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Abstract

Reconstructing the phylogeny of a gene family and reconciling the obtained gene tree with the
species tree reveals the history of duplications, losses and other events that have shaped the gene
family, with important implications towards the functional specificity of genes. However, evolu-
tionary histories inferred by reconciliation are strongly dependent upon the accuracy of the trees,
and few misplaced leaves will lead to a completely different history. Furthermore, sequence data
alone often lack the information to confidently support a gene tree topology. We outline a number
of criteria that can be used to detect erroneous gene trees. Analysing Ensembl gene trees of the fish
genomes Stickleback, Medaka, Tetraodon, and Zebrafish reveals a significant number of erroneous
gene trees. Finally, some potential directions for error correction of gene trees are explored.

1 Introduction

Duplication followed by modification is a major mechanism driving evolution. Consequently, genes
cannot be seen as independent entities, but rather as entities related through duplication and spe-
ciation events. Grouping genes into families of homologs (i.e. copies originating from a single
ancestral gene) and reconstructing the phylogeny of each gene family is requisite for a variety of
annotation, evolutionary, and functional studies. By reconciling such a gene tree with a species
tree, one can infer the history of duplications, losses and other events that have shaped the gene
family. Such a history reveals the orthology (evolution of the ancestral copy by speciation) and par-
alogy (evolution by duplication) relationship between genes, with important implications towards
the functional relationship between gene copies. However uncertainty on gene trees is a serious
limitation to reconciliation, as well as to other applications. In particular, it has been reported
that a few misplaced leaves can lead to a completely different history, possibly with significantly
more duplications and losses [33]. Thus, a great deal of effort has been put into finding accurate
gene trees.

Gene Tree Inference: Inferring phylogenies from sequence similarity is a field with a very
long history that gave rise to a variety of distance, maximum parsimony, maximum likelihood or
Bayesian methods, and a variety of software (PHYLIP [24] 25], NJ [49], PAUP [22], PhyML [31],
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MrBayes [46], RAxML [52]). However, due to various limitations such as insufficient differentiation,
alignment ambiguity, or differing rates of evolution among gene copies, sequences alone do not
always support a single gene tree topology with high confidence.

Recently, several approaches have been developed to incorporate other genomic information
in the construction of gene trees. For example, the SYNERGY algorithm [60] uses a “synteny
similarity score” accounting for the position of genes in the chromosome. Different ways of inte-
grating species tree information have also been considered. For example, the TreeBeST program
from TreeFam [39] 47] (used for constructing the Ensembl Compara gene trees) uses a likelihood
factor reflecting the number of duplications and losses inferred by reconciliation, the goal being
to minimize inconsistency with the species tree. Another example is GIGA [57], a simple and
fast algorithm using a UPGMA like distance-based approach to construct trees. In addition to
the distance criterion, it relies on rules reflecting the species tree constraints (choose topologies in
agreement with the species tree), as well as observations on lineage-specific evolution rates. This
simple algorithm performs surprisingly well, leading to the conclusion that other constraints are
strong enough to compensate for weak or misleading signals in gene sequences.

Other more sophisticated “species tree aware” methods have been developed, such as GSR [2] [I]
and Spimap [45] adopting a Bayesian approach, or PhylDog [§] using a probabilistic model for simul-
taneously coestimating gene trees and the species tree. These models tend to be computationally
intensive.

Gene Tree Correction: A complementary approach for producing “error-free” gene trees is to
develop appropriate evaluation and correction tools, based on various genomic constraints, that
can be applied subsequent to gene tree reconstruction. TreeFix [62] offers an additional framework
to unify the sequence and genomic approaches, by suggesting a step following gene tree correction
that performs statistical evaluation of a corrected tree, choosing it as a viable alternative only if
it is statistically equivalent to the original one. The strategies that have been considered for gene
tree correction are based on reconciliation, and can be grouped into three different classes:

1. Explore the space of gene trees obtained from the original one by performing some edit op-
erations such as NNI [13] 28], SPR, or TBR [10] and select the tree having the minimum
reconciliation cost. The “soft parsimony” algorithm [7] extends this approach for reconcilia-
tion with an uncertain species tree;

II. Collapse weakly supported internal branches [3], which leads to a non-binary gene tree, and
then select the resolution minimizing the reconciliation cost [9] B8] [43];

III. Identify potentially misplaced leaves and remove them from the gene tree. In [12], vertices of a
gene tree G labeled as Non-Apparent-Duplication (NAD) vertices, were flagged as potentially
resulting from the misplacement of leaves in the gene tree. A duplication vertex x of G
(according to the reconciliation with a given species tree) is a NAD if genes from the same
species do not appear as a descendant of each of z’s children. The reason for doubting NADs
is that each one of these vertices reflects a phylogenetic incongruence with the species tree
that is not due to the presence of duplicated genes in a single genome. Avoidance of NADs
is one of the principles behind the GIGA algorithm [57]. We presented algorithmic results
for removing, from a given gene tree, the minimum number of leaves or leaf-labels (species)



leading to a tree without a NAD vertex, under conditions of a known or an unknown species
tree [16, 53]. All known formulations of this version of the problem are NP-hard [14] [15].

Error Detection: Known methods for correcting gene trees all rely on errors detected through
reconciliation with the species tree. Similarly, in the field of gene tree reconstruction, most inte-
grated methods rely on the species tree information, although other criteria have been suggested
such as gene order [60] and variability of evolutionary rates [57]. In this paper, we follow up on
this effort by exploring these two directions.

In Section 3], we show how gene order may be inconsistent with a gene tree, and state two
error detection criteria based on gene order. To show the utility of these criteria, we consider the
Ensembl [2I] gene trees for four fish genomes (Stickleback, Medaka, Tetraodon, Zebrafish) with
human and mouse as outgroups. We observe that more than 31% of all trees exhibit at least
one gene order contradiction. In Section [, we show how the presence of negative and positive
selection may be misleading for gene tree reconstruction, and suggest methodology for detecting
natural selection bias in a gene tree. Using the non-synonymous (dN) versus synonymous (dS)
substitution ratio dN/dS as a criterion for detecting natural selection, a clear selective pressure is
observed on Ensembl gene trees as compared to random trees. Finally, in Section [5| we give some
avenues for developing a coherent tool for correcting gene trees, taking advantage of all available
sequence and genomic information.

2 Genomes, Trees, and Gene Family Histories

We begin by introducing the necessary notations and background concepts. Although some of our
experimental results could be explained without such formalities, we find it important to be precise.
Indeed, many of the terms introduced in Section have been used in multiple ways under diverse
circumstances, sometimes leading to confusion. Many concepts are also presented in a general way,
in the hopes of illuminating the potential for related work.

2.1 Genomes

Although our methods may be extended to arbitrary genomes, for simplicity of presentation we
only consider single chromosomal genomes, represented as strings of, possibly signed, genes. Let
A = ajag - - ay be a string representing a genome. For any ¢, j such that 1 <1i < j <n, Afi,j] =
a;ai4+1 -+ - a; is a substring of A. A string obtained from a substring of A by removing a subset of
genes (possibly empty), is called a subsequence of A. For 1 < iy < iy < ---4, < n, we denote by
Aliq, g, - - -ip| the subsequence A[i1]Alig] - - - Alip] of A.

2.2 Trees

A phylogeny is a rooted binary tree, uniquely leaf-labeled by some set. A species tree S is a
phylogeny over a set of species ¥, which represents the evolutionary relationships between these
species. Similarly, we can consider the evolutionary relationships amongst a family of homologous
genes I', that appear in the genomes of 3. A gene tree G for I' is a phylogeny accompanied
by a function s : I' — X indicating the species where each gene is found. We will make no
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Figure 1: G is the gene tree for the gene family “OLA.11555” from Ensembl (EN-
SORLG00000013558), extended with a loss leaf according to a reconciliation with species tree
S. H is the duplication-loss history corresponding to GG. Reconciliation of G with the species tree
S gives one duplication and one loss (as marked in G and H, duplication by a square, and losses
by two dotted lines).

difference between a node and its associated gene. The tree G from Figure [I| is a gene tree for
' ={Z1, M1, My, Sa} on species set ¥ = {Z, M, S}. In this case, s(My) = s(My) = M.

Given a tree T and a node x of T', we denote by T, the subtree of T" rooted at x (i.e. the tree
comprises = and all its descendants), and by £(T;) the set of leaves of T,. The species set of =,
denoted S(T7), is the subset of ¥ defined by the labels of the leaves of T, (if T" is a gene tree then
S(Ty) = {s(¢) : £ € L(Ty)}). If there is no ambiguity about the tree in question, we write S(7})
as S(x). The lowest common ancestor (LCA) of leaves x and y in a tree T', written lcar(x,y), is
the common ancestor of x and y that is farthest from the root. Finally, for any internal node = of
a rooted binary tree T', we denote by xy and x, the two children (left and right) of z in 7.

2.3 Histories

As a set of modern species evolves from a single ancestral species, some of the gene content of
those species is modified through duplication within the genome, and then loss. Traditionally,
reconciliation between gene trees and species trees has been used to reconstruct such histories.
The basis for such methodology has been a formal definition of what a reconciliation is, without a
definition of the actual history that is the ultimate objective. Indeed, for a family of genes related
through duplications and speciations, there exists some true history — the actual duplications and
speciations that occurred in the past. So as not to put the cart in front of the horse, we now define
what we mean by a duplication/loss/speciation-history (dls-history). We then define a reconciliation
in terms of dls-histories. This perspective facilitates the reasoning used in Section [3} knowing that
there is one true history of speciation/loss/duplication for a family of genes, we establish conditions
that true gene trees must possess.

A duplication of size k + 1 on genome A is an operation that copies a substrings Afi,i + k] to
a location j of A outside the interval [i,i + k| (i.e. preceding i or following i + k). A Loss of size
k is an operation that removes a substring of size k& from A. Given a set of genes I' from a set
of genomes X, a duplication/loss/speciation-history H for T' is a rooted tree “embedded” in the
species tree S of ¥, which reflects the evolution of the set from a single ancestral copy through



duplication, loss and speciation events. In other words, each internal node x of H represents the
evolution of the set £(H,) from an ancestral gene copy x4, and corresponds to either a speciation
or gene duplication event. The leaves correspond to either the genes in question, or to losses, where
each of the latter loss leaves map to a single node of S. If a loss leaf £ maps to a node = of S, we
say that S, is the label of £.

Definition 1 (dls-history) Let T be a set of genes from a set of genomes X, and let S be the
true phylogeny for . A duplication/loss/speciation-history H for I' consistent with S (or simply
a dls-history if unambiguous) is a rooted binary tree such that:

o cach leaf is uniquely labeled by an element of I, or it is a loss leaf labeled by a subtree of S;
e cach internal node s labeled as a duplication or speciation; and

e H is consistent with S: Consider the tree H obtained from H by replacing each loss leaf by
the subtree that labels it, and by replacing all other leaves by the species to which the attached
gene belongs. Then, for every internal node x of H such that |S(z)| > 2, there exists a vertex
u of S such that S(z) = S(u) and: S(z,) = S(xy) if x is a duplication, or S(x,) = S(u,) and
S(xp) = S(uy) if x is a speciation node.

The gene tree in agreement with H is the tree obtained from H by removing loss leaves and the
resulting internal nodes having one child. Consider the trees from Figure [1} The solid lines of G
denote the gene tree corresponding to the history H.

As true histories are unknown, gene trees are usually inferred from sequence data, and histories
subsequently inferred from reconciliation with the species tree (see the next section). In this paper,
we will distinguish between the true geme tree, which is the tree in agreement with the true dlis-
history of the gene family, and the geme tree, which is a tree obtained from the observed gene
sequences (e.g. a multiple alignment of the sequences, the observed gene positions, or any other
footprint of evolution observed in the extant species).

2.4 Reconciliation

Given an inferred gene tree G for a set I' of genes from genomes ¥, and given a species tree S for
3}, the problem is to recover a dls-history for I' consistent with .S, such that G is in agreement with
the history. Such a history is called a reconciliation. Informally, a reconciliation R of G and S is
a dls-history of I' obtained by inserting loss leaves in G. Let an extension of G be a tree obtained
from G by a sequence of loss insertions, where a loss insertion denotes the insertion of a new loss
leaf labeled by a subtree of S, by means of bisecting an existing edge of G with a new edge. A
rigorous definition of reconciliation follows.

Definition 2 (reconciliation) A reconciliation R of gene tree G and species tree S is an extension
of G that is a dls-history consistent with S.

The parsimony criteria used to choose among the large set of possible reconciliations are usually
the number of duplications (duplication cost), the number of losses (loss cost) or the sum of the
two (mutation cost). Many algorithms have been developed for computing the most parsimonious
reconciliation, the most efficient ones with running time proportional to the size of the gene tree [12]
23, 130}, [67].



2.5 Perspectives on homology

There have been many uses of the word homology and the related concepts, the confusion due to the
many possible measures of similarity between genes. Indeed, evolutionary, sequence, functional,
or positional constraints give rise to definitions that are unfortunately not equivalent [37]. In
this paper we adopt the original definitions recommended by Fitch [26], corresponding to the
evolutionary concepts.

Definition 3 (homology) Two genes are homologous if and only if they are the leaves of a dls-
history H. A gene family is a set of homologous genes.

Although many genes share a common origin [56], and thus share the same dls-history, the def-
inition of homology given by Fitch does not include a necessary limit on the evolutionary closeness
between two homologous genes. To our knowledge, this is an unfortunate and unstated ambiguity
that we must live with for the time being.

The remainder of the definitions describe a hierarchy of homologous genes, implied by the
dls-history H.

Definition 4 (orthology) Genes a and b are orthologous if lcap(a,b) is a speciation node.

As duplications may arise following a speciation event, the orthology relationship is not transi-
tive. This property is inherent to the evolutionary definition of orthology, which is not a definition
about the functional relationship between genes, nor the positional or direct descendant relation-
ship. In this perspective, Fitch [26] introduced the following notion of functional orthologs or
isorthologs, for a given function (in case of hemoglobin sequences for example, the function is the
ability of being the adult transporter of oxygen).

Definition 5 (isorthology) Two orthologous genes that have retained the same function F of
their LCA in H are called isorthologous for function F.

Isorthology relation is transitive. Therefore it makes sense to speak of sets of isorthologs, or
isorthogroups. Two genes are in the same isorthogroup if and only if they are isorthologous. Finally,
we introduce the notion of paralogy.

Definition 6 (paralogy) Genes a and b are paralogous if lcag(a,b) is a duplication node.

Consider the histories from Figure Any two genes denoted by the same letter are homol-
ogous. The history for homologous gene family ¢ serves as a good example. The gene from C}
is orthologous with all occurrences of ¢ in C3 and C4, while it is paralogous to the gene in Cj.
Further, the last occurrences of ¢ in Cy is paralogous to the second occurrence of the gene in Cs.

3 Gene Order Inconsistency

In this section we explore how information on gene order can be used to discover erroneous gene
trees. The general idea is the following: look at the regions (formally defined below) surrounding
the genes of interest. If they are similar (in term of gene order), assuming that this cannot happen
by chance, we can deduce that they are homologous, i.e. they descend, through a duplication or



speciation event, from a common ancestral region. Such property on homology for regions leads
to properties on underlying genes: homologous genes in the two regions are either all pairwise
orthologous or all pairwise paralogous. These properties can then be checked against gene trees,
and used as criteria for correcting them.

In Section [3.1] we formally define homology on regions. This perspective allows us to establish
in Sections [3.2] and properties that sets of true gene trees must possess when genes belong to
similar regions, given that the following hypothesis about convergent evolution is assumed:

Hypothesis NoConvergentEvol: Similar regions are homologous.

In the last fifteen years many methods have been developed for the classification of similar
syntenic regions that have undergone gene order mutation [4, [6, 5, 34]. Hoberman and Durand [35]
give a nice treatment of the competing interests surrounding a good definition of gene order sim-
ilarity. David Sankoff has been ever present in the discussion [I8, [36] 50} (63| (65, [66]. Whatever
the definition, the underlying idea is to maximize the probability that similar regions are indeed
homologous.

Our study in Section limits regions to the immediate left and right neighbors of the genes
in question; the regions of two homologous genes are similar if they are directly surrounded by
homologous genes. Under this definition, the substrings aba of region C5 and aba of region Cg from
Figure [2| are similar, as do abc of Cy and cba of Cj.

3.1 Region homology

Homology on a set of genes is a property of the true history for that set, independent of any
similarity measure amongst them. Homology of a set of regions should also be defined in a manner
that is independent of any particular similarity measure on those regions. To accomplish this we
leverage the duplication/loss/speciation histories for the genes contained in the regions of interest.
A region of a genome A is simply a subsequence of A. An ancestral region is a region occurring
in some ancestral genome, while a modern region is a region occurring in some modern genome.

Definition 7 (region homology) Let C} and Cy be two modern regions defined on a gene set T,
subdivided into the gene families {I'1,Ta,..., Iy, }. Let H = {Hy, Ho,...,Hp,} be the dls-histories
corresponding to U'ys, and let a; be the root of H;. Then C) and Cy are homologous if and only if
the a;s all belong to a region Cy = aias - - am of an ancestral genome A, and they are either all
speciation nodes or all duplication nodes. We call C'4 the LCA region for Cy and Cy.

The case where the roots of the dls-histories are speciations corresponds to the divergence
of C'4 through a speciation event, while the latter case corresponds to the divergence through a
duplication event that has duplicated the entire ancestral region C4.

Notice that the definition of region homology supports the possibility of rearrangements occur-
ring during the evolution of regions; in Figure [2a] genes a and x have been inverted in the branch
from the ancestral genome to Species 1, yet regions C1 and Cs are homologous. Local duplications
of sub-regions (in tandem or not) are also supported. In Figure for example, a duplication of
gene c occurs in the branch leading to Species 2 and 3, yet regions C; and Cs are homologous.
Insertion and deletion of genes are supported as well. For example, gene ¢ in Species 4, which is
not present in Species 5, does not prevent regions Cs and Cg from being homologous. Moreover,
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(a) evolution following a speciation event affecting an ancestral region (b) evolution following the duplica-
Ca = zabc. tion of an ancestral region Cp = ab.

Figure 2: Gene trees for two different ancestral regions. Duplications are denoted by square nodes,
speciations by circles, and losses by dashed edges. Next to each C; is a description of a substring
of a genome. Each region C; is defined as the genes labeling the leaves of a gene tree. For example
C5 = abab (does not include gene c).

the ancestral region C'4 may contain genes that have lost in the dls-histories leading to moderm
regions.

Notice however that, in contrast to the homology relationship on genes, the homology rela-
tionship on regions is not transitive. Consequently, we are unable to generalize the notion of gene
families to the notion of homologous region families.

3.2 Homology contradiction

Our definition of homologous regions, along with Hypothesis NoConvergentEvol, provides us with
a tool for testing the validity of gene trees. Remember that for a pair of homologous regions, the
roots of the genes trees that comprise the genes contained in the two regions must all be the same
type of node; they must all be speciation nodes, or they must all be duplication nodes. Thus, for
a pair of similar regions — assumed from Hypothesis NoConvergentEvol to be a pair of homologous
regions — and an inferred set of gene trees — implying a set of homology relationships between
genes of the regions — we can confirm that indeed the gene trees have such roots. If they do not,
we say that the forest of gene trees exhibits a homology contradiction.

3.3 Region overlapping

In this subsection, we define the notion of a region surrounding a gene in a strict way ensuring a
single region assignment for each gene, and a fixed length for all regions. Formally, for a given set
of parameters 0 < [y < --- < I, and 0 < 7 < --- < 1y, the region C, surrounding the gene at
position z in genome A is the subsequence Alx — 1, -,z —l1,z,x+7r1,---,x+74]. In Section
the underlying parameters are p = ¢ = 1, and [y = r; = 1. Now two regions Cy and Cy are similar
if an only if, for any i, Ci[i] and Cy[i] belong to the same gene family. This definition of similarity
ensures transitivity, which allows to define a similarity family as a family of pairwise similar regions.
In this subsection, a stronger statement on no convergent evolution is also required:



Hypothesis StrongNoConvergentEvol: Two similar regions are homologous. In addition their simi-
larity is inherited from their LCA region and preserved during the course of evolution.

Stated formally, let Cy and C, be two similar regions surrounding two homologous genes xj,
and x; belonging to a gene family I', and let G be the true gene tree for I'. Then the regions
surrounding ancestral genes corresponding to the nodes on the path between z; and x; in G are
similar to C}, and C,.

Take a gene tree G such that each gene (leaf of GG) is assigned to a region, and that regions are
grouped into similarity families £ = {Fy, F5, ..., Fp}.

Let V(G) be the set of internal nodes of G. Consider the region labeling function £g : V(G) — 2¢
(where 2¢ is the power set of £) that labels the nodes of G’ with homologous families as follows:

1. for all z € V(Q), initialize ¢ (z) to 0;

2. for each family Fj, include F; in the label of any node on a path from a pair of leaves with
label F;.

The following lemma provides a second criterion for error detection in gene trees.

Lemma 1 If G is the true gene tree for some set of genes and Hypothesis StrongNoConvergentEvol
holds, then for each node x of G, [{g(x)| < 1.

Proof: Let x be an internal node of G with surrounding region C,, and suppose ¢ (x) contains at
least two elements F;, F; of £. From the definition of /g, it follows that z is on the path between
some genes ¢; and r; with regions C’f and C], both belonging to F;. In the same manner, x is on the
path between genes /; and r; with region C’f and C}” belonging to F;. We have that x has at least
one descendant that is 4; or r;, and at least another descendant that is ¢; or 7;. Suppose without
loss of generality that ¢; and ¢; are descendants of x. By Hypothesis StrongNoConvergentEvol, C’f
and Cf are both similar to C,, and since similarity is transitive, Cf is similar to C’f. It follows that
F;, = Fj. O

A gene tree with an internal node possessing multiple labels is said to exhibit a region overlap.
Notice that for such a node, Lemma [I| holds whether it is a speciation or a duplication. Figure
shows a gene tree with multiple region overlaps, which are all duplications. Consider the overlapping
occurring at the root of GG, which we denote by r. It might be tempting to explain this scenario
by stating that since r is a duplication, one copy of the ancestral gene belonged to the ancestral
region similar to Fi, and the other to the ancestral region similar to Fb, and thus both regions
could have propagated to their respective descendants. However, r refers to a single ancestral gene,
which may have belonged to one of the two ancestral regions, but not to both, as we assume each
gene is assigned a single region.

3.4 Results

We wanted to see the impact of using homology contradiction and Lemma [1| to reveal errors in
gene trees. To this end, we considered the four fish genomes Gasterosteus aculeatus (Stickleback),
Oryzias latipes (Medaka), Tetraodon nigroviridis, and Danio rerio (Zebrafish) with human and
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Figure 3: The gene tree of the “RAB27” gene family (ENSGACGO00000003336) for the Stickleback
(S), Medaka (M) and Tetraodon (T) species, exhibiting a region overlapping. The 77,51 genes are
in similarity family Fi, while Ms, S5 are in another similarity family F5. The internal nodes are
annotated by their [ labeling; all nodes on the dotted path are labeled by Fp, and those on the
dashed path by F5.

mouse as outgroups. We used the Ensembl Genome Browser to collect all available gene trees, and
filtered each tree to preserve only genes from the taxa of interest. We then reconciled the trees
with the known species trees, and identified duplication and speciation nodes. Genes appearing in
the same gene tree in the database are considered to be part of the same homologous gene family.

In this section, a region surrounding a gene is defined as the substring containing the gene
and both its left and right adjacencies. Two regions are similar if they contain homologous genes
in the same order or inverted order. More precisely, regions Cy = z1a1y1 and Cp = x2a2y2 (or
Cy = yaagwe) are similar if 21 and z9 appear in the same Ensembl gene tree, a; and ay appear in
the same gene tree, and y; and y2 appear in the same gene tree. We avoid tandem duplications by
requiring the three trees to be different.

In Section[3.2] we defined the homology contradiction property for a forest of gene trees. Here, we
identify problematic forests of gene trees using that property. Let Cr = x1a1y1 and Cy = x2a2y2 be
two similar regions and G, G4, and Gy, be the gene trees containing the pairs of homologs (z1, z2),
(a1, a2) and (y1, y2) respectively. Then, according to our definition, the forest {G,, G4, Gy} exhibits
a homology contradiction iff the set {lcag, (71, 22), lcag, (a1, a2),lcag, (y1,y2)} contains at least one
duplication node and at least one speciation node.

In this section we will focus on the gene tree of the central gene. We say that GG, exhibits a paral-
ogy contradiction iff lcag, (a1, az) is a duplication node, and both Icag, (71, 22) and lcag, (y1,y2) are
speciation nodes. Conversely, we say that G, exhibits an orthology contradiction iff lcag, (a1, a2)
is a speciation node, and both lcag,(v1,22) and lcag,(y1,y2) are duplication nodes. Note that
this notion of contradiction is extremely conservative; if only a single neighbor disagrees with the
central gene, then we do not report it.

Results are summarized in Table [I Among the 6241 trees in Ensembl, 6118 of them have
at least one pair of genes in the same context. More than 31% of the 6241 trees exhibited at
least one contradiction, the most frequent contradiction type being paralogy contradiction. These
numbers show that a very conservative application of our methods uncovers a significant number
of inconsistencies between gene order and gene tree topology.

It is conceivable that a significant number of missing genes in the gene trees could lead to a
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Number of trees 6241
Region overlap 3.4% (210)
Paralogy contradiction | 22.5% (1407)
Orthology contradiction | 10.8% (677)
At least one contradiction | 31.3% (1959)

Table 1: Results obtained for Ensembl gene trees. Reported numbers are not mutually exclusive, in
the sense that a given tree may exhibit more than one type of contradiction, and thus be included
in more than one list. In brackets are the actual numbers of trees.

false homology contradiction. Also, poor detection of homology relationships in Ensembl could
yield false region overlaps. For example, two overlapping regions could have the form Cy = a1bicy
and Cp = x2bacy. But if 29 should in fact be in the same homologous gene family as a1, the overlap
would no longer exist. This is what happens in the example of Figure |3 The Fj region consists of
“ASHIL” “RPS27” “KCNN3” genes, while the F» region is made of “RAB13” “RPS27” “KCNN3”
genes. In fact, every single overlapping regions we found had this form. Thus region overlaps in
Ensembl gene trees might not occur because of wrong topologies, but rather because of missing
homologies. In any case, detection of overlaps can identify possible improvements on the known
relationship between some pairs of genes.

To get an idea of how the numbers can change, we reran the test suite for a more general
notion of similarity: Cj and Cy are similar if b1 and by are homologous, and if there exists a pair
of neighbors ¢ and ¢y that are homologous. Note that under this definition, there are fewer region
sets so region overlaps are harder to find. The new definition finds 71 (2.38%) gene trees with
overlaps.

Yet our region overlaps and homology contradictions tend to agree with mechanisms already in
place for error detection in Ensembl gene trees. Based on the structure of the tree, some duplication
nodes, corresponding to NAD nodes [12], are labeled as “dubious” in the Ensembl trees. As paralogy
and orthology contradictions are inferred according to duplication nodes (one duplication node
involved in a paralogy contradiction and two in an orthology contradiction), we were interested to
see to which extent our results correlated with Ensembl observations about dubious duplications.
We found that 77.4% of duplications involved in observed paralogy contradictions are labeled
as dubious, while 90.2% of duplications involved in orthology contradictions are dubious. These
number are significantly high considering that the fraction of dubious duplications among the total
number of duplications in our trees is only 36%. These observations validate the fact that gene
order inconsistencies are likely to reveal errors in gene trees.

4 Positive and Negative selection Bias

Classical phylogenetic methods, such as those using parsimony, distance or maximum likelihood
models, are typically based upon the assumption of stochastic, neutral, and site-independent pro-
cesses. However, as few mutations may cause structural modification to protein coding genes with
deleterious functional consequences, isorthologous gene copies in multiple species are commonly
subject to negative (purifying) selection pressure, leading to sequence stability inside isorthogroups.
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On the other hand, positive selection, responsible for the creation of new function, is also known to
play a major role in the evolution of gene families. Under natural (positive and negative) selection,
a gene tree best reflecting the sequence similarity of gene copies is more likely to reflect functional
constraints rather than evolutionary and ancestral relationships between gene copies. In particular,
negative selection may result in isorthologous genes being grouped into a subtree of the gene tree,
leading to erroneous ancestral inference for the isorthogroup.

This grouping driven by function has been reported for different gene families, such as GLP-
1 [5I] and opsin proteins [55]. An interesting study based on simulations is also reported in [40].
In this study, DNA sequences encoding a protein folding, with a predefined active site for the
binding of a ligand, have been generated. An A ligand initially bound stably at the beginning of
the simulation, while a B ligand did not. The proteins were evolved under constant population size
and mutation rate. In every generation the individuals were picked randomly, provided they folded
stably and binded to a peptide. Moreover, to simulate positive selection, a selective advantage of 5%
was given to individuals binding the new ligand B. Phylogenetic trees for simulated sequences were
then inferred using distance, parsimony and likelihood methods. Every generated tree exhibited a
clustering by function rather than by ancestry (two monophyletic groups, one for proteins binding
to the ligand A and the other for proteins binding to the ligand B). In the same paper, other results
obtained on multiple sequence alignments of Chordate genes also confirmed previous studies on the
loss of the evolutionary signal due to negative and positive selection [48, [58 [32].

4.1 Detecting functional bias

In the presence of negative and positive selection (i.e. confusion of the neutral phylogenetic signal),
some studies have recommended different criteria for gene (site) selection when reconstructing
phylogenies. In particular, the filtering of fast evolving genes has been suggested to reduce the
effect of positive selection [32]. On the other hand, filtering slow evolving sites has been suggested
to reduce the effect of negative selection. However, as noticed in [40], these models for data filtering
have limitations as evolution speed does not always correlate with selection type.

Instead of an a priori selection of appropriate sites, we can alternatively a posterior: detect gene
trees reflecting a bias due to negative or positive selection. Classical methods for evaluating selective
pressures acting on homologous amino acid sequences are based on computing the ratio dN/dS of
the number of non-synonymous (dN) versus synonymous (dS) nucleotide substitutions per site of a
pairwise alignment [4I]. Synonymous substitutions are those that do not result in change of amino
acid (for instance most changes at the third codon position), while non-synonymous substitutions
are those altering the amino acid (for instance changes at the second codon position). Under
negative (purifying) selection, most non-synonymous changes are eliminated, leading to an excess of
synonymous changes. On the other hand, positive selection leads to an excess of non-synonymous
substitutions. In general, negative selection is inferred if dN/dS < 1 and positive selection is
inferred if dN/dS > 1. We suggest the use of the synonymous/non-synonymous substitution
rate measure for detecting gene trees reflecting a selection bias, formalized as trees reflecting the
1solocalization property which is defined below.
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4.2 Formalizing the functional bias

Under the hypothesis that after a duplication, exactly one of the two gene copies preserve the
parental function, the isolocalization property was introduced in [54], to characterize gene trees
biased towards a grouping of isorthologous genes. Here, we define a less constraining version of this
property by asking for at least one isorthogroup to appear as a monophyletic group (an isolated
subtree). Notice that results obtained in [54] (stated below and summarized in Section |5) about
the effect on reconciliation remain valid for this new definition.

Definition 8 (isolocalization) Let G be a gene tree for a gene family T'. Let I = {ay,az,...,a,} C
I' be a mazximal isorthogroup of I, meaning that no other gene of I' is isorthologous to an a;. A
gene tree G respects the isolocalization property for I if and only if there exists an x such that
L(G;)=1.

We say that G respects the isolocalization property if G respects the isolocalization property for
at least one maximal isorthogroup of T'.

We showed in [54] that isolocalization confounds reconciliation, in the sense that some histories
(those with a duplication node descending from a speciation node) can never be recovered through
the reconciliation of a gene tree respecting the isolocalization property. Following this observation,
we proposed general ideas for inferring true histories. Although presented as tools for correcting
reconciliation, they can alternatively be seen as tools for correcting gene trees, i.e. removing the
functional contraints exhibited by isorthogroups. An overview of the related open problems is given
in Section B

In the following, an isorthologous subtree of G is a speciation subtree of G with a set of leaves
corresponding a maximal isorthogroup.

4.3 Results

By definition, a subtree G, rooted at node x of a gene tree G is an isorthologous subtree if L(G)
is a maximal isorthogroup, i.e. elements of £L(G,) are pairwise isorthologous, and there is no gene
outside £(G,) which is isorthologous to a gene of £(G,). As suggested by the discussion above,
this can be tested by comparing the dN/dS ratios of pairs (I;, ;) of genes inside £(G,), versus
pairs (I, O;), with I} being a gene inside £(G5) and O being a gene outside £(G). Here, we
consider the average dN/dS ratios over all possible pairs. Namely, we define M/ to be the average
over all (I;, I;) inside pairs and MS to be the average over all (I, O) inside-outside pairs. For an

I I
isorthologous subtree, we expect %:O” to be lower than one. For any internal node z, if ]]\\4/[110 <1

we say x is a winner; otherwise we say that x is a loser. Note that the root of a tree cannot be a
winner, since there are no genes outside of its leafset.

We wanted to see to what extent the Ensembl gene trees reflect a natural selection bias. We
considered the same six species as in Section namely four fish species (Stickleback, Medaka,
Tetraodon, Zebrafish) with human and mouse as outgroups. We collected all available gene trees,
restricted each of them to the taxa of interest, reconciled the trees with the known species trees,
and retained the “interesting” ones according to [54], namely those reflecting a history with a
“surviving” duplication followed by a “surviving” speciation event. More precisely, a gene tree
G was retained if it contained at least one duplication node z such that G,, and G,, were both
speciation subtrees, each containing at least two leaves and at least five leaves together. This
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Figure 4: Distribution of original trees scores versus random trees scores. The score of a tree is its
number of winner nodes over its number of internal nodes.

yielded 815 gene trees. We refer to this set as the original set. For each tree G in the original
set, we obtained the canonical nucleotide sequences of its genes from Ensembl, and computed
every pairwise dN/dS ratio using the PAML package [64], which implements the Nei and Gojobori
method [42]. The sequences were aligned and prepared using ClustalW2 [20] in conjunction with
the BioPerl library [19].

We expect the topology of each tree G in the original set to contain more winner nodes than
most other topologies that share the same leaf set. We tested the null hypothesis, which states
that there is no relationship between the gene trees constructed by Ensembl and the proportion of
winner nodes they contain. Thus for each tree GG, we considered a set of random trees, obtained
from G by all possible permutations on its leaves. We refer to the set of random trees for all the
Ensembl trees as the random set.

Figure [ depicts, for both the original and random tree sets, the proportion of trees by score,
defined for each tree as the number of winners over the number of internal nodes. The original
trees clearly tend to contain a higher ratio of winners than random trees. In fact, the random
trees’ percentages follow a distribution that is not far from normal, whereas the original trees favor
higher scores, hinting at the invalidity of the null hypothesis.

Our analysis also showed some interesting numbers. Among all nodes (excluding roots and
leaves), 71% of them are winners in the original set, as compared to 50% in the random set.
Moreover, 81% of the original trees have a majority of winner nodes (more than half), compared
to 49% for random trees. Say that a gene tree G is optimal if the number of winner nodes in G is
no less than the number in all random trees for G. We find that the proportion of optimal gene
trees over the original set is 45%. Moreover, if we also count as winner nodes those having a winner
ancestor (i.e. not only those pointing to isorthogroup but also to subsets of isorthogroups), then
the proportion of optimal trees raises to 64% of all original trees. Finally, 80% of the original trees
have more winner nodes than at least half of their random trees.
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More detailed statistical analysis are required to establish criteria for detecting functional bias
in a gene tree according to dN/dS ratios. However, this preliminary study already reveals a possible
negative selection bias in these Ensembl trees.

5 Gene Tree Correction

A significant obstacle to our understanding of evolution is the difficulty of inferring accurate gene
trees. It is now clear that methodology based solely on sequence similarity are unable to produce
a single well supported gene tree [44] [45] 59, [61]. Opposite to such a “sequence only” paradigm is
the “sequence free” paradigm that does not directly use the sequence information. An example is
the polynomial-time algorithm developed by Durand et al. [I7] for inferring a gene tree minimizing
the reconciliation cost with a given species tree. Such an extreme strategy is of theoretical interest
only, as an accurate reconstruction model should be “hybrid”, e.g. account for both sequence and
genomic information, the challenge being to find the right balance between the two. Later in the
same paper, a hybrid approach is in fact presented.

Each one of the genomic constraints we have introduced in this paper can be used to define, in
the space of gene trees, points that best reflect the desired properties. As exploring the space of all
topologies is time and space prohibitive, gene tree correction methods explore the neighborhood
of an input gene tree G, according to a tree-distance measure, such as the Robinson-Foulds [11]
29], Nearest Neighbor Interchange (NNI) [13| 28| 27], Subtree Prune and Regraft (SPR), or Tree
Bisection and Reconnection (TBR) [10] distances. In order to reduce the space of explored gene
trees, tree moves may be restricted to edges deemed suspect by the user, typically those with low
bootstrap values [13], [17].

As in Durand et al., almost all hybrid methods that have been developed so far are “species
tree-aware” and consist in selecting, from a given neighborhood, a tree minimizing a reconciliation
distance with a species tree. Beside reconciliation, other criteria such as the number of NAD
nodes [12} [T6, 53] may be considered for a “species tree-aware” hybrid method. On the other hand,
a “gene order aware” method would select, in a given neighborhood of G, the trees avoiding or
minimizing gene order inconsistencies (Section . A “negative selection aware” method would
select appropriate alternative trees, as we explain in Section [5]

A wide range of theoretical and analytical open problems are implicit in the last paragraph.
In addition to developing the right data structures and algorithms for efficient exploration of the
neighborhood of a gene tree, the challenge is to explore ways of combining multiple criteria in a
unified framework. Do repairs to a gene tree suggested by the diversity of constraints coincide, or
do they conflict? If they conflict, how should relative importance be distributed over the various
constraints?

Another concern is the development of a unified approach that accounts for both sequence and
genomic constraints simultaneously. Indeed, a significant drawback of the hybrid methods devel-
oped so far is the sequential manner in which the sequence and genomic information are considered;
the corrected gene tree is not subsequently evaluated according to the sequence information, and
thus may over fit the species tree. From this perspective, an interesting framework is the one
used in TreeFix [62], as well as PhylDog [§] and Spimap [45]. Taking advantage of the fact that
phylogenetic methods usually lead to a set of statistically equivalent gene trees, TreeFix is based
on a heuristic that searches, among all topologies that are statistically equivalent to the input tree,
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one that minimizes a user-defined reconciliation cost. The implicit hypothesis used in TreeFix is
that regions of tree space with high sequence likelihood and low reconciliation cost overlap, which
they show to be true in practice. Such a general framework can easily be adapted to account for
various types of constraints. However, the more constraints simultaneously considered, the more
challenging the problem of attributing relative weights to each of them and managing conflicting
requirements become (see also chapter Chauve et al. in this volume).

We conclude this section by highlighting important results obtained in [54] that show how the
selection bias, formalized as the isolocalization property, can be used for gene tree correction.

Isorthology respecting histories

As recalled in Section we showed that gene trees respecting the isolocalization property can
lead to erroneous histories through reconciliation. This observation is not surprising as a gene tree
reflecting functional constraints rather than evolutionary constraints can hardly be confidently used
to infer evolutionary scenarios. Yet there must be some information in the gene tree and species tree
relationship. For instance, we expect subtrees corresponding to isorthogroups in a well-supported
gene tree to agree with the species tree. Define a speciation subtree of G to be a subtree such that
all internal nodes (if any) are labeled as speciations by the reconciliation. The following result
comes from Corollary 3 of [54], and is adapted to our new definition of the isolocalization property.

Theorem 1 Let G be a gene tree satisfying the isolocalization property for an isorthogroup I and
reflecting the true phylogeny for I (see a precise definition in [54]). Then I appears in G as the
leaf-set of a speciation subtree.

Based on Theorem [1, the following definition can be used for gene tree correction.

Definition 9 (isorthology respecting history (IRH)) Given a gene tree G and a species tree
S, a dls-history H is an isorthology respecting history for (G, S) if and only if each isorthogroup
inferred from H is the leaf-set of a speciation subtree of G.

Following a duplication, we assume that one of the two gene copies preserves the ancestral
function (Hypothesis 1 in [54]). Suppose that gene related by speciation preserve the ancestral
function. Then two isorthogroups {M1,S1,T1, Z1} and {M2, 52} are inferred from the history H
in Figure 5, and H is an isorthology respecting history for (G, S). Notice that H leads to the gene
tree G’, which can be seen as a correction of G.

As many IRHs are possible for a given pair (G, S), an appropriate criterion for choosing most
likely histories is required. For example the history R resulting from the reconciliation of G with
S in Figure || is also an isorthology respecting history for (G, S). However, while R has a mutation
cost of 3 (one duplication and two losses), the history H has a mutation cost of one (no loss).
In [54] we considered the Minimum Isorthology Respecting History Reconstruction (MIRH) Problem,
which asks for the IRH of minimum cost, and developed a linear-time algorithm for the duplication
cost. An algorithm for the mutation cost remains open.

The MIRH optimization problem as stated, is very conservative, in the sense that nothing
is trusted in the gene tree except the isorthology information. In particular, it ignores all the
information on duplication and speciation nodes of GG that are above the considered speciation
subtrees. An alternative would be to account for the hierarchy of deeper nodes in GG. The notion
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Figure 5: G is the gene tree for the gene family “C20rf47” from Ensembl (ENSGT00390000004145),
extended with loss leaves according to a reconciliation with species tree S. M is Medaka, S is
Stickleback, T is Tetraodon, and Z is Zebrafish. Reconciliation of G with the species tree S gives
one duplication and two losses (as marked in G, duplication by a square, and losses by dotted lines).
Considering the largest speciation subtrees of G as pointing to the isorthogroups ({M1, 51,71, Z1}
and {M2, 52}), H is an isorthology respecting history for (G, S) leading to the gene tree G'.

of a Triplet Respecting History (TRH) [54] is intended to account for such hierarchy. Efficient
algorithms for inferring parsimonious TRHs remain undiscovered.

Notice that Theorem (1| does not a priori give us the isorthogroups for a pair (G, S), as the true
isorthologous subtree could be part of a larger speciation subtree. A restricted version of the MIRH
problem considers the maximal speciation subtrees of G as the definition of the isorthogroups. We
showed in [54] that this isorthology respecting partition of G is the one that would minimize the
duplication cost, but not necessarily the mutation cost.

An alternative approach would use some isorthogroup detection criteria, such as the one given
in Section and correct according to the corresponding isorthologous subtrees. Such targeted
reconstruction algorithms remain completely unexplored.

6 Conclusion

While gene trees have traditionally been constructed and validated using nucleotide sequence or
amino acid sequence information alone, more recently information from the species tree has been
used to both correct and validate gene trees. We have introduced new methodology to further
validate and correct gene trees through the use of other data. Our novel use of syntenic information
(homologous regions) points to a significant number of flawed gene trees in the Ensembl database
due to homology contradiction or region overlapping. Our use of the dN/dS ratio on gene trees
points to a bias towards clustering of isorthologous genes in gene trees. Although some potential
avenues for improving gene trees are explored, our results seem to pose more questions than they
answer.
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