Y. Ponty, and C. Scornavacca. ec-
cetera: comprehensive gene tree-species tree reconciliation using parsi-
mony. Bioinformatics, 32(13):2056–2058, 2016. doi: 10.1093/bioinfor-
matics/btw105.

[38] E. Jacox, M. Weller, E. Tannier, and C. Scornavacca. Resolution and
reconciliation of non-binary gene trees with transfers, duplications and
losses. Bioinformatics, 33(7):980–987, 2017.

[39] M. Kordi and M. Bansal. On the complexity of duplication-transfer-loss
reconciliation with non-binary gene trees. IEEE/ACM Transactions on
Computational Biology and Bioin- formatics, 2016.

[40] M. Kordi and M. Bansal. Exact algorithms for duplication-transfer-loss
reconciliation with non-binary gene trees. IEEE/ACM Trans Comput
Biol Bioinform., 2017.

[41] M. Lafond, K. Swenson, and N. El-Mabrouk. An optimal reconciliation
algorithm for gene trees with polytomies. In LNCS, volume 7534 of
WABI, pages 106-122, 2012.

[42] M. Lafond, M. Semeria, K. Swenson, E. Tannier, and N. El-Mabrouk.
Gene tree correction guided by orthology. BMC Bioinformatics, 14 (supp
15)(S5), 2013.

[43] M. Lafond, K. Swenson, and N. El-Mabrouk. Models and algorithms for
genome evolution, chapter Error detection and correction of gene trees.
Springer, 2013.

[44] M. Lafond, C. Chauve, R. Dondi, Manuel, and N. El-Mabrouk. Poly-
tomy refinement for the correction of dubious duplications in gene trees.
Bioinformatics, 30(17):i519-i526, 2014.

38



[45] M. Lafond, A. Ouangraoua, and N. El-Mabrouk. Reconstructing a super-
genetree minimizing reconciliation. BMC Genomics, 16:S4, 2015. Special
issue of RECOMB-CG 2015.

[46] M. Lafond, E. Noutahi, and N. El-Mabrouk. Efficient non-binary gene
tree resolution with weighted reconciliation cos. In 27th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM), 2016.

[47] M. Lafond, C. Chauve, N. El-Mabrouk, and A. Ouangraoua. Gene
tree construction and correction using supertree and reconciliation.
IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), PP(99):12 pages, 2018.

[48] H. Lai, M. Stolzer, and D. Durand. Fast heuristics for resolving
weakly supported branches using duplication, transfers, and losses. In
RECOMB-CG, page 22 pages, 2017.

[49] N. Lartillot and H. Philippe. A bayesian mixture model for across-
site heterogeneities in the amino-acid replacement process. Molecular
Biology and Evolution, 21(6):1095–1109, Jun 2004. doi: 10.1093/mol-
bev/msh112. URL http://dx.doi.org/10.1093/molbev/msh112.

[50] M. Lechner, S. Findeiß, L. Steiner, M. Manja, P. Stadler, and S. Pro-
haska. Proteinortho: Detec. of co-orthologs in large-scale anal. BMC
Bioinformatics, 12(1):1, 2011.

[51] L. Li, C. J. Stoeckert, and D. Roos. OrthoMCL: identification of ortholog
groups for eukaryotic genomes. Genome Research, 13:2178- 2189, 2003.

[52] R. Libeskind-Hadas and M. Charleston. On the computational complex-
ity of the reticulate cophylogeny reconstruction problem. J. Comput.
Biol., 16, 2009.

[53] W. P. Maddison. Gene trees in species trees. Systematic biology, 46(3):
523–536, 1997.

[54] S. Massey, A. Churbanov, S. Rastogi, and D. Liberles. Characterizing
positive and negative selection and their phylogenetic effects. Gene, 418:
22- 26, 2008.

[55] B. M. Moret, D. A. Bader, S. Wyman, T. Warnow, and M. Yan. A new
implementation and detailed study of breakpoint analysis. In Biocom-
puting 2001, pages 583–594. World Scientific, 2000.

39



[56] B. Moret and T. Warnow. Methods in Enzymology, Part B, volume 395,
chapter Molecular Evolution: Producing the Biochemical Data, pages
673-700. Elsevier edition, 2005.

[57] M. Ng and N. Wormald. Reconstruction of rooted trees from subtrees.
Discrete Appl. Math, 69:19- 31, 1996.

[58] N. Nguyen, S. Mirarab, and T. Warnow. MRL and SuperFine+MRL:
new supertree methods. Alg. Mol. Biol., 7(3), 2012.

[59] T. H. Nguyen, V. Ranwez, S. Pointet, A.-M. A. Chifolleau, J.-
P. Doyon, and V. Berry. Reconciliation and local gene tree re-
arrangement can be of mutual profit. Algorithms for Molecu-
lar Biology, 8(1):12, 2013. doi: 10.1186/1748-7188-8-12. URL
http://dx.doi.org/10.1186/1748-7188-8-12.

[60] E. Noutahi, M. Semeria, M. Lafond, J. Seguin, L. Gueguen, N. El-
Mabrouk, and E. Tannier. Efficient gene tree correction guided by
genome evolution. Plos.One, 11(8), 2016.

[61] E. Noutahi and N. El-Mabrouk. Gatc: a genetic algorithm for gene
tree construction under the duplication-transfer-loss model of evolution.
BMC Genomics, 19(2):102, 2018.

[62] Y. Ovadia, D. Fielder, C. Conow, and R. Libeskind-Hadas. The cophy-
logeny reconstruction problem is NP-complete. J. Comput. Biol., 18(1):
59-65, 2011. doi: 10.1089/cmb.2009.0240.

[63] R. D. Page and J. A. Cotton. Genetree: a tool for exploring gene family
evolution. In Comparative genomics, pages 525–536. Springer, 2000.

[64] N. Pattengale, E. Gottlieb, and B. Moret. Efficiently computing the
robinson-foulds metric. J. Comput. Biol., 14(6):724-735, 2007.

[65] V. Ranwez, V. Berry, A. Criscuolo, P. Fabre, S. Guillemot, C. Scor-
navacca, and E. Douzery. PhySIC: a veto supertree method with desir-
able properties. Syst. Biol., 56(5):798- 817, 2007.

[66] V. Ranwez, A. Criscuolo, and E. Douzery. SuperTriplets: a triplet-based
supertree approach to phylogenomics. Bioinformatics, 26(12):i115- i123,
2010.

40



[67] M. D. Rasmussen and M. Kellis. Unified modeling of gene duplication,
loss, and coalescence using a locus tree. Genome research, 22(4):755–765,
2012.

[68] M. Rasmussen and M. Kellis. A bayesian approach for fast and accurate
gene tree reconstruction. Molecular Biology and Evolution, 28(1):273-
290.

[69] M. Rasmussen and M. Kellis. Unified modeling of a gene duplication,
loss and coalescence using a locus tree. Genome Research, 22:755-765,
2012.

[70] N. Rodr̀ıguez-Ezpeleta, H. Brinkmann, B. Roure, N. Lartillot,
B. F. Lang, and H. Philippe. Detecting and overcoming sys-
tematic errors in genome-scale phylogenies. Systematic Biology,
56(3):389–399, 2007. doi: 10.1080/10635150701397643. URL
http://dx.doi.org/10.1080/10635150701397643.

[71] J. Rogers, A. Fishberg, N. Youngs, and Y.-C. Wu. Reconciliation fea-
sibility in the presence of gene duplication, loss, and coalescence with
multiple individuals per species. BMC bioinformatics, 18(1):292, 2017.

[72] F. Ronquist and J. Huelsenbeck. MrBayes3: Bayesian phylogenetic in-
ference under mixed models. Bioinformatics, 19:1572- 1574, 2003.

[73] U. Roshan, B. Moret, T. Warnow, and T. Williams. Phylogenetic Su-
pertrees: Combining information to reveal the Tree of Life, chapter Per-
formance of supertree methods on various dataset decompositions, pages
301–328. Springer, 2004.

[74] C. Scornavacca, L. van Iersel, S. Kelk, and D. Bryant. The agreement
problem for unrooted phylogenetic trees is FPT. J. Graph Algorithms
Appl., 18(3):385 - 392, 2014.

[75] C. Scornavacca, E. Jacox, and G. Szollosi. Joint amalgamation of most
parsimonious reconciled gene trees. Bioinformatics, 31(6):841-848, 2015.

[76] C. Semple. Reconstructing minimal rooted trees. Discrete Appl. Math.,
127(3), 2003.
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