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Abstract. Recently, an Alignment approach for the comparison of two
genomes, based on an evolutionary model restricted to Duplications and
Losses, has been presented. An exact linear programming algorithm has
been developed and successfully applied to the Transfer RNA (tRNA)
repertoire in Bacteria, leading to interesting observation on tRNA shift
of identity. Here, we explore a direct dynamic programming approach for
the Duplication-Loss Alignment of two genomes, which proceeds in two
steps: (1) (The Dynamic Programming step) Outputs a best candidate
alignment between the two genomes and (2) (Minimum Label Alignment

problem) Finds an evolutionary scenario of minimum duplication-loss
cost that is in agreement with the alignment. We show that the Minimum

Label Alignment is APX-hard, even if the number of occurrences of a gene
inside a genome is bounded by 5. We then develop a heuristic which is
a thousands of times faster than the linear programming algorithm and
exhibits a high degree of accuracy on simulated datasets. The heuristic
has been implemented in JAVA and is available on request.

Keywords: Comparative Genomics, Genome Alignment, Duplication,
Computational Complexity, Algorithms, Dynamic Programming.

1 Introduction

The abundance of completely sequenced and annotated genomes present in pub-
lic repositories has reinforced the role of genome comparison as the primary
approach to gain insight in the evolution of genomes and gene families. When
comparing complete genomes, the mutations of interest are macro-evolutionary
events such as rearrangements (inversions, transpositions, translocations etc.)
and content modifying operations (duplications, losses, horizontal gene transfer
etc.) affecting the overall organization of genes, rather than micro-evolutionary
events, such as single nucleotide substitutions, affecting single gene sequences. In
other words, genomes are modeled as strings of characters over an alphabet Σ of
gene families. The case of strings being permutations (i.e. each gene family with a
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single representative in each genome) has been largely considered by the genome
rearrangement community for pairwise comparison (for example [3, 8, 10, 13]) or
multiple comparison in a phylogenetic framework (for example [4, 12, 14, 15]). An
extra degree of difficulty is introduced in the case of strings containing multiple
gene copies. Most of the methods used for comparing two genomes with dupli-
cates (reviewed in [6, 7, 9]) rely mainly on rearrangement events. Contrariwise,
we considered in [11], an evolutionary model restricted to content-modifying op-
erations, and more specifically to duplications and losses. We showed that this
model is required to study the evolution of certain gene families, such as Transfer
RNAs (tRNAs). From a combinatorial point of view, the main consequence of
ignoring rearrangements is the fact that gene organization is preserved, which
allows reformulating the comparison of two genomes as a Duplication-Loss Align-
ment problem: find an alignment minimizing the cost of duplications and losses.
As in [11], we consider in this paper the cost of an alignment to be the number of
underlying segmental duplications (duplication of a string of adjacent genes) and
single losses (loss of a single gene). Although alignments are a priori simpler to
handle than rearrangements, we showed in [11] that a direct approach based on
dynamic programming leads, at best, to an efficient heuristic, and we rather de-
veloped an exact pseudo-boolean linear programming algorithm. This algorithm
is however exponential in the worst case, preventing from being applicable to
relatively large genomes (more than 200 genes). The problem has actually been
recently shown to be NP-hard [5].

In this paper, we further explore the suggested direct dynamic programming
approach, which is in two steps: (1) (The Dynamic Programming step) Output
a best candidate alignment between the two genomes and (2) (Minimum Label

Alignment problem) Find an evolutionary scenario of minimum duplication-loss
cost that is in agreement with the alignment. The way to solve the Minimum

Label Alignment problem, as well as its complexity, were left open in [11]. We
show in Section 4 that it is APX-hard, even if the number of occurrences of a gene
inside a genome is bounded by 5. We then, in Section 5, present a heuristic for
the Duplication-Loss Alignment problem, which is a thousands of times faster
than the linear programming algorithm and exhibits optimal or near-optimal
results on simulated datasets obtained with an evolutionary model consistent
with that observed for the tRNA repertoire in Bacillus.

We begin by introducing the notations and alignment problems in Section 2,
and the dynamic programming approach in Section 3.

2 Preliminaries

Strings: We consider single chromosomal (circular or linear) genomes, repre-
sented as gene orders with duplicates. More precisely, given an alphabet Σ, each
character representing a specific gene family, a genome or string is a sequence
of characters from Σ, where each character may appear many times. As the
content-modifying operations considered in this paper do not change gene ori-
entation, we can assume w.l.o.g. that genes are unsigned. For example, X in
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Figure 1 is a genome on the alphabet Σ = {a, b, c, d, e, f}, with four gene copies
from the gene family identified by b, and a single copy from family f .

Given a string Z, we denote by |Z| its length, by Z[i], 1 ≤ i ≤ |Z|, the i-th
character of Z, and by Z[i, j], 1 ≤ i ≤ j ≤ |Z|, the substring of Z that starts at
position i and ends at position j. Finally, two substrings Z[i1, i2] and Z[j1, j2],
1 ≤ i2 ≤ j2 ≤ |Z|, overlap if j1 ≤ i2.

The Duplication-Loss Model of Evolution: We assume that present-day genomes
have evolved from an ancestral string through duplications and losses, where:
(i) A Duplication of size k is an operation that copies a substring of size k of
a current genome X somewhere else in the genome. Given two identical non
overlapping substrings X [i, i+k−1] and X [j, j +k−1] of X , we denote by D =
(X [i, i + k − 1], X [j, j + k − 1]) a duplication from X [i, i+k−1] to X [j, j+k−1];
the string X [i, i+k−1] is called the source, and the string X [j, j+k−1] the target
of the duplication D; (ii) A loss of size k is an operation L = (X [i, i + k − 1])
that removes a substring X [i, i + k − 1] of size k from genome X .

Consider a duplication D = (X [i1, i2], X [j1, j2]) of X . Such a duplication is
called maximal if it cannot be extended using positions adjacent to the source
and target substrings.

Given an integer k ≥ 1, the cost of a duplication of size k is denoted by
c(D(k)), and the cost of a loss of size k is denoted by c(L(k)).

The Duplication-Loss Alignment Problem: We introduced in [11] the concept
of “Feasible” Labeled Alignment of two genomes X and Y , and showed the one-
to-one correspondence between the set of such alignments and the set of all
possible “visible” evolutionary histories from a common ancestor A to X and Y .
Definitions on alignments are given below, and illustrated in Figure 1.

a b c a b c d b e f d b e

fb ca e

X:

Y: b

a b c a b c d b e f d b e

b fb ca e
L L

X:

Y:
L

(i)

(ii)
1 1 1 2 2 2 1 3 1 1 2 4 2

326353

1 1 1 2 2 2 1 3 1 1 2 4 2

326353

(i) Cyclic labeled alignment: 4 duplications

(ii) Feasible lab. alignment: 3 duplications and 2 losses

(iii) Feasible lab. alignment: 3 duplications and 1 loss

Fig. 1. Labeled alignments for strings X = “abcabcdbefdbe” and Y = “abcbfe”. Costs
are c(D(k)) = 1 and c(L(k)) = k for any integer k. Losses are denoted by “L” and
duplications by arrows from source (indicated by bracket) to target. Two different
labeling are given for the left alignment: one (i) with “d2 b4” being interpreted as the
target of a duplication, and one (ii) with the same substring interpreted as two losses.

In the remaining of this paper, we consider two genomes X and Y on an
alphabet Σ, with |X | = n and |Y | = m. Let Σ− = Σ ∪ {−} be the alphabet Σ
augmented with an additional character ‘-’ called a gap.
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Definition 1. An Alignment of X and Y is a pair (X ,Y) of strings on Σ−×Σ−

obtained by filling X and Y respectively with gaps, such that the resulting Aligned

Genomes X and Y are equal length. Moreover, each position i, with 1 ≤ i ≤ |X |,
is such that either X [i] = Y[i] 6= − (position i is called a Match), or exactly one
of X [i], Y[i] is equal to a gap (position i is called a Mismatch).

In order to uniquely match an alignment (X ,Y) with a duplication-loss his-
tory leading to X and Y from a common ancestor, we need to label unmatched
characters of the aligned genomes X and Y in terms of duplications and losses.

Definition 2. A Labeling L(X ) of an aligned genome X (or simply L if no
ambiguity) is a set of losses and duplications, such that for each mismatched
position j, 1 ≤ j ≤ |X |, L(X ) contains either a loss L = (X [j1, j2]) or exactly
one duplication D = (X [i1, i2],X [j1, j2]), with 1 ≤ j1 ≤ j ≤ j2 ≤ |X |.

Now a Labeling of an alignment (X ,Y) is a pair (L(X ),L(Y)) where L(X )
and L(Y) are labeling of X and Y respectively. The pair (L(X ),L(Y)) is a La-

beled Alignment of X and Y . The cost of a labeling L(X ) is the cost of the
underlying operations (losses and duplications). The cost of a labeled alignment
(L(X ),L(Y)) is the sum of cost of the two labeling L(X ) and L(Y).

The above definition is not sufficient to ensure a correct interpretation of
an alignment in term of duplication-loss history, as it does not prevent from a
“cyclic” interpretation of an alignment. For example the labeled alignment (i)
in Figure 1 is not feasible as it reflects a history with two circular duplications
D = (d1b3e1, d2b4e2) and D′ = (d2b4, d1b3). A “feasible labeling” is a non-cyclic
labeling, where cycles are rigorously defined as follows.

Definition 3. Consider a set of duplications D. D induces a Duplication Cycle

if there is a permutations D1 = (X [i1, r1],X [j1, s1]), D2 = (X [i2, r2],X [j2, s2]),
. . . , Dh = (X [ih, rh],X [jh, sh]) of the duplications in D, such that the substrings
X [jp, sp] and X [ip+1, rp+1] overlap, for each 1 ≤ p ≤ h − 1, and the substrings
X [jh, sh] and X [i1, r1] overlap.

Now, a labeling L(X ) is Feasible if there is no subset of duplications in
L(X ) that induces a duplication cycle. Finally a Feasible Labeled Alignment

(L(X ),L(Y)) is a labeled alignment of X and Y where L(X ) and L(Y) are
feasible labeling. In Figure 1, (ii) and (iii) are two feasible labeled alignments of
X and Y , with (iii) being one of minimum cost.

We are now ready to give the main optimization problem allowing to infer
a most parsimonious history of duplications and losses leading to present-day
genomes from a common ancestor.

Problem 1 Duplication-Loss Alignment[DLA]
Input: Two genomes X and Y .
Output: A Feasible Labeled Alignment (L(X ),L(Y)) of minimum cost.

This problem has been shown NP-hard in [5]. An exact pseudo-boolean linear
programming algorithm has been developed in [11] for this problem. The next
section presents an alternative approach based on dynamic programming.
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3 A Dynamic Programming Approach

Let |X | = n and |Y | = m. Let C(i, j) (Cf (i, j) respectively) be the minimum
cost of a labeled (feasible labeled respectively) alignment of two prefixes X [1, i]
and Y [1, j] of X and Y . Then the problem is to compute Cf (m, n). A natural
approach sketched in [11] proceeds in two steps:

• Step 1. Unlabeled Alignment. Based on a dynamic programming ap-
proach, compute C(i, j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Recurrences given in [11]
allow to compute all values M(i, j), DX(i, j), DY (i, j), LX(i, j) and LY (i, j)
reflecting the minimum cost of an alignment (Xi,Yj) of X [1, i] and Y [1, j] satis-
fying respectively, the constraint that the last characters of Xi and Yj represent
a match, a duplication in X or in Y, a loss in X or in Y.

After computing all the values leading to C(m, n), a bottom-up approach
allows to output a labeled alignment (L(X ),L(Y)) of minimum cost C(m, n).
Unfortunately, (L(X ),L(Y)) is not necessarily a feasible alignment, as the re-
currences for DX(i, j) may lead to invalid cyclic evolutionary scenarios. Notice
that, as the DLA problem has been recently shown to be NP-complete [5], unless
P = NP , no alternative recurrences would lead to a polynomial-time algorithm
for computing Cf (m, n).
• Step 2. Minimum Labeling Alignment. Consider an (unlabeled) alignment
(X ,Y) output by Step 1, and label it in an optimal way, e.g. find labeling L(X )
and L(Y) for X and Y respectively, such that (L(X ),L(Y)) is a feasible labeled
alignment of minimum cost over all possible labeling of (X ,Y). Notice that once
the genomes are aligned, each labeling can be computed independently. Hence,
the Minimum Labeling Alignment problem can be formulated as follows:

Problem 2 Minimum Labeling Alignment[MLA]
Input: An aligned genome X .
Output: A Feasible Labeling L(X ) of minimum cost.

The complexity of the MLA problem, as well as an appropriate algorithm to
solve it, were left open in [11]. These are precisely the goals of our paper. It has
to be noted that this approach cannot lead to an exact algorithm, as an align-
ment of minimum cost C(m, n) does not necessarily lead to a feasible alignment
of minimum cost Cf (m, n). For example in Figure 1, an optimal labeling for
alignment (i) of minimum cost C(m, n) = 4 leads to the feasible alignment (ii)
of cost 5, which is not optimal, as (iii) is a better feasible alignment of cost 4.

Cost: As in [11], we will consider c(D(k)) = 1 and c(L(k)) = k. This leads
to a natural weight of an evolutionary history in term of number of segmental
duplications (duplication of a string of adjacent genes) and single losses (loss
of a single gene). Although segmental deletions are also likely to occur during
evolution, accumulation of mutations transforming a single gene into a pseu-
dogene is the most frequent cause of gene loss. From an optimization point of
view, the DLA problem is trivial if we count segmental losses as single events in
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the same way as duplications, that is c(L(k)) = 1. Indeed, in this case, a most
parsimonious labeled alignment can always be obtained by ignoring duplications.

4 Hardness of Minimum Labeling Alignment

In this section, we prove that the MLA problem is APX-hard, even if each
character (gene) has at most 5 occurrences in a genome X , by giving an L-
reduction from the Minimum Vertex Cover problem on Cubic graphs (MVCC),
known to be APX-hard [1], to MLA (for details on L-reduction see [2]). A graph
is cubic iff each vertex of the graph has degree 3. Given a cubic graph G = (V, E),
with V = {v1, . . . , vn}, MVCC asks for a minimum cardinality set V ′ ⊆ V , such
that for each {vi, vj} ∈ E, at least one of vi, vj belongs to V ′.

Next, we present the L-reduction from MVCC to MLA. Let G = (V, E) be a
cubic graph. Define the following ordering on the edges in E: {vi, vj} < {vx, vy}
if and only if i < x, or (in case i = x) j < y. Based on this ordering, we denote
the edges incident on vi, as the first, the second and the third edges of vi. In
what follows, given vi ∈ V , we denote with {vi, vj}, {vi, vh}, {vi, vk} the first,
the second and the third edges respectively of G incident on vi.

First, we define the aligned genome X corresponding to the cubic graph G.
We present an overview of the construction of X , then we give the details of
the construction. The aligned genome X consists of two parts (see Fig. 2): the
leftmost part is called the Vertex-Edge-set Part (VE-Part), the rightmost part
is called the Auxiliary Part (A-Part). Each part is then divided into substrings,
called blocks. Each position of X in the A-part is a match, while positions in
the VE-part can be either matches or mismatches. Hence a labeling L of X is
computed by labeling the mismatched positions in the VE-part of X .

The VE-part of X consists of the concatenation of |V |+ |E| blocks (see Fig.
2). For each vertex vi ∈ V there is one block BV E(vi) in the VE-part of X ; for
each edge {vi, vj} ∈ E, there is one block BV E(ei,j) in the VE-part of X .

The A-part of X consists of the concatenation of 2|V | blocks (see Fig. 2). For
each vi ∈ V , there exist two blocks BA,1(vi), BA,2(vi) in the A-part of X . Now,

X = BV E(v1) . . . BV E(vn)BV E(e1,a) . . . BV E(ez,w)
| {z }

VE-part

·

·BA,1(v1)BA,2(v1) . . . BA,1(vn)BA,2(vn)
| {z }

A-part

Fig. 2. The structure of the aligned genome X

we define the specific values of the blocks of X . Given an edge {vi, vj} ∈ E,
where i < j, {vi, vj} is the p-th edge of vi, 1 ≤ p ≤ 3, and the q-th edge of vj ,
1 ≤ q ≤ 3, we define its associated block BV E(ei,j) as follows:

BV E(ei,j) = se,i,jxi,pei,j,1ei,j,2xj,q
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where the first position of BV E(ei,j), that is the position containing character
se,i,j , is a match and each other position of BV E(ei,j) is a mismatch.

Now, we define the block BV E(vi), with vi ∈ V . First, define the i-encoding
of {vi, vj}, denoted as i-enci,j, as the following string: i-enci,j = xi,pei,j,1ei,j,2.
Moreover, let i-encl

i,j = xi,p, and i-encr
i,j = ei,j,1ei,j,2. The j-encoding of {vi, vj},

denoted as j-enci,j , is defined as follows: j-enci,j = ei,j,1ei,j,2xj,q, and j-encl
i,j =

ei,j,1ei,j,2, j-encr
i,j = xj,q.

The block BV E(vi) is defined as follows:

BV E(vi) = sizi,1zi,2 i-enci,j zi,3zi,4 i-enci,h zi,5zi,6 i-enci,k zi,7zi,8

BV E(vi) contains one matched position, the first position containing character
si, and 17 mismatched positions (from position 2 to position 18 of BV E(vi)).

Now, we define the A-part of X . Recall that each position of the A-part of
X is a match. The block BA,1(vi) is defined as follows:

BA,1(vi) = wi,1zi,1zi,2wi,2zi,3zi,4wi,3zi,5zi,6wi,4zi,7zi,8

The block BA,2(vi) is defined as follows:

BA,2(vi) = ui,1zi,2 i-encl
i,j ui,2 i-encr

i,j zi,3ui,3zi,4 i-encl
i,h ui,4 i-encr

i,h zi,5·

·ui,5zi,6 i-encl
i,k ui,6 i-encr

i,k zi,7

Before giving the details of the proof, we give a high-level description of the
reduction. We will show that each block BV E(vi) can be labeled essentially in
two possible ways (see Remark 4):
1. with a type a labeling, defining seven maximal duplications from substrings of
blocks BV E(ei,j), BV E(ei,h), BV E(ei,k), BA,1(vi) to substrings of block BV E(vi);
a type a labeling is the optimal labeling of BV E(vi) (see Lemma 6) and has a
cost of 7;
2. with a type b labeling, defining six maximal duplications from substrings of
block BA,2(vi) to substrings of block BV E(vi) and two losses; a type b labeling
is a suboptimal labeling of BV E(vi) (see Lemma 6) and has a cost of 8.

Thanks to the property of block BV E(ei,j) (see Remark 5 and Lemma 7),
we can relate these two kinds of labeling with a cover of G (see Lemma 8 and
Lemma 9): a type b labeling of BV E(vi) corresponds to a vertex vi in a vertex
cover V ′ of G, a type a labeling of BV E(vi) corresponds to a vertex vi in V \ V ′

of G.
Now, we give the details of the reduction. First, we introduce some prelimi-

naries properties of X .

Remark 4. Consider a cubic graph G = (V, E), and the corresponding instance
X of MLA. Let vi be a vertex of V , with {vi, vj}, {vi, vh}, {vi, vk} the first,
the second and the third edges of vi respectively. A type a labeling of BV E(vi)
consists of the following 7 duplications:

– four duplications, each one from the substring zi,2p−1, zi,2p, 1 ≤ p ≤ 4, of
block BA,1(vi), to the substring zi,2p−1, zi,2p, of block BV E(vi);
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– a duplication from the substring i-enci,x, with x ∈ {j, h, k}, of block BV E(eix)
to the substring i-enci,x of block BV E(vi).

A type b labeling labeling of BV E(vi)) consists of the following 6 duplications
and 2 losses (hence it has a cost of 8):

– six duplications from substrings of BA,2(vi) to substrings of BV E(vi) (specif-
ically for the six substrings zi,2 i-encl

i,j, i-encr
i,j zi,3, zi,4 i-encl

i,h, i-encr
i,h zi,5,

zi,6 i-encl
i,k, i-encr

i,k zi,7);
– two losses for the leftmost position and the rightmost position of BV E(vi).

Notice that in a type b labeling for BV E(vi), there is no duplication of BV E(vi)
from substrings of BV E(eij), BV E(eih), BV E(eik).

Remark 5. Let G = (V, E) be a cubic graph, let {vi, vj} ∈ E, with i < j, be the
p-th edge of vi, 1 ≤ p ≤ 3, and the q-th edge of vj , 1 ≤ q ≤ 3. Let X be the
corresponding instance of MLA. The following two labeling of BV E(ei,j) (recall
that the first position of BV E(ei,j) is a match) have cost 2:

– one duplication from the substring xi,pei,j,1ei,j,2 of BV E(vi) to the substring
xi,pei,j,1ei,j,2 of BV E(ei,j), one loss for the last position of BV E(ei,j)

– one duplication from the substring ei,j,1ei,j,2xj,q of BV E(vj) to the substring
ei,j,1ei,j,2xj,q BV E(ei,j), one loss for the second position of BV E(ei,j)

Now, we are ready to show that a type a labeling is the only optimal labeling
for BV E(vj).

Lemma 6. Let G = (V, E) be an instance of MVCC and let X be the corre-
sponding instance of MLA. Then, given a block BV E(vi), with vi ∈ V : (1) any
feasible labeling of BV E(vi) has a cost of at least 7; (2) if a labeling has cost of
7, then such a labeling is a type a labeling of BV E(vi).

Proof. (Sketch.) (1) The proof follows from a simple counting argument. Block
BV E(vi) contains 17 unmatched positions. By construction the leftmost position
and the rightmost position of BV E(vi) are labeled by duplications of length at
most 2. The remaining positions are at least 13, and since by construction are
labeled by duplications of length at most 3, it follows that at least 2 + ⌈ 13

3 ⌉ = 7
duplications are required for each feasible labeling of BV E(vi).

(2) It is easy to see that if a feasible labeling of BV E(vi) contains only du-
plications from substrings of BV E(ei,j), BV E(ei,h), BV E(ei,k), BA,1(vi), then
it has a cost of 7 iff is a type a labeling. Similarly if a feasible labeling of
BV E(vi) contains only duplications from substrings of BA,2(vi), it has a cost
of at least 8. Assume that a feasible labeling L of BV E(vi) contains a duplica-
tion D = (X [i1, i2],X [j1, j2]), where X [i1, i2] is a substring of BA,2(vi), and a
duplication from a substring of one of BV E(ei,j), BV E(ei,h), BV E(ei,k), BA,1(vi).
It is easy to see that D can (eventually) be extended so that it is a maximal
duplication. Then by replacing each other duplication of L having as a target a
substring of BV E(vi) with a duplication from substrings of BA,2(vi) (or a loss),
we obtain a type b labeling. This implies that L has a cost of at least 8. ⊓⊔
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Now, we prove a property on the labeling of a block BV E(ei,j).

Lemma 7. Let G = (V, E) be an instance of MVCC and let X be the correspond-
ing instance of MLA. Then, each feasible labeling of BV E(ei,j), with {vi, vj} ∈ E,
has a cost of at least 2, in which case BV E(ei,j) must be labeled with one dupli-
cation having target in BV E(vi) or in BV E(vj).

Proof. By construction, since there is no other substring in X identical to BV E(ei,j),
it follows that any labeling of BV E(ei,j) requires a cost of at least 2. Now, assume
that BV E(ei,j) is not labeled by a duplication having a target in BV E(vi) or in
BV E(vj). Then, by construction, either each position of BV E(ei,j) is labeled as a
loss (the cost of such labeling is 4) or the position corresponding to the substring
ei,j,1, ei,j,2 of BV E(ei,j) is labeled as a duplication from a substring of BA,2(vi),
implying a cost of 3 for the labeling. ⊓⊔

Now, we are ready to prove the two main properties of the reduction in
Lemma 8 and in Lemma 9.

Lemma 8. Let G be an instance of MVCC and let X be the corresponding
instance of MLA. Then, given a vertex cover V ′ ⊆ V of G, we can compute in
polynomial time a solution of MLA over instance X of cost 8|V ′|+7|V \V ′|+2|E|.

Proof. (Sketch). Given a cover V ′ of G, we define a solution of MLA over instance
X having cost 8|V ′| + 7|V \ V ′| + 2|E| as follows: (1) for each vi ∈ V ′, define
a type b labeling for the corresponding block BV E(vi) (of cost of 8, see Remark
4); (2) for each vi ∈ V \ V ′, define a type a labeling for the corresponding block
BV E(vi) (of cost of 7, see Remark 4); (3) a duplication of cost 2 for each BV E(ei,j)
associated with edge {vi, vj} ∈ E (see Remark 5). Since V ′ is a vertex cover of
G, at least one of vi, vj ∈ V ′, hence this labeling is feasible. ⊓⊔

Lemma 9. Let G be an instance of MVCC and let X be the corresponding
instance of MLA. Then, given a feasible labeling of X of cost 8p+7(|V |−p)+2|E|,
we can compute in polynomial time a vertex cover of G of size at most p.

Proof. (Sketch). Let L be a feasible labeling of X of cost 8p + 7(|V | − p) + 2|E|.
First, by Lemma 6, we can assume that BV E(vi) is associated in L either with
a type a labeling or with a type b labeling.

Now, consider a block BV E(ei,j), with {vi, vj} ∈ E. We show that we can
assume that at least one of BV E(vi), BV E(vj) has a type b labeling in L. If
this is not the case, BV E(ei,j) cannot be labeled with a duplication having
source in BV E(vi), BV E(vj), hence by Lemma 7, the cost of the labeling of
BV E(ei,j) is at least 3. We compute in polynomial time a feasible labeling L′,
such that c(L′) ≤ c(L), as follows: (1) define a type b labeling for one of BV E(vi),
BV E(vj), w.l.o.g. BV E(vi); (2) define a duplication D from the substring i-enci,j

of BV E(vi) to the substring i-enci,j of BV E(ei,j), and a loss for the unmatched
position of BV E(ei,j) not contained in the target of D. Hence we can assume that,
for each block BV E(ei,j), at least one of BV E(vi), BV E(vj) has a type b labeling
in L. It follows that we can define a vertex cover V ′ of G as follows: V ′ = {vi :
BV E(vi) has a type b labeling in L}. Since the cost of L is at most 8p + 7(|V | −
p) + 2|E|, it follows that |V ′| ≤ p. ⊓⊔
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The following result is a direct consequence of Lemmas 8 and 9.

Theorem 1 MLA is APX-hard.

5 An efficient heuristic

We now present DLAlign , which is a heuristic based on the dynamic program-
ming approach (Section 3) for the Duplication-Loss Alignment (DLA, Problem 1)
of two genomes X and Y . Recall that |X | = n and |Y | = m.

• Step 1. Dynamic Programming:

− Compute all the values of C(i, j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m;
− Output a labeled alignment (L(X ),L(Y)) of cost C(m, n). To limit the possi-
bility of creating cycles we do the following: (i) in the bottom-up approach used
to output a labeled alignment after filling the dynamic programming table C, we
choose a match operation whenever possible; (ii) for any duplication involving
a given string Z, the rightmost position of Z in the genome is always chosen to
be the source of the duplication.
• Step 2. Minimum Labeling Alignment: Resolve each duplication cycle D of
(L(X ),L(Y)), by interpreting the shortest overlapping string of D as a loss rather
than a duplication (see Examples (i) and (ii) in Figure 1).

Complexity: For simplicity, suppose |X | = |Y | = n. From the recurrences de-
tailed in [11], each C(i, j), for 1 ≤ i, j ≤ n, can be computed in time O(n) which
leads to an O(n3) algorithm for Step 1. As for Step 2, it requires constructing a
graph for X (Y respectively): for each duplication, add two vertices correspond-
ing to its source and target, and one edge from source to target. Constructing
the graphs, findings the cycles and resolving them can be done in time O(n3),
which leads to an O(n3) worst-time complexity for the whole heuristic.

5.1 Simulations

A random string R was drawn from the set of all strings of length n on an
alphabet of size a, and l moves were then applied to R to obtain an ancestral
genome A. To obtain the extant genomes X and Y , l more moves were applied to
A for each. The set of moves were segmental duplications and single gene losses.
The length of a duplication was drawn from a Gaussian distribution with mean
5 and standard deviation 2; these lengths were consistent with those observed
for the tRNA repertoire in Bacillus lineages [11].

Execution time: With 2l/n = 1/5 and a/n = 1/2, statistics similar to those
observed for the tRNA repertoire in Bacillus, strings of length 5000 took a couple
of days to be processed by the linear programming algorithm on a standard PC
workstation with 4 GB of memory. In comparison, the same data have been
processed by DLAlign on the same computer in less than two seconds.
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Fig. 3. The score returned by DLAlign compared to the optimal one returned by the
linear programming algorithm, for datasets of size up to n = 200. The left diagram
is obtained by varying the alphabet size a (x-axis is a/n), and the right diagram by
varying the number of moves l (x-axis is 2 ∗ l/n). See text for more details

Accuracy: We compare Res, the alignment cost returned by DLAlign, with the
optimal cost Opt obtained by running the linear programming algorithm. Due
to the exponential-time complexity of the later, we had to restrict ourselves to
relatively small values of n, a and l. Results of Figure 3 are averaged over up to
Total = 1000 simulations. White bars refer to Error = Res−Opt

Res
, and blue ones

to Accuracy = NbOpt
Total

, where NbOpt is the number of simulations among Total
for which DLAlign outputs the optimal alignment (i.e. Error = 0).

With ratios 2l/n = 1/5 and a/n = 1/2, DLAlign returns the optimal align-
ment cost for more than 85% of the simulations. This accuracy rate remains
stable for decreasing alphabet size, i.e. increasing number of gene copies (left di-
agram in Figure 3), but quickly drops with increasing number l of moves (right
diagram). Notice however that, even for a number of moves being equal to the
size of the strings, the error rate Error always remains lower than 0.16.

6 Conclusion

In this paper, we investigated the problem of aligning two genomes, based on a
duplication and loss model of evolution. We developed a heuristic in two steps:
first use dynamic programming to output a best candidate solution, then consider
MLA to compute a feasible solution. The heuristic exhibited a high degree of
accuracy on simulated datasets. Moreover, it is a thousands of times faster than
the previously developed linear programming algorithm, which makes possible its
application to large genomes, and allows generalization to multiple genome align-
ment in a phylogenetic context. From a theoretical point of view, we showed that
the MLA problem is APX-hard even when each gene has at most five occurrences
in a genome. Interesting future work will be to investigate the approximation
and parametrized complexity of MLA.
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