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Abstract

A gene family tree is traditionally inferred from a multiple alignment of homologous sequences according to
a model of sequence evolution. Trees for several genes families are thus constructed independently from each
other. They often carry unresolutions or bad resolutions. Information for their full resolution may lie in
the poorly exploited dependency between gene families, each bringing information for the resolution of the
others. We propose to use several kinds of such dependencies in the construction of gene trees: information
from a species tree through a model of gene content evolution by duplication, speciation and loss, infor-
mation from extant synteny through ortholog predictions, and information from ancestral synteny through
a model of gene neighborhood evolution. We develop several “correction” techniques, yielding a software
package called “RefineTree”. We report some tests on simulated data and an application on the full set of
gene families from the Ensembl database. We perform a genome-wide analysis of duplication and loss pat-
terns on the history of 65 eukaryote species, including ancestral genes and gene orders of all ancestors along
this phylogeny. We show that according to several measures including running time, likelihood, stability of
genome content and linearity of ancestral chromosomes, trees corrected by RefineTree are arguably more
plausible than the ones stored by Ensembl. We discuss the quality criteria in the light of gene definition
as a sequence or as a locus. We extract some cases where a “true” gene tree should depend on this definition.

RefineTree web interface is available at: http://www-ens.iro.umontreal.ca/~adbit/polytomysolver.html



Introduction

Several gene tree databases from whole genomes are available, including Ensembl Compara (Vilella et al.

2009), Hogenom (Penel et al. 2009), Phog (Datta et al. 2009), MetaPHOrs (Pryszcz et al. 2011), PhylomeDB

(Huerta-Cepas et al. 2011), Panther (Mi et al. 2012). However they are known to contain many errors and

uncertainties, in particular for unstable families (Boeckmann et al. 2011), which makes them uneasy to use

for accurate ancestral genome inference, orthology detection, or the study of genome dynamics.

For example Ensembl Compara trees, when reconciled with a species tree to annotate gene duplication

and loss, systematically and unrealistically overestimate the number of genes in ancestral genomes, and lead

to erroneous predictions of ancestral chromosome structures (Boussau et al. 2013). It is a known artifact

and a significant number of nodes in the Ensembl gene trees are labelled as “dubious” (Flicek et al. 2014).

Reasons for errors in gene trees are numerous. For example they are dependent on annotation, family

clustering and alignment errors. But even if we assume a perfect gene family assignment and alignment,

trees are usually constructed from a DNA or protein sequence alignment with a model of substitution (cf.

e.g. PHYLIP (Felsenstein 1981, 2005), PhyML (Guindon and Gascuel 2003), RAxML (Stamatakis 2006),

MrBayes (Ronquist and Huelsenbeck 2003), PhyloBayes (Lartillot and Philippe 2004)). These models make

simplifying assumptions, inducing known systematic artifacts, and algorithms may not properly explore

the solution space, but above all, gene sequences often do not contain enough substitutions to resolve all

the branches of a phylogeny, or alternatively too many substitutions such that the substitution history is

saturated. Therefore trees in databases are usually accompanied with measures of statistical support on

their branches, which gives a measure of how confident the inference method is on his choice of the best tree.

It is possible to choose among many statistically equivalent trees, or sharpen the a posteriori distribution

by modeling gains and losses of genes, inferred by reconciliation of gene and species trees (Szöllősi et al.

2015). Several methods integrate species tree information with sequence information, including TreeBeST

(Schreiber et al. 2013), TreeFix (Wu et al. 2013), BBCA (Zimmermann et al. 2014), PhylDog (Boussau

et al. 2013), ODT (Szöllősi et al. 2012), ALE (Szöllősi et al. 2013), GSR (Akerborg et al. 2009; Arvestad

et al. 2004), SPIMAP (Rasmussen and Kellis 2011), Giga (Thomas 2010), Notung (Durand et al. 2006),

MowgliNNI (Nguyen et al. 2013). They all report better gene tree constructions, but leave a large space for

improvement or for scaling to genome-wide studies on a large number of species. They also fail to use other

information from whole genome evolution such as synteny and chromosome organization. Synteny is often

seen as one of the best ways to predict orthology (Jun et al. 2009), a task that is theoretically contained in

the phylogeny problem. But, probably due to the complexity of including this information in an evolutionary
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model, this has never been really exploited in a phylogenetic context (with the exception of a few pioneering

studies applied on yeast genomes as in Wapinski et al. (2007)).

In all sequence-based or integrative methods, tree space exploration is based on local exploration. Moves

in gene trees are proposed, and accepted or rejected according to hill-climbing, Metropolis-like criteria, or

other statistical or empirical arguments. Moves are proposed at random (typically NNI, SPR, TBR on

random branches), or are designed to have a greater chance to be accepted, which is the purpose of gene tree

correction methods (Durand et al. 2006; Chen et al. 2000; Gorecki and Eulenstein 2011b,a; Chaudhary et al.

2011; Berglund-Sonnhammer et al. 2006; Doroftei and El-Mabrouk 2011; Swenson et al. 2012; Lafond et al.

2012, 2013; Chauve et al. 2013; Bansal et al. 2014). The construction of a whole genome database using

random local search alone is computationally intensive and expected not to scale well as databases grow

in size. On the other hand, correction techniques are not usually integrated in an exploration framework.

Consequently, database construction pipelines such as TreeBeST (contructing the Ensembl Compara gene

trees) have to adopt compromises, exploring limited subsets of tree spaces.

In this article we report the development, improvement, implementation, publicization with a web in-

terface and systematic use of some gene tree correction techniques, providing and exploiting an alternative

set of gene trees for the Ensembl Compara gene families. From a starting tree with branch supports con-

structed independently, we propose the following corrections: (1) contract unsupported branches, and apply

ProfileNJ, an extension of the algorithm by Lafond et al. (2012) to solve polytomies according to a species

tree, minimizing the cumulative cost of duplications and losses, following Neighbor-Joining principles to

choose among the numerous optimal solutions; (2) construct a set of putative orthologs from synteny blocks

between genomes (obtained with PhylDiag (Lucas et al. 2014)), and apply ParalogyCorrector (Lafond et al.

2013); (3) construct ancestral chromosomes with DeCo (Bérard et al. 2012), and correct some trees which

are responsible for a non linear chromosome structure as in Chauve et al. (2013). Thus we use a range

of information in the construction of gene trees, taking into account gene sequence evolution, gene content

evolution and chromosome structure evolution.

This set of techniques is a mix of published algorithms, with inedite improvements and generalizations,

put together here in a modular piece of software called “RefineTree”. ProfileNJ is the main methodological

development that we report here. It can be seen as a phylogenetic interpretation of phyletic profiles, that

have often been used for molecular evolutionary studies, in the absence of trustable gene trees (Clark et al.

2007; Csurös 2010; Cohen et al. 2012). It also generalizes Neighbor-Joining and the multifurcated gene tree

reconciliation with a species tree in a duplication and loss context. We tested ProfileNJ on simulations, and
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showed that it achieves results of comparable quality but is several times faster than TreeFix (Wu et al.

2013), which has roughly the same objectives with a random exploration.

We provide the result of a successive application of several modules of RefineTree on the whole set of

gene families from the Ensembl database, with PhyML maximum likelihood starting trees. We evaluate

the results according to several criteria: (1) likelihood ratio based on the Ensembl alignments between our

results and the ones stored at Ensembl; (2) ancestral genome sizes based on a duplication-loss reconciliation;

(3) linearity of ancestral chromosomal segments computed with DeCo. RefineTree compares very favorably

with the trees stored in Ensembl, and its running time allows it to propose trees for the whole database in

a few hours on a desktop computer (not including the starting tree construction).

We make the set of trees and ancestral genomes accessible. We also use the reconstructed trees and

ancestral genomes to study genome evolution across all 69 eukaryotic species from the Ensembl database.

We provide in particular a whole genome analysis of duplication patterns, pointing at certain branches which

seem to show acceleration of duplication or loss processes. We finally discuss the distance to “true” gene

trees, in the light of incomplete lineage sorting and gene conversion.

Results

ProfileNJ

Description

The main methodological development is ProfileNJ, a correction technique that can be viewed as a general-

ization of three different algorithms designed for evolutionary studies:

• The standard Neighbor-Joining (Saitou and Nei 1987) (NJ) method which constructs a tree from a

distance matrix between taxa;

• The phyletic profile method which infers ancestral genes from the number of homologous copies in

extant taxa, along with duplication and loss costs (Csurös 2010);

• The most parsimonious reconciliation between a multifurcated rooted gene tree and a species tree (La-

fond et al. 2012).

These methods have little in common as they solve different problems. But here they are seen as having

the same objective: constructing a gene tree. Although phyletic profile methods usually do not explicitly
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output a tree, such a tree is implicitly inferred from the gain and loss events in a gene family. The goal

of ProfileNJ is to integrate information from the species tree (like in phyletic profiles), from well supported

branches of a gene tree (like in reconciliations), and from a distance matrix (like NJ), to complement the

information when it is missing.

A run of ProfileNJ is summarized in Figure 1. The input of the method is:

• a rooted species tree S;

• a rooted or unrooted possibly multifurcated gene tree G (which can be obtained by constructing a gene

tree from a sequence alignment and contracting unsupported branches);

• a distance matrix d on the leaves of G;

• a weight for duplication and loss events (the default is equal weight for both events).

A solution of ProfileNJ is a set of rooted binary gene trees containing all the internal branches of G and

minimizing the total weight of duplications and losses resulting from a reconciliation with the species tree.

Among all trees verifying an optimal duplication/loss count, if there are several of them, the NJ selection

criterion finds one according to the distance matrix. Several trees can nonetheless be output because of

the multiplicity of solutions to the duplication/loss count. For each of them, NJ is used to construct the

associated tree. The multiplicity of propositions can be seen as an exploration tool, solutions can then be

chosen according to different criteria like the likelihood.

Note that if G is a star tree with genes from only one species, ProfileNJ reduces to NJ. If G is a star

tree and no distance matrix is given, ProfileNJ gives a ”profile tree”, minimizing the weight of a duplication

and loss scenario. If G is binary but not rooted (in that case d is useless and not required), ProfileNJ can

be used to root the tree according to duplication and loss scenarios. ProfileNJ can also be used to reconcile

a rooted binary gene tree with a species tree. So ProfileNJ is a phylogenetic tool that generalizes several

usually unrelated standard methods.

Efficiency of the NJ criterion

ProfileNJ is an extension of the algorithm by Lafond et al. (2012). The added features are generalizations

to unrooted gene trees, arbitrary weights of duplications and losses, and choosing among binary resolutions

with the same duplication/loss costs with the NJ criterion.

In order to evaluate the relevance of the NJ criterion, we ran ProfileNJ twice on the same data sets,

except that once the distance matrix was computed, using the Ensembl nucleotide alignments, with FastDist
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from the FastPhylo package (Khan et al. 2013), and once the distance matrix was random. The starting

tree was computed for every family using PhyML on the nucleic alignments, and all branches with aLRT

support < 0.95 were contracted. In average 55% of the branches were contracted. A histogram of the full

distribution is shown on Figure S1. The species tree is taken from Ensembl.

Then we computed the likelihood of both trees for every family with PhyML. Among the trees for which

the likelihood was different (55% of all tested trees), 76% were in favor of the trees built with the FastDist

distance matrix, and the log likelihood differences were much larger for those trees, contributing 95% of the

total of log likelihood differences.

The comparisons are clearly in favour of the NJ criterion over no criterion at all, while quantitatively

there remains a small but non negligible part of the trees for which no criterion (the random distance matrix)

gives an unexplained slightly but significantly better likelihood.

Efficiency of the ProfileNJ tree space exploration strategy

ProfileNJ can be used as a tree space exploration tool for the purpose of gene tree correction: given an initial

tree with branch support —which can be retrieved from a gene tree database, or alternatively produced with

a phylogenetic reconstruction tool— weakly supported branches can be contracted, leading to a multifurcated

tree. Then all resolutions of this tree can be explored with ProfileNJ. Remember that there are two reasons

for multiplicities of solutions: first because there are several duplication/loss count solutions, second because

for one solution, there are several possible trees. The latter is handled by NJ, while the former is used as an

exploration and trees are tested and chosen according to their likelihood.

Other tree space search strategies have been proposed for phylogenetic reconstruction, most of them

based on random exploration of a tree neighborhood. The most common strategy is to select, in the space

of trees obtained from the original one by performing some branch moves (NNI, SPR, TBR), the one best

fitting the species tree in terms of reconciliation cost. In this class of algorithms, NOTUNG (Chen et al.

2000) and TreeFix (Wu et al. 2013) are the most closely related to ProfileNJ, with TreeFix being the most

recent one. TreeFix generates a tree neighborhood from NNI and SPR moves and explores it randomly using

a hill-climbing strategy. Instead we take a deterministic and more targeted approach by focusing on weakly

supported branches of the tree, with a possibly deep modification of the tree. The comparison with TreeFix

is intended to compare these two tree space exploration methods.

Wu et al. (2013) have compared TreeFix with SPIMAP (Rasmussen and Kellis 2011), showing a similar

accuracy and a higher speed for TreeFix. We perform a similar comparison on the same simulated dataset
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of 16 fungi. This dataset consists of simulated gene families generated under the SPIMAP model and their

corresponding nucleotide alignments, for four different rates of duplication and loss (DL) events: (1rD -

1rL), (2rD - 2rL), (4rD - 4rL) and (4rD - 1rL); where rD and rL are respectively the estimated duplication

and loss rates for fungi. Comparisons reported in this section are performed on 2575 simulated gene families

randomly chosen from the four fungi datasets with different DL rates.

An initial maximum likelihood (ML) tree is constructed for each simulated gene family with RAxML

v-8.1.2 (Stamatakis 2006), with the rapid bootstrap algorithm, under the GTR-Γ model and the majority

rule consensus tree as bootstopping criterion. A randomly rooted tree is then provided as input to TreeFix

(as TreeFix requires the input tree to be rooted), while a multifurcated unrooted tree obtained by contracting

the branches with support lower than 95% is provided as input to ProfileNJ. We used default parameters

for both programs. Among the set of resolutions output by ProfileNJ, the best supported tree was selected

using consel (Shimodaira and Hasegawa 2001) and site-wise likelihood values computed with RAxML (under

the GTR-Γ model of nucleotide substitution).

For RAxML, TreeFix and ProfileNJ trees, we measured the Robinson-Foulds (RF) distance to true trees,

compared the reconstructed tree with the true tree using site-wise likelihoods (Figure S7), measured the

accuracy of the duplication and loss scenarios (Figure S5), the sensitivity of the accuracy to gene family size

(Figure S6), the sensitivity to species tree errors (Figure S8), and the running time.

Figure 2 illustrates the results for the RF distance. It shows that sequence-only does not contain enough

signal to lead to the true tree, and integrating information from the species tree is necessary. TreeFix and

ProfileNJ reconstruct around 75% of true trees, compared with only 10% for RaxML (RF distances were

computed for rooted trees with ProfileNJ and TreeFix, and unrooted trees for RaxML, so RF=0 means good

topology and root for ProfileNJ and TreeFix). We investigated some cases where they were erroneous, and

found that often, the true scenario was not parsimonious in terms of duplications and losses, while TreeFix

and ProfileNJ chose too recent duplications in order to avoid losses. An example is given in supplementary

material (Figure S4).

The performance of TreeFix and ProfileNJ are similar in terms of distance to the true tree. If we measure

the likelihood of the reconstructed tree, RAxML of course gives the best likelihood. Its likelihood is even

usually higher than the likelihood of the true tree, but not significantly according to an AU test. Treefix

is designed to produce trees which are not significantly different than the ML tree, which we could check:

1.36% of the trees fail the AU test against the ML tree at α = 0.05, while the proportion jumps to 9.17%

for ProfileNJ. It is noticeable that this has no visible consequence on the distance to the true tree.
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Figure 3 shows that ProfileNJ outperforms TreeFix in running-time. The gap in running-time between

the two algorithms increases with tree size. This figure also shows that the most time-consuming step in

ProfileNJ is the tree selection with consel. For a tree of size 30, ProfileNJ is about four to seven times

faster than TreeFix and about 15 times faster without the tree selection step with consel. This includes the

construction of the distance matrix. The construction of the initial RaxML tree is not included because it

is common to both methods.

Other analyses, including the sensitivity to gene family size, number of duplications and losses, or errors

in the species tree are reported in the supplementary material. They show similar tendencies, TreeFix

and ProfileNJ have similar performances on all measures except running time, and RAxML has a lower

performance except when there are errors in the species tree.

Indeed we also investigated the impact of the species tree used to reconstruct gene trees. We use an

incorrect specie tree (Figure S9 (A)) as input for TreeFix and ProfileNJ. We found that the reconstructed

gene trees became less accurate than RAxML gene trees. This impact however was limited to the branches

that had been rearranged; the rest of the branches in the TreeFix and ProfileNJ gene trees remained more

accurate than RAxML gene trees.

RefineTree

Principle

We integrated ProfileNJ in a modular online software, called RefineTree, combining a number of correction

techniques, with an easy-to-use interface (see Figure S2 in supplementary material).

Two additional correction techniques are included, that were previously published by our group. They

use information from extant or ancient genome organization. The first one uses PhylDiag (Lucas et al. 2014)

(see Methods) to compute statistically supported synteny blocks of genes between every pair of genomes

from the Ensembl database. We then assume that if several genes are found consecutive in one genome, and

their homologs are also found consecutive in the other genome, the common linear arrangement was in the

ancestor and the homologous genes are probably orthologous. This hypothesis is incorrect in at least three

cases : (1) if the whole block of genes was duplicated, (2) if there is a tandem duplication of a gene followed

by a differential loss in the two species, or (3) if a gene is converted by a paralog. To handle these cases, we

require that (1) the majority of the homologous genes are indeed predicted as orthologs by phylogeny, (2)

the common ancestor of two homologous genes does not lead to two paralog descendants placed in tandem in

one species. In case (3), we are in a situation where the loci are orthologous but not the sequences. In that
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case we construct the “locus tree” (Rasmussen and Kellis 2012) and trust syntenic information over gene

sequence information. Details of these constrains are given in the Method section. Given couples of putative

orthologous genes, we use ParalogyCorrector (Lafond et al. 2013) with the output tree from ProfileNJ as

input. This method, integrated in RefineTree, constructs the tree which is the closest to the input (in that

case, ProfileNJ) tree according to a Robinson Foulds distance, with the constraint that couples of putative

orthologs are found orthologs in a reconciled output phylogeny.

The other correction technique integrates information from the linearity of ancestral genomes computed

with DeCo (Bérard et al. 2012) (see Methods). Linearity means that genes are linearly ordered along

chromosomes, which is true for extant genomes, but not guaranteed in ancestral genomes computed by

DeCo. What could seem as a drawback is used here to detect errors in a gene tree: the “Unduplicator”

correction (Lafond et al. 2013) algorithm consists in fusing two ancestral copies of a gene when the two copies

disrupt the linearity of an ancestral genome. Details can be found in the methods section or the associated

publication.

A typical run of RefineTree, integrating all described correction techniques, is illustrated in Figure 4.

Results on Ensembl gene trees

On the whole Ensembl gene family database (version 73, sept 2013), we compared three sets of trees con-

structed by a modular use of RefineTree, as in Figure 4.

• Ensembl trees: Trees stored in the Ensembl database;

• ProfileNJ trees: Output trees from ProfileNJ, with as input PhyML trees (where branches with a

< 0.95 aLRT support are contracted) and FastDist distance matrices;

• Synteny trees: Output trees of either ParalogyCorrector and Unduplicator (the two are computed

and the most likely is chosen) with ProfileNJ trees as input, using PhylDiag and DeCo to construct

synteny constraints.

We evaluate the resulting trees with sequence likelihood, ancestral genome content and ancestral chro-

mosome linearity. The results are shown on Figure 5.

The distribution of ancestral gene content sizes is expected to be close to that of extant genomes. Incorrect

trees are known to require additional duplications to be reconciled with the species tree, and thus tend to

increase the number of genes in ancestral genomes. The linearity of ancestral genomes is expected to be as

close as possible to that of the extant genomes as well, with each gene having zero, one or two neighbors,
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with a peak at two (the 0s and 1s are due to partially assembled genomes). ProfileNJ trees show a better

behaviour than Ensembl trees according to the three measures: more than 2/3 of the trees have a better

likelihood than Ensembl trees, the ancestral genome content distribution is much closer to the extant one,

and the linearity of chromosomes is higher. So this set of trees, achieving better performance according to

sequence evolution, gene content evolution and chromosome evolution, is arguably a better dataset than the

one stored in the Ensembl database.

However the content and synteny signals are still distant from what we could expect from true trees.

The behavior of synteny trees is interesting from this point of view. Their performance drops in terms of

likelihood (Figure 5 (A)), but jumps in terms of the stability of gene content and the linearity of ancestral

chromosomes (Figure 5 (B) and (C)). One interpretation is that the synteny corrections, while improving

synteny signal, are not yet able to propose reliable gene trees. A reason is that they can break well supported

branches to achieve orthology constraints. Branches might be highly misplaced while preserving the ancestral

content according to the LCA. We however noticed a correlation between the size of the families (number of

genes) and the loss of likelihood in the Synteny trees. Part of the likelihood drop could also be interpreted

as an inadequacy of the phylogenetic models to appropriately account for gene families with a high rate

of duplications. As observed in our simulations, the true tree is not necessarily the ML tree. Add that

likelihood is computed with an alignment which results from a guiding tree which is different from the tested

tree. Some synteny trees might therefore be considered as better trees even with these equivocal results.

However there is a third interpretation. Synteny information describes the history of loci (Rasmussen

and Kellis 2012), while phylogenetic models describe the evolution of sequences. Loci and sequences often

have the same history, but they may differ following gene conversion or incomplete lineage sorting (ILS).

In case of ILS or gene conversion, two different true versions of the gene history are concurrent. In Figure

6) the gene as a locus has a history depicted by the right tree, while the gene as a sequence has a history

depicted by the left tree. None of the two are wrong, but they are significantly different. They highlight the

ambiguity of the definition of a gene, which yields an ambiguity in its history. Sequence trees will have a high

likelihood and mediocre results for gene contents and synteny when constructed from duplication and loss

scenarios, while it is the opposite for loci trees. Rasmussen and Kellis (2012) have modeled ILS in sequence

and duplications and losses in loci, handling this difference in one case. However, no model is currently able

to handle conversion.
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Modes of evolution in eukaryotes

With the gene trees we reconstruct all gene contents of ancestral genomes and the way they are organized

along ancestral chromosomes. Gene content is computed according to the LCA reconciliation (see Methods),

and genome organizations consist in sets of links between consecutive genes. Ancestral genomes are not

exactly linearly arranged, but sufficiently close to be often interpreted as chromosomes. We do not linearize

them by removing links because the non linearity has diverse causes that we do not wish to mask. But this

method also highlights genes or groups of genes evolving together in parts of the tree. For example there

are 8488 blocks of co-duplicated genes according to DeCo. Most of them contain only a few number of genes

(83% contain 2 genes). The largest blocks are found in the terminal branches leading to Danio rerio and

Caenorhabditis elegans.

As seen in Figure 7, branches of the phylogeny which carry large numbers of duplications are also visible.

Patterns of duplications in mammals have been studied by Boussau et al. (2013) with a subset of gene

families or in vertebrates by Mahmudi et al. (2013) with a subset of species, but few methods are able to

handle whole databases and provide a complete view on the duplication and loss pattern. Figure 7 shows the

result for the full genomes of the full phylogeny of the 65 Ensembl species. Branches with a large number

of duplications (hot branches) are those leading to vertebrates, which is in agreement with the two rounds

of whole genome duplication hypothesis. Interestingly, the speciation event leading to Petromyzon marinus,

which is usually thought to have diverged after these events (Smith et al. 2013), preceeds the hot branches.

This may be in agreement with recent results based on the analysis of Hox clusters in the Japanese lamprey

(Mehta et al. 2013). Another hot branch leads to eutherian mammals, which was also found by Boussau

et al. (2013) and Mahmudi et al. (2013) with partial data. These two hottest internal branches are exactly

the ones found by Mahmudi et al. (2013) using a probabilistic technique, but using only 9 species due to

computational cost. Other hot branches are terminal, the hottest being those leading to Caenorhabditis

elegans and Danio rerio. This is possibly due to ongoing dynamics of polymorphic copy number variations.

The same tree showing the number of losses is provided in the supplementary material (Figure S10)
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Discussion

Possible uses of RefineTree

RefineTree is a gene tree correction toolbox that explores part of the tree space around a given gene tree,

using information from a species tree and synteny. As such, it is modular and can be used with variations.

Various ways of contracting the branches of the starting tree can be considered, varying thresholds or

choosing specific branches to contract. For example an exploration scheme contracting the branches one

by one and applying ProfileNJ can be considered, which would be equivalent to local modifications as in

Chaudhary et al. (2011). A more radical modification would be to contract all branches. Other kinds of

contraction schemes can be imagined, as contracting branches around ”Non Apparent Duplications” (Lafond

et al. 2014), or ”Dubious duplications” stored in the Ensembl trees.

Notice that moves considered here are not local reversible moves such as NNI, SPR, TBR, that can be

used in a Monte Carlo exploration framework with a Metropolis algorithm. However our method could be

used to produce a starting tree to speed-up a burn-in step and start a sampling from plausible trees. It might

also be useful to guide proposals that would have a good probability to be accepted. These steps would

speed-up the convergence, which could be useful as these techniques are known to be rather time consuming

on large data.

An integrated model of genome evolution

The corrections and evaluations we propose are not integrated in a mathematical framework of genome

evolution. They are fast and intuitive ways to construct, according to a range of different criteria and on a

whole genome scale, gene trees that are better rated than the current state of the art. In order to integrate

these principles in a model of genome evolution, we would need to model the stability of genome content

and the linearity of ancestral chromosomes. While a local version of the former is contained in gene content

evolution and can be integrated (Boussau et al. 2013), modeling linearity is more out of reach. A lot of

models for genome evolution have linear structures to handle chromosomes (Fertin et al. 2009), but none

is able to include duplications and losses at a whole genome scale. For chromosomes defined as a list of

local neighborhoods, like here using DeCo, a probability distribution of ancestral genomes according to their

linearity, as well as a probabilistic version of DeCo, that could be used in an integrative model, still need to

be developed.
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Phylogeny and the quest for orthologs

As gene trees contain the most complete information about a gene family history, detecting orthologs or

studying gene repertoire evolution should be achieved by interpreting trees. But due to the rate of errors

in the current trees stored in databases, orthology is often assessed with a series of techniques including

synteny (Sonnhammer et al. 2014) and Reciprocal Best Hits, while the evolution of gene repertoire is often

studied with phyletic profile techniques (Cohen et al. 2012). What we present here is a way of integrating

those diverse techniques into a phylogenetic framework. Full sets of orthology relations may de derived from

our set of trees, while lists are more incomplete when derived from the Ensembl trees.

Not only the gene trees

Using genome evolution in the construction of the gene trees, we get ancestral genomes as a byproduct. They

are made of genes and sets of gene adjacencies. They are still too big (in terms of gene number) and too non

linear to be fully trusted. This is partly due to incorrect gene trees in our output, or incorrect inferences from

DeCo, but also to problems in sequencing, assembling, annotating genomes, clustering families or inferring

the species tree. Good methods for finding linear structures from a set of adjacencies exist (Maňuch et al.

2012). Here we rather used non-linearity as a testimony of the flaws of the data and methods used to

reconstruct genome evolution.

Although gene trees are “better” with our correction, they are still not good enough. The likelihood drop

for synteny correction is indeed surprising, as these corrections lead to ancestral genomes that are closer to

gene content and gene neighborhoods of extant genomes. We would need better exploration schemes with

integrated models to really trust gene trees on a whole genome database within a deep phylogeny.

Methods

Families, alignments and trees are taken from Ensembl Compara release 73. They were computed with a

pipeline called TreeBest, but we simply call them the “Ensembl trees”. Trees are rooted and available with

branch support and annotation. There are 20529 trees, each corresponding to a gene family, for a total of

1091891 genes taken from 67 species. Information on gene position on chromosomes, scaffolds or contigs is

available. See ftp://ftp.ensembl.org/pub/release-73/emf/ensembl-compara/homologies/.
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ProfileNJ

A sketch of the algorithm is provided in Figure 1. First, gene tree branches with support values below a

user-defined threshold are collapsed to produce a multifurcating tree. In the case of an unrooted gene tree, all

internal nodes are successively considered as potential roots. For each such rooted gene tree, each polytomy

is considered in turn in a bottom-up traversal of the tree. For one particular polytomy, a binary resolution is

constructed in the following way. Similarly to Csurös (2010), counting ancestral genes along a species tree,

gene counts are assigned here to branches of the species tree. The algorithm consists in constructing a table

M where, for each node (including leaves) u of S and each integer k (limits on k are discussed in Lafond

et al. (2012)), M(u, k) is the minimum number of operations (duplications and losses) required to have k

genes in the branch of the species tree leading to u. For the root r of S, M(r, 1) is the minimum number of

duplications and losses resulting from the reconciliation of any binary resolution of the polytomy with the

species tree. Table M can be constructed in time linear in the size of S (Lafond et al. 2012).

When M counts have been computed for all polytomies, a backtracking algorithm outputs a vector

containing the number of genes per branch of S. Such a vector is associated with a scenario of gains and

losses along the species tree.

For example, the solution vector count output from Step 4 in Figure 1 accounts for two duplications. The

first duplication, located on the branch leading to b, is deduced from the fact that extant genome b contains

three gene copies, while count indicates two copies on the branch leading to b; the second one, located on

the branch leading to d, is deduced from the fact that two genes are assigned respectively to the branches

leading to a and b, while only one gene is assigned to the branch leading to d. The vector count does not

however involve any information allowing to know which of the three genes b1, b2, b3 are implicated in the

first duplication. For each such solution count, there are many possible compatible binary gene trees.

We construct here one tree with an NJ criterion, constrained by the solution in terms of number of genes,

as follows: a leaf of a gene tree is constructed for each gene present in the subtree. We call D the distances

issued from the input distance matrix. At the beginning D induces a metric space on the leaves of G. As in

the NJ algorithm, genes at the internal nodes will become elements for the metric space as well.

Let X be an internal node of the species tree with children X1 and X2. Suppose X,X1, X2 respectively

have x, x1, x2 genes according to the computed solution. Suppose by induction that the elements of X1

and X2 are in the metric space, but not the ones of X. If x1 > x or x2 > x, the difference is explained

by duplications. This duplication history is constructed in a first phase. So first suppose x < xi. Choose,

according to the NJ criterion, the couple of elements a, b from Xi which minimizes
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Q(a, b) = (n− 2)D(a, b)−
∑
i6=a

D(a, i)−
∑
i 6=b

D(b, i). (1)

Replace a and b by a new element ab in Xi, update the distances and the tree like in the NJ algorithm.

This makes xi decrease until we have x ≥ x1 and x ≥ x2.

So in a second phase we can suppose that the duplication history has been constructed and we suppose

that x ≥ x1 and x ≥ x2. Suppose also without loss of generality that x1 < x2. This means that there are x1

pairs of orthologs to couple. For this choose a from X1 and b from X2 which again minimize (1), and replace

a and b by an element x ∈ X. When X1 is empty replace every element from X2 by one element in X.

At this step some elements of X might not be in the metric space. They correspond to an internal branch

of the gene tree. Then it is easy to construct an element of the metric space by applying the NJ updating

step on the fixed gene tree (for a fixed subtree there is not selection step)

At the end of these procedures all elements of X correspond to an element of the metric space, so an

iteration is possible, to the next node of the species tree.

Note that if every species contains at most one gene in the family and if the starting gene tree is a star

then the algorithm simply constructs the species tree as a gene tree. Differences can lie in internal branches

that are in the starting tree but not in the species tree, and the main difficulty of the problem is the presence

of several genes from the same family in some species. Eventually, if all genes of a family belong to the

same species and the starting tree is a star, then the solution is simply an NJ tree. In that way, we really

generalize NJ, ancestral gene counts and gene tree species tree reconciliation in a single method.

Use of ProfileNJ on Ensembl

PhyML was used with default parameters to compute maximum likelihood trees from the protein multiple

alignments from Ensembl. An aLRT support was computed, and all branches with aLRT < 0.95 were

contracted. FastDist was run on DNA alignments to provide a distance matrix. Then ProfileNJ was run

with the command (an example is given for the first family).

ProfileNJ -s Compara.73.species_tree \\

-g data/famille_1.start_tree \\

-d data/famille_1.dist \\

-o data/famille_1.tree \\

-n -r best -c nj --slimit 1 --plimit 1 --firstbest --cost 1 0.99999
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We tested the sensitivity of the method to the choice of the threshold parameter for contracting unsup-

ported branches. The threshold is a trade-off between the amount of change in a tree and the probability

that the resulting tree is rejected. Too small values would avoid exploring a large space around the starting

tree while high values would lead to low likelihood trees. It has to be settled empirically. For example .80

was considered an acceptable threshold in some genomic studies (Abby et al. 2012).

Ancestral Genomes (gene content and order) from the LCA Reconciliation

LCA reconciliation is used to infer ancestral gene contents, one family at a time. It consists in labeling every

node x of the gene tree with a node of the species tree corresponding to the last common ancestor of all

extant species containing a gene which is a descendant of x (including x itself if x is a leaf). Then every

internal node x is labeled with an event: a duplication if the species label of x is equal to the label of one of

its children, and a speciation otherwise.

The LCA reconciliation induces sets of ancestral genes: for a species S (extant or ancestral), draw a

graph in which every leaf of a gene tree which maps to S or one of its descendant is a node. Then draw an

edge between two homologous genes x and y if their last common ancestor in the gene tree maps to a proper

descendant of S, or to S but is a speciation node. Connected components of this graph are the ancestral

genes in S: there is exactly one ancestral gene per component, and its descendants are the nodes of the

component.

We organized the ancestral genes in the genomes using DeCo (Bérard et al. 2012). This algorithm aims

at constructing the neighborhoods between ancestral genes, but starts by inferring ancestral gene contents.

This LCA method assumes the trees to be binary and does not take branch support and node annotation

into account. In particular, the algorithm ignores the fact that a branch may be uncertain due to a weak

support, or that a node may be labeled as dubious as in Ensembl. However, part of our goal is precisely to

resolve unsupported and dubious parts of gene trees, by considering the validity of the obtained ancestral

genomes.

Testing the linearity of ancestral genomes with DeCo

DeCo (Bérard et al. 2012) computes ancestral gene neighborhoods that are highly dependant on the shape

of the considered gene tree. Indeed, adjacencies in extant genomes, i.e. the immediate proximity of two

consecutive genes, are taken as input and putative adjacencies in ancestral genomes are constructed by a

parsimony principle minimizing the number of gains and losses of adjacencies. As two contemporaneous
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adjacencies are supposed to evolve independently one from the other, the linearity of extant genomes, i.e.

the property that one gene never has more than two neighbors linked by an adjacency, does not guarantee

the linearity of ancestral ones.

The apparent weakness of this feature is in fact a strength to evaluate the quality of gene trees. Indeed,

a high part of the non linearity of ancestral genomes is not due to the inadequacy of the software itself, but

to the quality of the input data. Indeed it has been remarked that a significant improvement in the linearity

of ancestral genomes was obtained by constructing gene trees according to more complete models (Boussau

et al. 2013; Patterson et al. 2013).

Note that in extant genomes, no gene can have more than two neighbors, and most genes have two. But

many genes have 1 or 0, because of the poor assembly of some genomes, many contigs contain one or a few

genes.

Information from extant synteny

First we ran PhylDiag as follows, for each pair of genomes. Files genome 1, genome 2 and ancestral genes

respectively contain the ordered list of genes from each genome, and the list of families clustering the genes

as in the Ensembl database.

phylDiag.py genome_1 genome_2 ancestral_genes \\

-gapMax=2 -pThreshold=0.00000005 \\

-filterType=InBothSpecies -multiprocess \\

-minChromLength=2 >syntenyblocks_1_2

The statistical threshold is calculated in order to minimize the number of false positives, taking into

account the number (2211) of comparisons between pairs of species and the expected number (500) of

synteny blocks for each comparison (0.05/(2211 ∗ 500) ≈ 5e− 8).

For each synteny block found by PhylDiag, we kept only the genes that had one single exemplar in

the two blocks from both species. We counted the number of such pairs of genes, and refered to an LCA

reconciliation of the output trees of ProfileNJ to check that most pairs are orthologs (their common ancestor

is labeled by a speciation). We discarded the blocks that did not fit this condition. This discards possible

block duplications.

For the remaining blocks, and for each couple of uniquely represented genes a and b, we required that

the LCA node X of a and b in the reconciled ProfileNJ tree is not a supported duplication: let X1 and X2
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be the two children of the node X labeled as a duplication (so X1 and X2 are in the same species as X), the

genes a and b are not kept as putative orthologs if one of the branches XX1 and XX2 has a high support

(> 0.95), and there are two genes, x1 and x2, which respectively descend from X1 and X2, which are located

on the same genome. This discards possible tandem duplications in the block, followed by differential losses

of copies.

The output trees from ProfileNJ as well as the filtered pairs of putative orthologs were givent as input

to ParalogyCorrector, which finds the tree that is as close as possible to the input tree in terms of RF

distance, such that in an LCA reconciliation, all pairs of putative orthologs have an LCA node annotated as

a speciation.

Information from ancestral synteny

From the results of DeCo on the output gene trees produced by ProfileNJ, we used an “unduplication”

principle as in (Chauve et al. 2013) everytime we found that an ancestral gene x had three neighbors a, b, c,

two of them (say a, b) arising from a duplication node d in a single gene tree. In that case, we rearranged

the four grand children of d so that the clade under d has an LCA which is annotated as a speciation in the

LCA reconciliation. See an insight into its functionning in Figure 8.

Likelihood ratio tests

We computed the likelihood of all trees according to the HKY85 model with PhyML on nucleotide alignments.

To test the significance of a likelihood difference, we computed the AU (Appoximately unbiased) tests with

Concel. They consist in bootstraping the sites of an alignment, each site having a likelihood according to

several trees. Then a probability is associated to each tree from this bootstrap, according to the number of

replicates which place it above the others in terms of the bootstrapped likelihood. Unless otherwise stated,

we use ”significantly” better for a likelihood with a AU value > 0.95.

Data access

The 2575 simulated gene families used for our simulation represent a subset of the original SPIMAP simulated

fungi datasets (see http://compbio.mit.edu/spimap/). Those data and the RAxML trees constructed from

sequence alignment are available. We also provide the two sets of 20529 trees, as an output from ProfileNJ

and with the additional synteny-aware corrections. All softwares are freely accessible for academic purpose,
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under a GPL license.
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Figure legends

Figure 1: ProfileNJ at a glance. The input is the species tree S, an unrooted gene treeG with multifurcations
and a distance matrix d. Step 1. Each internal node of the gene tree is considered in turn for the root. Here
the considered root is highlighted in red in G. Step 2. In a bottom-up traversal of the tree, each polytomy
P (non-binary node) is considered in turn. Step 3. With P and S as input, a dynamic programming table
M is constructed. M(u, k) denotes the minimum weight scenario of duplications and losses required to have
k genes in the branch of the species tree leading to u. Each entry is constructed from neighboring entries
as in (Lafond et al. 2012). Step 4. All minimum weight duplication and loss count solutions are obtained
by backtracking in M . Step 5. One count solution might correspond to many binary trees. The Neighbor
joining (NJ) procedure computes the one that best agrees with the distance matrix. The final completely
resolved tree is given bottom left.

Figure 2: Topology accuracy of RAxML, TreeFix and ProfileNJ trees, mesured by RF distance with the
true tree, on ∼ 2500 simulated trees from the fungal dataset. We use a sample of trees simulated under
four different DL rate : (1rD - 1rL), (2rD - 2rL), (4rD - 4rL) and (4rD - 1rL). Percentage of reconstructed
trees (y-axis) with a given RF distance (x-axis) to the true tree. TreeFix and ProfileNJ have a similar
reconstruction accuracy (75% of trees match the true trees) while the input tree (RAxML) have the lowest
accuracy. The graph is cut on the right, but contains more than 99% of the data.

Figure 3: Runtime of TreeFix and ProfileNJ for increasing size of gene tree.
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Figure 4: A general view on RefineTree when run on the Ensembl Compara gene families. An example is
given for a species tree S of four fish species, a gene family of six genes (a gene is represented by the picture
of the species it belongs to, and two paralogs belonging to the same species are distinguished by a different
frame color), a rooted gene tree G (although it can be unrooted in general) with branch support, and a given
threshold for branch contraction. Data framed in black are the input and those framed in blue are the output
of the correction algorithm labeling the edge linking the considered frames. Black arrows depict the use we
make of RefineTree on the Ensembl gene trees. The green arrow and the green “or” are alternative uses
avoiding one or both of the correction tools ParalogyCorrector and Unduplicator. Any framed set of data
can be alternatively provided to the pipeline as input. For example, orthology constraints obtained from
various sources can be directly provided as input to ParalogyCorrector. The method for inferring orthology
constraints from synteny blocks is described in the text.

Figure 5: Sequence likelihood, ancestral genome content and ancestral chromosome linearity for ProfileNJ,
Synteny and Ensembl trees: (A) Proportion of trees with a significantly better likelihood computed with
PhyML. AU tests were computed for the three trees for each family, and if the tree at the first rank was
significantly better than the second, it was stored as the best likelihood, and if not, it was stored as ”no
significant difference at the first rank”. (B) Gene content computed with DeCo. Gene content has one value
for each node of the phylogeny of 65 species, except for extant genomes, for which it has one value for each
leaf. (C) Genome linearity computed with DeCo. Genome linearity is represented by a graph, whose x
axis is the number of neighbors a gene can have, and the y axis shows the proportion of genes having this
number of neighbors. Parameters from extant genomes are given as a reference in (B) and (C). Statistics for
ancestral genomes are assumed better when close to the extant ones.

Figure 6: A probable example of ILS visible on a subtree of an ensembl gene family. The monophyly of
the chimpanze and gorilla genes (ENSPTRP00000033018 and ENSGGOP00000011432) is well supported by
the sequences (left tree, constructed by PhyML, with aLRT supports), while synteny argues for orthology of
both with the human genes (ENSP00000414208 and ENSP00000378687) (right tree, constructed by ProfileNJ
followed by ParalogyCorrector), so that a scenario of duplication and losses compatible with the left tree is
unlikely.

Figure 7: Numbers of duplications in the eukaryote phylogeny, estimated with reconciled ProfileNJ trees
from PhyML starting trees on the whole Ensembl Compara database, version 73.

Figure 8: The unduplication principle (figure from Chauve et al. (2013)). A non linearity is detected in an
ancestral genome (gene g has three neighbors). Two of its neighbors g1 and g2 are issued from a possibly
dubious duplication labeled node. The tree is rearranged so that its root is labeled with a speciation instead
of a duplication. In the resulting configuration g′1 and g′2 are in two different species, so that g can have only
one neighbor in this family, and linearity is recovered.
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