
Seed-Based Exclusion Method
for Non-Coding RNA Gene Search

Jean-Eudes Duchesne1, Mathieu Giraud2, and Nadia El-Mabrouk1

1 DIRO – Université de Montréal – H3C 3J7 – Canada
{duchesnj,mabrouk}@iro.umontreal.ca

2 Bioinfo/Sequoia – LIFL/CNRS, Université de Lille 1 – France
giraud@lifl.fr

Abstract. Given an RNA family characterized by conserved sequences
and folding constraints, the problem is to search for all the instances of
the RNA family in a genomic database. As seed-based heuristics have
been proved very efficient to accelerate the classical homology based
search methods such as BLAST, we use a similar idea for RNA structures.
We present an exclusion method for RNA search allowing for possible
nucleotide insertion, deletion and substitution. It is based on a partition
of the RNA stem-loops into consecutive seeds and a preprocessing of the
target database. This algorithm can be used to improve time efficiency of
current methods, and is guaranteed to find all occurrences that contain
at least one exact seed.

1 Introduction

The last 20 years have seen an explosion in the quantity of data available for
genomic analysis. Much work has been devoted to speeding up data mining of
proteins or gene coding DNA, but these sequences account for only a fraction of
the genome. In addition, many non-coding RNA genes (ncRNAs) are known to
play key roles in cellular expression, yet few efforts have been made to facilitate
their search in large scale databases. Classical homology based search methods
like Blast [1] often fail when searching for non-coding genes since the input
is stripped from structural information down to its bare sequence. Searching
algorithms that permits inputs with structural information should yield better
results.

Historically, the first computer scientists to interest themselves with ncRNAs
have created tailor made algorithms for specific RNA families such as tRNAs
[6, 4, 9]. Other more general search tools where created to give control of the
biological context to the user [3, 12, 7]. Still these tools lacked the capacity to
efficiently parse large genomic databases. Klein and Eddy provided a database
specialized search tool [8] for ncRNA including structural information, but is
self admittedly slow for large scale databases. More recently, Zhang and Bafna
presented a method to efficiently filter databases with a set of strings matching
a profile to specific parameters [2]. Their experimentation gave rise to special-
ized filters for specific RNA families. As such this strategy would require prior

knowledge on the RNA families of interest when generating database, this can
become restrictive in some experimental contexts which would benefit from an
all-purpose filtering method for ncRNA. Although this can be offset by combin-
ing filters with different parameters in an attempt to maximize efficiency and
accuracy.

In addition to the capacity of parsing large genomic databases, as sequence
and structure constraints are established from a restricted set of an RNA family
representatives, any search method should account for a certain flexibility and
deviation from the original consensus, allowing for possible mismatches and in-
sertion/deletion (indel) of nucleotides. In particular RNAMotif [12] (one of the
most popular and time efficient tool for RNA search), does not explicitly allow
for base pair indels. In [5], we have considered a more general representation of
folding constraints and developed an approximate matching algorithm allowing
for for both mismatches and indels of base pairs. The major drawback of the
method was its time inefficiency.

In this paper, we develop a seed-based exclusion method allowing for mis-
matches and indels, able to speed up existing RNA search methods. Similar
heuristics have been proved very efficient to accelerate the classical homology
based methods. In particular, PatternHunter [11, 10] based on multiple spaced
seeds has become one of the most popular method for sequence search at a ge-
nomic scale. Recently, Zhang et al.[16] proposed a formalization of the filtering
problem and a demonstration that the combination of several filters can im-
prove the search of ncRNAs. Here, we develop a new seed-based heuristic for
RNA search, using seeds with distance and folding constraints. It is based on a
partition of the RNA stem-loops into consecutive seeds and a preprocessing of
the target database storing the occurrences of all possible seeds in a hash table.
The search phase then reports, in constant time, the position lists of all seeds
of the query stem-loops, and uses extension rules to account for possible errors.
The heuristic is guaranteed to find all occurrences containing at least one exact
seed.

The rest of the paper is organized as follows. Section 2 presents the basic
concepts and definitions, and introduces the general idea of the Sagot-Viari al-
gorithm [15] that will be used in our algorithm’s search phase. Section 3 describes
our new exclusion method. In Section 4, we study the choice of seeds and anchor
elements. Finally, we present our experimental results in Section 5, and show how
our method can be used in conjunction with RNAMotif to improve its running
time.

2 Preliminary Definitions

2.1 RNA Structures

An RNA primary structure is a strand of consecutive nucleotides linked by phos-
phodiester bonds: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T).
When transcribed from DNA to RNA, thymine is substituted into uracil (U). As

such, U and T are considered synonymous for most purposes. We denote ΣDNA

the alphabet of nucleotides {A, C,G, T}.
Considering that an individual nucleotide’s main biological property is to

form a structural bond with other nucleotides, primary structure alone ill-defines
ncRNAs. An RNA secondary structure is represented by a series of base pair-
ings, the most frequent ones being the canonical Watson-Crick A-T and C-G.
The secondary structure is organized in a set of nested stems and loops, where
a stem is a sequence of paired and unpaired nucleotides, and a loop is a se-
quence of unpaired nucleotides. A stem followed by a loop is called a stem-loop
(Figure 1.(a)).

Fig. 1. (a) A stem-loop with canonical base pairings represented as dots; (b) A stem-
loop descriptor. (a) is an occurrence of (b).

It is well documented that the functional properties of an RNA molecule is
dependent on its final structure obtained by additional foldings over its secondary
structure. Our work relies on the hypothesis that there is enough signal in the
primary and secondary structure to find the overall molecule with this simplified
view.

2.2 Descriptors

Descriptors are user-defined sets of conserved elements of a specific molecule’s
primary and secondary structure. They are often obtained from multiple align-
ments of different instances of the same molecule’s sequence from various species,
but how a good descriptor is obtained is beyond the scope of this current work.

In [5], we have introduced a rigorous and very flexible representation of fold-
ing constraints in term of “secondary expressions”. In this paper, we focus on a
more restrictive descriptor form, though allowing to represent most of the RNA
families found in the literature. The considered constraints are:

1. Positions characterized by a possible subset of nucleotides and represented
by a degenerate alphabet, the IUPAC code, over all possible substitutions
(Table 1). For example, N allows for any nucleotide at the observed position.

2. Correlated constraints due to canonical base pairings. For example, in Fig-
ure 1.(b), the left-most pairing (R, Y) means that the upper nucleotide can
be either A or G, but if it is A (respec. G) then the opposite nucleotide
should be T (respec. C).

3. Bounded range of possible lengths for unpaired parts of the structure.

A : A K : G | T B : C | G | T
C : C M : A | C D : A | G | T
G : G R : A | G (purine) V : A | C | G
T : T S : C | G H : A | C | T

W : A | T
Y : C | T (pyrimidine) N : A | C | G | T

Table 1. The standard IUPAC code defines symbols for sets of nucleotides.

2.3 The Sagot-Viari Notations

The Sagot-Viari algorithm [15] is designed to search for all stem-loops in a ge-
nomic sequence, allowing for possible mispairings. More precisely, given four
parameters s, e, dmin and dmax, the algorithm finds all possible stem-loops in
the genome G characterized by a maximum stem length s, a loop of size d with
dmin ≤ d ≤ dmax, and a maximum number of e mispairings and nucleotide
insertion and deletion (indels).

The interesting design feature of their method was to keep separate the two
complementary parts of the stems until the final reconstruction step. Another
way to look at their method is to consider that they filter a complete genome for
sequences that can potentially form a stem-loop structure but differ the actual
verification until the sequences have been extended to the full length of the
pattern.

We first introduce some basic notations. Given a sequence u = u1u2 . . . un,
we denote by ui,j the subsequence ui,j = uiui+1 . . . uj . The sequence u is the
complementary inverse of u. For example, if u = AATGC, then u = GCATT.
Given a sequence u of size k on ΣDNA, we denote by Oc(u) the list of positions
of all occurrences of u in the genomic sequence G, eventually within a threshold
of error e. The occurrences list of a stem-loop described by u is:

S(u,u) = {(p, q) | p ∈ Oc(u), q ∈ Oc(u), good(p, q)}
The predicate good(p, q) checks the distance (dmin ≤ q − p ≤ dmax) and the

error constraints.
The algorithm proceeds by successive extensions and filtering steps, starting

from sets Oc(α) for each α ∈ ΣDNA. Each set Oc(ui,j) could be constructed by
extending Oc(ui+1,j) and Oc(ui,j−1). However, a majority of the positions in
Oc(u) can be eliminated before the final filtering. In fact, the algorithm never
computes any Oc list beyond the initial step. It considers only possible occur-
rences (of the stem-loop) position lists:

POc(ui,j) = {p ∈ Oc(ui,j) | ∃q ∈ Oc(ui,j), good(p, q)}
The lists POc(ui+1,j) and POc(ui,j−1) are extended and merged into one list

POc′(ui,j). Filtering that list for the distance and error constraints give rise to

the list POc(ui,j). At the end, the solution set S(u,u) is obtained by a (quadratic)
filtering between POc(u) and POc(u).

The POc and POc′ lists are represented through stacks, and all the extension
and filtering operations are done in linear time relative to the size of the stacks.

3 An Exclusion Method for RNA Search

Given an RNA descriptor D and a genomic sequence (or database) G, the goal is
to find the position list SD of the occurrences of D in G, possibly with an error
threshold e. We propose to search the descriptor D starting with a set of n anchor
sequences extracted from the descriptor’s stem-loops. A heuristic based on an
exclusion method is developed for an efficient search of anchor sequences: each
anchor is partitioned into consecutive (and overlapping) seeds of a given size,
and a preliminary step consists in building a seed database over the genomic
sequence G. In section 4, we discuss the choice of appropriate “constraining”
anchors allowing a good speed-up with a convenient sensibility.

A high level sketch of the exclusion method is given below and is schematized
in Figure 2. Details are in the following subsections.

1. Preprocessing phase: Build a seed database over the genomic sequence
G.

2. Partition phase: Choose a set of anchor sequences from D (with their
relative distance constraints) and a set of seed-shapes, and partition the
anchor sequences into consecutive seeds.

3. Anchor search phase: Query the database for the seeds, giving lists of
occurrences Oc. Then extend occurrences and filter them while checking
length, error and folding constraints.

4. Check phase: Check whether each RNA candidate verifies the descriptor
constraints that were not used as anchors in the search phase.

3.1 The Preprocessing Phase

The genomic database G is first processed to output all elementary motifs of
a given size. The preprocessing phase is designed to allow for a constant time
access to the position list of all occurrences of elementary motifs, represented by
seeds. Rigorous definitions follow.

A seed of size k or k-seed is a sequence of size k on the alphabet ΣDNA. To
allow the possibility of spaced seeds, we define two types of characters: # and
-, where - denotes the don’t care character. A k-seed-shape is a sequence of k
elements from the alphabet {#, -}.

Given a set of seed-shapes, the preprocessing phase builds a hash table con-
taining an entry for each set of sequences with the same # positions. For example,
for seed-shape ##-#, AGAC et AGTC are stored at the same position. We dis-
cuss the choice of appropriate seed-shapes and lengths in Section 4.

Fig. 2. (a) A specific descriptor sequence with the set of anchors A =
{ARTGCY T, ARGCAY T} of common length m = 7. The distance constraints are
d1,2

min = d1,2
max = 6. Anchors are partitioned into consecutive 3-patterns. The elements

in bold represent a single pair of seeds (seed shape ###); (b) The initial step of the
search phase is to query the database for all positions of the selected seeds. In the
figure, boxes are labeled by their implicit sequences. Their actual data is the lists of
positions of these sequences, as illustrated by the rightmost box; (c) Next, the algo-
rithm iterates over a series of extensions and merges to filter the seeds that cannot
possibly extend into the desired motif. Each level represents a single iteration. A single
box receives incoming extensions from two sources, hence the need for merging sets of
positions into a single set. One of these extension is shown in greater detail; (d) After
the final iteration, the algorithm returns a list of candidate positions for the full anchor
sequences. Each position needs to be validated to confirm the presence or absence of
the desired motif at the given position in the genome.

3.2 The Partition Phase

The RNA descriptor is first parsed to extract a given number of anchors that are
ordered in a priority search list (see section 4). More precisely an anchor A is a
set of sequences {A1, · · · ,Al} on the IUPAC alphabet, with a set of distance con-
straints {(di,j

min, di,j
max)}. Anchor sequences can be related with complementary

relations, but that is not mandatory.
A sequence of size k over the IUPAC alphabet is called a k-pattern. For

a given length k, each anchor sequence Ai is partitioned into its consecutive k-
patternsAi

1,k,Ai
2,k+1, · · · Ai

m−k+1,m. For a given k-seed-shape sh, we then report
the set of seeds corresponding to each k-pattern. A formal definition follows.

Definition 1. Let u = u1 · · ·uk be a k-pattern and sh = sh1 · · · shk be a k-seed-
shape. We say that a seed s = s1 · · · sk is a representative of u with respect to
sh iff, for any i such that shi = #, si ∈ ui.

Given a k-seed-shape sh and a k-pattern u, we denote by L(u) the list
of seed representative of u with respect to sh. For example, if u = ARY C

and sh=##-# we have L(u) = {AAAC, AACC, AAGC, AATC,AGAC, AGCC,
AGGC, AGTC}. We also denote by L(Ai) the list of representative of all k-
patterns of Ai. The partition phase reports the lists L(u) of each k-pattern of
each anchor sequence Ai.

A final definition is required for the following section. Given a genomic
database G and a k-pattern u, the list of all occurrence positions of L(u) in
G is denoted by Oc(u). For example, if G = TAGACTAAAC and u is the
k-pattern introduced above, then Oc(u) = {2, 7}.

3.3 The Anchor Search Phase

For clarity of presentation, we describe the search phase for an anchor with two
anchor sequences of the same length, and a unique seed-shape of size k. Gen-
eralization to anchors of different lengths only requires a final step to extend
the longest anchor sequence. Generalization to anchors with more than two se-
quences requires to consider one POc and POc′ list per sequence. Anchors with
a single sequence are usually inefficient to consider during the search phase of
an RNA descriptor. Generalization to multiple seed-shapes is straightforward.

Let A = {X, Y } be the considered anchor, with the distance constraint
(dmin, dmax), and m be the common length of X and Y . Let k be the size of the
considered seed-shape, and the consecutive k-patterns of each anchor sequence
be X1,k · · ·Xm−k+1,m (respec. Y1,k · · ·Ym−k+1,m).

The initialization step consists in computing m− k + 1 pairs of lists
(Oc(Xi,i+k−1),Oc(Yi,i+k−1)) with respect to the genomic sequence G. Following
the partition phase, each seed is an entry in the hash table and accessed in
constant time. Following the Sagot-Viari methodology (Section 2.3), the two
lists are then traversed and filtered with respect to the distance constraints
(dmin, dmax). The list’s elements are of the form (pos, num errors), where pos
represents a position in the genome and num errors is the minimum number of
errors between the G subsequence at position p and the considered k-pattern
with respect to the seed-shape (errors are computed on the # positions of the
seed-shape).

The following m − k steps extend the consecutive k-seed surviving lists to
k + 1-seeds, then k + 2-seeds, until the m-seeds surviving lists representing the
complete anchor. As allowed seed lengths vary from k to m, we will number the
following steps from k to m.

Step p, for k ≤ p < m:
For each i, 1 ≤ i < m− p + 1 do:

1. Extend left POc(Xi+1,i+p) to POc(Xi,i+p) and respectively POc(Yi+1,i+p)
to POc(Yi,i+p) iff 1 ≤ i. To do so we use the Sagot-Viari rules of model
construction (extension by the character Xi or Yi) with the exception that
elements of both POc(Xi,i+p) and POc(Yi,i+p)) need to satisfy one condition
out of the match, mismatch, insertion and deletion. This is because we allow
for errors in both X and Y with respect to the descriptor while the original
Sagot-Viari algorithm did not have that restriction.

2. Extend right POc(Xi,i+p−1) to POc(Xi,i+p) and respectively POc(Yi,i+p−1)
to POc(Yi,i+p) iff i + p ≤ m. This extension mirrors the previous step but
uses equivalent symmetric extensions to add characters Xi+p and Yi+p re-
spectively.

3. Merge the two resulting lists into a new pair of lists POc′(Xi,i+p) and
POc′(Yi,i+p). If the resulting lists contain consecutive elements representing
the same position but with different numbers of errors, we keep a single copy
with the minimum number of errors.

4. Filter POc′(Xi,i+p) and POc′(Yi,i+p) with respect to the distance, fold-
ing and error bound constraints. The resulting lists are POc(Xi,i+p) and
POc(Yi,i+p).

In contrast with the original Sagot-Viari algorithm, errors should be allowed
for both anchor sequences. The filtering step should then account, not only for
the distance constraint, but also for the combined error constraints. Moreover
if X and Y are two strands of a given stem, then folding constraints must be
checked.

At the end of the search phase, the two remaining lists POc(X) = POc(X1,m)
and POc(Y) = POc(Y1,m) contain all possible occurrences of both anchor se-
quences. The last step is then to return all occurrence pairs SX,Y respecting the
distance, error and folding constraints.

3.4 The Check Phase

The rest of the descriptor D should finally be validated against the positions of
the anchor A. For this purpose any existing RNA search method can be used,
such as BioSmatch [5] or RNAMotif if indels are not allowed.

4 Choosing the Anchor Sequences and Seed Shapes

The first idea is to choose the most constraining anchor sequences (those that are
likely to give rise to the minimum number of occurrences in the database), that
is those with the lowest p-value. Statistical work on structured motifs of form
X x(`, `+δ)Y , where X and Y are correlated by secondary structure constraints,
have been done in [14]. The difficulty arise from the overlapping structure of the
patterns. The p-value can be computed by brute enumeration or by sampling.

However, the most constraining anchors are not necessarily the easiest to
parse. Indeed, degenerated symbols (representing sets with more than one nu-
cleotide) can give rise to a large list of seed representative in the partition phase
(see section 3.2). More precisely, anchor sequences of the same size and with the
same occurrence probability may give rise to different lists of seeds representa-
tives depending on the distribution of their degenerated positions. For example,
in Table 2, though both anchor sequences ARTGCYT and ACTNCAT have
the same occurrence probability of 1/46 under the Bernoulli model, the second
sequence gives rise to a larger list of seed representative leading to a much larger

list of occurrences in the database. As the first extension phase of our algorithm
is the most time-consuming phase, a good estimation of the total time comes
from the number of seed representative.

Anchor A Number of seeds in seed occurrences seeds remaining
L(A) in the database after extensions

step 3 step 4 step 5 step 6

ACTGCAT 5 856408 17846 871 42 4

ARTGCYT 8 1427873 35303 2380 206 10

ACTNCAT 14 2130755 60553 3599 167 6

Table 2. Size of the lists involved in each stage of the extension phases, for an exact
search with the seed-shape ### on a 10M test database (from E. coli. and B. subtilis).

This is further illustrated in Figure 3 where all possible anchors represented
by pairs of 5-patterns from the 5S RNA helix III (see Figure 3) are searched in
a database of bacterial genomes. Not surprisingly, the anchors with the fewest
seeds are significantly faster. Therefore, among the most constraining anchor
sequences (those with the lowest p-value), we choose those that give rise to the
shortest list of seed representative L(A).

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

T
im

e
(s

/M
B

)

Number of seeds

Fig. 3. Relation between the speed of the exclusion method and the number of seed
representative of the anchor. We tested each possible anchor represented by pairs of
5-patterns from the 5S RNA helix III, with the seed-shape ####. The horizontal axis
gives the number of seeds corresponding to each anchor pair, and the vertical axis the
time taken for the search on a 130 MB bacterial database.

Finally, Table 3 shows the sensibility and the speed obtained with different
seed-shapes. It appears that longer shapes lead to a smaller execution time,
but at the cost of a lower sensibility: some sequences are missed. Here the best
compromise is to use the spaced seed-shape ##-# : the parsing time is more than
40% smaller than the time needed by RNAMotif and the sensibility remains at
99%.

RNAMotif Exclusion
v. 3.0.4 ### ##-# #### ##-##

sensibility 100% 97% 99% 68% 67%

preprocessing time (ms) – 684 927 1068 1262
parsing time (ms) 2709 4144 (153%) 1512 (56 %) 352 (13%) 135 (5%)

total time (ms) 2709 4828 (178%) 2439 (90 %) 1420 (51%) 1407 (45%)

Table 3. Speed and sensitivity of the Exclusion method. The descriptor is an helix
with 6-base stems and a loop x(10, 50), searched with 1 error. It occurs 2110 times in
on a 10M test database (sequences from E. coli. and B. subtilis). Sensibilities of our
method are lowered by 1% due to an additional heuristic in stack transversal during
the search phase. The time ratios are against the time for RNAMotif.

5 Testing on RNA Stem-Loops

Here, we tested our new method for both quality and speed, by comparing with
RNAMotif. Indeed though RNAMotif has the limitation of ignoring possible
nucleotide insertions and deletions, it is an exact method thus giving a good
benchmark to test our heuristic’s sensitivity. Moreover it is the fastest RNA
search method developed so far.

We considered three RNA families: 5S rRNAs and RNase P RNAs as in [5]
as well as group II introns. In each case, the most conserved region was consid-
ered, namely helix III for 5S rRNAs, P4 region for RNase P RNAs and domain
V for group II introns. The tests are performed exclusively on stem-loop signa-
tures because of technical limitations in our current implementation. This will
be extended to full structures of ncRNAs in the near future. We used a database
containing 25 randomly selected microbial genomes from GenBank representing
a total of more than 75 million base pairs. All tests were performed on an intel
Pentium 4 PC with a 2800MHz processor, 2 GB of memory and running Fe-
dora Core 2. The stem-loop signatures were chosen to represent various testing
conditions and parameters (stem and loop size).

We considered the seed-shape ####, and two anchor sequences of size 5. Since
computational time rises exponentially with the number of seed representative
generated by anchor pairs, a cutoff value was selected to avoid anchors likely
to generate large initial sets of occurrences from the database. It was set to
16 seed representative, based on experimental results (Figure 3). This cutoff

Fig. 4. The stem-loop signature used for (a) 5S rRNAs helix III, (b) group II intron
domain V and (c) RNase P RNA P4 region. The dotted lines represent the specific
anchor sequences selected for searching.

could be raised or lowered on execution to influence speed (lower cutoff) or
sensitivity (higher cutoff), but 16 has been a good compromise thus far. Both
the 5s rRNA and the Intron group II consensus had several anchor pairs of size
5 falling under that cutoff. The chosen anchors are illustrated in Figure 4. The
anchor sequences used for the Intron group II consensus are related by folding
constraints, where as those used for the 5s rRNA are only related by distance
constraints. Unfortunately, no suitable pair of anchor sequences was found for
the RNAse P. This is more likely a limitation of the current implementation
rather than the method since the whole consensus structure could have yielded
for adequate anchors which were not present in the P4 region. However, this
illustrates that certain ncRNA might not have sufficient conserved regions to
select adequate anchor sequences.

We tested the ability of our exclusion method to speed up RNAMotif, in
other words, the check phase was completed by using RNAMotif. Running times
(Table 4, third column) are clearly improved for both 5S rRNAs and group
II intron domain V. This clearly shows that the exclusion method can shave
off significant amount of computational time for ncRNA searching methods.
Finally, we used our method not as a filtering strategy but rather as a stand
alone algorithm. In other words the exclusion method was used over the full
ncRNA stem-loop signatures (Table 4, last column). As expected from the many
degenerated positions in the structure consensus, the execution times are fairly
slow for this setup. Here we can clearly see the relationship between conservation
and execution times with the most conserved consensus structure (5S rRNAs)
being significantly faster to search than the other candidates.

The database contained 71 annotated sequences of the 5S rRNA and 17
sequences of the group II intron. Of these 89 annotated ncRNA genes, only
2 weren’t found by RNAMotif, both of the 5S rRNA variety. The exact same
results were found by the exclusion method in combination with RNAMotif. In
the case of the RNase P RNA, although we couldn’t find a suitable pair of anchor
sequences, using the exclusion method as a stand alone algorithm did provide
the same predictions as RNAMotif, where 36 of 39 annotated sequences were
found. In other words, no loss in sensitivity was observed over the tested data
when compared to an exhaustive method like RNAMotif.

RNAMotif RNAMotif with Exclusion on
Exclusion method full helix

5S RNA, helix III 2.6 s/Mb 1.1 s/Mb 12.7 s/Mb

Intron group II, domain V 3.3 s/Mb 2.7 s/Mb 31.0 s/Mb

RNase P RNA P4 region 3.1 s/Mb – 59.1 s/Mb

Table 4. Computation times obtained by running our exclusion algorithm and
RNAMotif v3.0.0 on the stem-loop signature considered for each structured motif fam-
ily on a database of bacterial genomes. For each method we show the times obtained
when the full helix is searched and when only the most conserved subsets are searched.
No suitable anchor subset was available for the RNase P RNA P4 region.

6 Conclusion

We have developed an exclusion method allowing for nucleotide mismatches
and indels, that can be used in combination with other existing RNA search
methods to speed up the search. We have shown that given sub-motifs with
small degeneracy values, a hashing method built on the preprocessing of the
target database can significantly improve search times. The idea is to select in
the descriptor anchors which yield the least computation. That being the case,
it’s not given that any descriptor contains enough consecutive conservations
to permit sublinear filtering. By using distance constraints we can significantly
reduce the number of needed consecutive conserved positions by introducing
gaps between pairs of anchors.

Furthermore, we have shown that restricting these features to the helical
structures alone is not an efficient method to filter a database. This result con-
cords with previous literature on the subject of finding signals in secondary
structure alone [13]. Generalizing the problem to seeds with distance constraints
without considering the secondary structures yields the best results as it takes
into account signal in both secondary and primary sequence.

This filtering method is still in its early stage as we can explore many other
features. It is evident from our current results that there is a bias for selecting
small elements and using the largest possible seed to gain the greatest speed
increase. In [16], Zhang et al. present a more robust way to select target anchors
from a pattern by creative use of the pigeonhole principle. In this paper we
address the same sensitivity issue through the use of “don’t care” characters
which gives added flexibility in choosing the anchor sequences for seeding the
search. We have not yet determined if both approaches are compatible and can
be defined into a single model. In any case, we plan to incorporate Zhang’s filter
definition into our future work to facilitate the comparison and/or addition of
our parameters. Furthermore, we plan to generalize the method to an arbitrary
number of anchors separated by constraint distances. This could be a viable
avenue to limit the number of initial candidates to process and further lower
computational times.

References

1. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403-410, 1990.

2. V. Bafna and S. Zhang. FastR: Fast database search tool for non-coding RNA.
In Proceedings of IEEE Computational Systems Bioinformatics (CSB) Conference,
pages 52-61, 2004.

3. S. R. Eddy. RNABOB: a program to search for
RNA secondary structure motifs in sequence databases.
http://bioweb.pasteur.fr/docs/man/man/rnabob.1.html#toc1, 1992.

4. N. El-Mabrouk and F. Lisacek. Very fast identification of RNA motifs in genomic
DNA. Application to tRNA search in the yeast genome. Journal of Molecular
Biology, 264:46–55, 1996.

5. N. El-Mabrouk, M. Raffinot, J.E. Duchesne, M. Lajoie, and N. Luc. Approximate
matching of structured motifs in DNA sequences. J. Bioinformatics and Compu-
tational Biology, 3(2):317 - 342, 2005.

6. G.A. Fichant and C. Burks. Identifying potential tRNA genes in genomic DNA
sequences. Journal of Molecular Biology, 220:659- 671, 1991.

7. D. Gautheret, F. Major, and R. Cedergren. Pattern searching/alignment with RNA
primary and secondary structures. Comput. Appl. Biosci., 6(4):325–331, 1990.

8. R. Klein and S. Eddy. RSEARCH: Finding homologs of single structured RNA
sequences, 2003.

9. D. Laslett and B.Canback. ARAGORN, a program to detect tRNA genes and
tmRNA genes in nucleotide sequences. Nucleic Acids Research, 32:11–16, 2004.

10. Ming Li, Bin Ma, Derek Kisman, and John Tromp. PatternHunter II: Highly
Sensitive and Fast Homology Search. Journal of Bioinformatics and Computational
Biology, 2(3):417–439, 2004. Early version in GIW 2003.

11. Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more sensitive
homology search. Bioinformatics, 18(3):440–445, March 2002.

12. T. Macke, D. Ecker, R. Gutell, D. Gautheret, D.A. Case, and R. Sampath. RNAmo-
tif - a new RNA secondary structure definition and discovery algorithm. Nucleic
Acids Research, 29:4724-4735, 2001.

13. E. Rivas and S. R. Eddy. Secondary Structure Alone is Generally Not Statistically
Significant for the Detection of Noncoding RNAs. Bioinformatics, 16(7):583–605,
2000.

14. S. Robin, J.-J. Daudin, H. Richard, M.-F. Sagot, and S. Schbath. Occurrence
probability of structured motifs in random sequences. J. Comp. Biol;, 9:761–773,
2002.

15. M.F. Sagot and A. Viari. Flexible identification of structural objects in nu-
cleic acid sequences: palindromes, mirror repeats, pseudoknots and triple helices.
In A. Apostolico and J. Hein, editors, Lecture Notes in Computer Science, vol-
ume 1264 of Eighth Combinatorial Pattern Matching Conference, pages 224–246.
Springer, 1997.

16. S. Zhang, I. Borovok, Y. Aharonovitz, R. Sharan, and V. Bafna. A sequence-
based filtering method for ncRNA identification and its application to searching
for riboswitch elements. Bioinformatics, 22(14):e557–e565, 2006.

