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Montréal, H3C3J7 Québec,
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Introduction
A major requirement in comparative genomics is to be able to compare genomes

based on their whole content. This is necessary for a myriad of applications such

as phylogenetic reconstruction, orthology and paralogy identification, ancestral re-

construction and the study of evolutionary events. Consequently, a large variety

of algorithms have been developed for the comparison of whole-genome sequences

with partial or no information on gene annotation. Most of them are based on

first identifying, in a pair-wise alignment dotplot, local alignments (anchors, synte-

nies) with high similarity score, and then chaining them in a way maximizing an

alignment score (cf. e.g. MUMmer [1], BLASTZ [2], LAGAN [3], DAGchainer [4],

progressiveMauve [5]). Similarity scores are computed according to the local mu-

tations (nucleotide substitutions and indels) inferred from the alignment. Other

approaches compare genomes in terms of building block organization. Although a

recently developed method does not require any preliminary information on gene

families [6], most of them assume a full or partial annotation of genomes, or a pre-

viously established large coverage of genomes in terms of syntenic blocks. Given

two genomes represented as ordered sequences of genes (or building blocks), the

rearrangement approach consists in finding a sequence of global evolutionary events

transforming one gene order to the other. Early work on genome rearrangement

focused on sorting permutations (no duplicates) by rearrangements (inversions,

translocations, transpositions) [7, 8, 9]. More recently, a variety of studies have

considered the more difficult case of genomes with duplicates evolving through re-

arrangements, but also through content modifying operations such as duplications

and losses (reviews in [10, 11]). Other model-free approaches based on conserved

synteny, with no assumption on the evolutionary mechanisms, have also been de-

veloped [6, 12, 13, 14, 15, 16].

In a recent set of papers [17, 18, 19] we related the comparison of two gene orders

to an alignment problem: find an alignment between the two gene orders that can
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be interpreted by a minimum number of evolutionary events (rearrangements and

content-modifying operations). Although alignments are a priori simpler to handle

than rearrangements, this problem has been shown NP-hard for the duplication-

loss model of evolution [17, 18, 20]. Exact exponential-time algorithms based on

linear programming [19, 20] and a polynomial-time heuristic based on dynamic

programming [17] have been developed for this model. Recently [21], we developed

OrthoAlign (alignment of orthologs), a time-efficient heuristic for the gene order

alignment problem, that extends the dynamic programming approach to a model

including rearrangements (inversions and transpositions).

Sequence and gene order alignments are useful for ancestral inference purposes.

As explained in [19], a “labeled” pair-wise gene order alignment can be translated

into a common ancestor and an evolutionary scenario leading to the two compared

gene orders. Such an alignment approach for ancestral inference is relevant if the

two gene orders reflect enough conservation so that we can assume that only few

events have occurred since the divergence of the lowest common ancestor of the

two genomes. For such closely related species, events can be assumed to be non-

overlapping (each gene involved in at most one event) and thus still visible in the

alignment. The gene-order alignment approach has been shown useful to decipher

the evolutionary mechanisms that have shaped the tRNA gene repertoires of the

bacterium Bacillus [19].

Here, we undertake the next step, which is using the alignment approach on a

phylogeny: infer ancestral genomes identified with each speciation node of a phylo-

genetic tree. The alignment on a tree problem introduced by Sankoff et al. in [22],

consists in finding assignments of internal nodes in a way minimizing the total

branch length of the tree according to a given distance. The result is, not only a set

of ancestral genomes, but also a multiple alignment for extant sequences. As trying

all possibilities for internal node assignments is intractable, iterative heuristics on

subtrees are usually considered, the most popular being the median-based heuris-

tic [10, 23]: (1) find an initial assignment for internal nodes; (2) in a post-order

traverse of the tree, improve the assignment of each internal node u by considering

the median of the leaf-assignments of the 3-star tree centered on u, i.e., the tree

formed by the three neighbouring nodes of u; (3) repeat until no improvement on the

tree distance can be made. In the case of genomes represented as gene orders, apply-

ing the exact 2-SPP (2-Small Phylogeny Problem) algorithm [19] or OrthoAlign [21]

to the cherries of the phylogeny can be used for an initial assignment. As for the

iterative step, an efficient algorithm for the median problem has to be found. Al-

though NP-hard for most versions of the problem [24, 25, 26], efficient heuristics

have been developed for various nucleotide and rearrangement distances. As for the

duplication-loss model of evolution, DupLoCut, an “almost” exact algorithm based

on linear programming has been presented in [20].

In this paper, we present multiOrthoAlign for the alignment of a set of gene orders

related through a phylogenetic tree. It is based on a dynamic programming approach

generalizing OrthoAlign [17, 21] to a 3-star tree, under a model involving a wide range

of evolutionary events. multiOrthoAlign is compared with DupLoCut [20], the most

closely related algorithm. Experiments on simulated and real datasets reveal similar

accuracy for both algorithms, but with a significant improvement in running time

for multiOrthoAlign.
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Method
We consider uni-chromosomal genomes represented as strings of signed characters

from an alphabet Σ, where each character represents a gene family. Each character

may appear many times in a genome G, all such positions corresponding to genes

belonging to the given gene family. The sign of a gene represents its transcriptional

orientation. Let X = x1x2 · · ·xn be a string. We call the reverse of X the string

−X = −xn · · ·−x2−x1. We denote by X[i, i+k] the substring of X formed by the

consecutive genes of the interval [i, i+ k].

A phylogeny or species tree S for a set Γ of genomes is a tree with a one-to-one

correspondence between the leaves of S and the species of Γ, reflecting the evolution

of the genomes through speciation. Although the method developed in this paper

does not require any assumption on the species tree, for ease of presentation, we

consider binary and rooted phylogenies. An internal node of S corresponds to a

speciation event and an assignment for that node corresponds to the genome at the

moment of speciation. A phylogenetic alignment S for S is the tree S augmented

with an assignment of one string for each internal node of S. When no ambiguity, we

will make no difference between a node and its assignment. Two nodes are related if

they belong to the same path from a leaf of S to the root, and unrelated otherwise.

For two related nodes A 6= X, A is an ancestor of X if A is closer to the root of S
than X. For two unrelated nodes X 6= Y , they are siblings if they share the same

parental node. A pair of siblings is called a cherry . Moreover, we call a 3-star of S
and we denote by A|XY a star-tree with three leaves A,X, Y such that X and Y

are two siblings in S and A is the immediate ancestor of the parent M of X and

Y . M is called the center of A|XY .

The evolutionary model

We assume that present-days genomes have evolved from an ancestral genome

through rearrangement and content-modifying events, each event (operation) acting

on a uni-chromosomal genome X and leading to a new uni-chromosomal genome

Y . An operation is denoted by O(k) = (OS , OT ), where O is the operation type, k

is the length of the operation, OS is the source, i.e., the substring affected by the

event and OT is the target , i.e., the new substring resulting from the event. Charac-

ters of OS and OT are said to be covered by the operation. The mostly considered

content-modifying operations are duplications and losses, where:

• A Duplication D(k) = (DS = X[i, i + k − 1], DT = Y [j, j + k − 1]), where

Y [j, j + k − 1] = X[i, i + k − 1], is an operation that copies the substring

X[i, i + k − 1] of size k to a location j outside the interval [i, i + k − 1] (i.e.

preceding i or following i+ k − 1);

• A Loss L(k) = (X[i, i+ k − 1],�) (� for empty string) is an operation that

removes the substring X[i, i+ k − 1] from genome X.

The mostly considered uni-chromosomal rearrangements are reversals and trans-

positions, where:

• A Reversal (or inversion) R(k) = (X[i, i + k − 1], Y [i, i + k − 1]), where

Y [i, i+k−1] = −X[i, i+k−1], is an operation that transforms the substring

X[i, i+ k − 1] into its reverse;
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• A Transposition T (k) = (X[i, i+ k − 1], Y [j, j + k − 1]), where Y [j, j + k−
1] = X[i, i+ k− 1], is an operation that moves the substring X[i, i+ k− 1] to

another position j outside the interval [i, i+ k − 1].

Denote by O the set of operation types. We will describe our approach for

O = {D,L,R, T}. Including other events, such as inverted duplications or inverted

transpositions with target being the reverse of the source, insertions which are the

counterparts of losses, or substitutions replacing a string with another of the same

size, do not add any complexity to the problem. Notice however that the more op-

erations we include to the model, the more challenging is the problem of assigning

appropriate operations costs.

Let S be a phylogeny and X, Y be two nodes of S. If X and Y are related, say

X is an ancestor of Y , then a history OX→Y for X and Y is a sequence of events

(possibly of length 0) transforming X into Y . Otherwise, if X and Y are unrelated,

then a history for X and Y is a triplet (A,OA→X , OA→Y ), where A is an assignment

of the lowest-common ancestral node of X and Y . We call a visible history for X

and Y a history where the source and target of each operation is a substring of X

or Y .

Finally, let A|XY be a 3-star of S. A history for A|XY is a quadruplet

(M,OA→M , OM→X , OM→Y ) where M is an assignment of the center of the 3-star.

A visible history for A|XY is a history where the source and target of each operation

is a substring of A, X or Y .

Notice that a duplication with source and target in two different genomes can

be interpreted as a duplication followed by the loss of the source (a relaxation of

visibility), or alternatively as a transposition, or even as a horizontal gene transfer

between the two considered genomes. We will take this general view of a duplication,

which implicitly integrates transpositions.

Genome alignment

We begin by recalling the classical notion of an alignment of strings (genomes)

Γ = {Xk : 1 ≤ k ≤ γ}. Let Σ− = Σ ∪ {−} be the alphabet Σ augmented

with an additional character ‘-’ called a gap. Then an alignment for Γ is a set

Γ = {Xk : 1 ≤ k ≤ γ} of strings obtained by filling Xk with gaps, such that the

resulting aligned genomes have equal length λ, and for each position i, 1 ≤ i ≤ λ,

the column i is not empty in the sense that at least one of Xk[i], for 1 ≤ k ≤ γ, is

not a gap. The induced alignment for a subset Γ′ ⊂ Γ is the alignment Γ′ obtained

by removing from Γ all genomes that are not in Γ′ and all empty columns. Given

a pair (Xl[i], Xm[i]) of aligned characters, it is a match if Xl[i] = Xm[i] ∈ Σ, a

mismatch if Xl[i] 6= Xm[i] both being in Σ and a gap if Xl[i] ∈ Σ and Xm[i] =’-’.

A multiple alignment is expected to reflect the evolutionary events that have led to

the present-day genomes. The notion of an alignment labeling has been introduced

in [19] for a pair-wise alignment. It relates each column of the alignment to a given

operation. Generalization to an arbitrary number of genomes is given bellow. We

will make use of this definition later in the context of a 3-star history.

Definition 1 Let Γ = {Xk : 1 ≤ k ≤ γ} be an alignment of length λ. A labeling

L(Γ) for Γ is a set of operations covering the characters of the given sequences. For
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any l and m in [1, γ] with l 6= m and any i, 1 ≤ i ≤ λ, such that X l[i] 6= ‘−′,
(X l[i], Xm[i]) is covered by at most one operation of Γ as follows:

• if a match, then it is covered by no operation;

• if a mismatch, then it is covered by a reversal;

• if a gap, then it is covered by one of the other operations of O.

with the restriction that, if the two genomes are related, say Xl is an ancestor of

Xm, then the source of the operation should be in Xl and the target should be in

Xm.

A labeled alignment is an alignment Γ accompanied with a labeling L(Γ). We sim-

ply refer to a labeled alignment by its labeling L(Γ). The cost of a labeled alignment

is the sum of costs of all its labeling events.

The above definition does not ensure a valid interpretation of a labeled alignment

in terms of an evolutionary history (A,OA→X , OA→Y ) for two genomes X and Y .

We showed in [19] that a pair-wise labeled alignment is valid if and only if it is free

from cycles, where cycles are defined as follows.

Definition 2 Let O be a set of operations. It induces a cycle if there is a permu-

tation O1, O2, · · ·Oh of O events such that the substrings OT
p and OS

p+1 overlap (a

suffix of OT
p is a prefix of OS

p+1), for each 1 ≤ p ≤ h − 1, and the substrings OT
h

and OS
1 overlap.

A feasible labeled alignment is a labeled alignment with no cycles. We showed

in [19] the one-to-one correspondence between feasible labeled alignments and visible

histories for two genomes X and Y in case of an evolution through duplications and

losses.

Phylogenetic alignment

Let S be a species tree for a genome set Γ. Call a feasible labeled phylogenetic align-

ment for S a phylogenetic alignment S accompanied with a feasible labeled align-

ment for each cherry (X,Y ) of S, in other words a visible history (A,OA→X , OA→Y )

for each (X,Y ). Such a feasible labeled phylogenetic alignment leads to a multiple

alignment for Γ: traverse S in post-order and iteratively incorporate alignments of

cherries in a current multiple alignment which is initially empty.

Let A and X be two genomes of S with A being an ancestor of X and let

OA→X = {O1(k1), · · ·Om(km)} be a history for A and X. The cost of OA→X is

defined as C(OA→X) =
∑m

i=1 c(Oi(ki)), where c(Oi(ki)) is the cost of the opera-

tion Oi(ki). Let OA→X be the set of all possible histories transforming A into X. We

define C(A → X) = minOA→X∈OA→X
C(OA→X). Now, the phylogenetic alignment

problem, is to infer a feasible labeled phylogenetic alignment for S minimizing the

sum of costs of all branches of S.

The relaxed phylogenetic alignment problem with no restriction on visibility, i.e.

the problem of assigning ancestral configurations leading to a minimum cost for

the tree, has been shown to be NP-hard for most formulations in terms of type

of genomes and different distances. A classical heuristic strategy is known as the

steinerization approach [23]. It begins with an initial assignment for the internal

nodes of S, and in a post-order traversal it improves each internal node assignment
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by solving a 3-star problem defined as follows.

3-star Problem:

Input: A 3-star phylogeny A|XY .

Output: A visible history (M,OA→M , OM→X , OM→Y ) for A|XY minimizing the

cost:

C(A→M) + C(M → X) + C(M → Y ).

In the case of symmetrical operations, such as nucleotide substitutions or indels, or

gene order rearrangements, the direction of evolution can be ignored, which leads to

the median problem: find M minimizing C(M,A) +C(M,X) +C(M,Y ). However,

this is not the case for content-modifying operations, as for example a duplication

from A to X is rather a loss from X to A, and therefore the evolutionary direction

cannot be ignored in this case.

For the evolutionary model of interest, the restriction of the phylogenetic align-

ment problem to a cherry has been considered in [17, 19]. The developed al-

gorithm can be used for the initialization step: traverse the tree in a depth-first

manner and compute successive ancestors of pairs of nodes. Here, we extend our

study to a 3-star phylogeny, which allows for the application of the aforementioned

steinerization approach. Notice that the phylogenetic alignment problem has been

shown NP-complete for the duplication-loss model of evolution, already for two

species [20, 17, 18].

The 3-star Problem

We first show that the 3-star problem for a 3-star A|XY reduces to finding a

feasible labeled alignment for {A,X, Y } of minimum cost. It is easy to see that any

visible history for A|XY leads to a unique feasible labeled alignment for {A,X, Y }.
Conversely, let L(A,X, Y ) be a feasible labeled alignment for a 3-star A|XY . A

corresponding visible history for A|XY can be obtained as follows (see Figure 1 for

an example):

• Define (M,OM→X , OM→Y ) as the visible history corresponding to the induced

feasible labeled alignment for X and Y .

• Consider the alignment (A,M), where M is the aligned genome M corre-

sponding to the above history.

• Define L(A,M) as follows. For each i such that (A[i],M [i]) is not a match:

– If X[i] = Y [i] then include in L(A,M) the operation of L(A,X, Y ) cov-

ering the column (A[i], X[i]) (or alternatively (A[i], Y [i])).

– Otherwise M [i] should be equal to X[i] or Y [i]. Assume w.l.o.g. that

M [i] = X[i]. Then include in L(A,M) the operation of L(A,X, Y ) cov-

ering the column (A[i], X[i]).

Therefore, given a 3-star A|XY , we focus here on the problem of finding a feasible

labeled alignment for {A,X, Y } of minimum cost.

Let C(i, j, k) (Cf (i, j, k) respectively) be the minimum cost of a labeled (feasible

labeled respectively) alignment of three prefixes A[1, i], X[1, j] and Y [1, k] of A, X

and Y , for all 1 ≤ i ≤ |A|, 1 ≤ j ≤ |X| and 1 ≤ k ≤ |Y |. Step 1 described bel-

low gives a heuristic for computing C(i, j, k) and Step 2 a heuristic for computing
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A: abcde

X: acdeabdeabde Y: acde

duplication

duplication

loss

loss

abcdeab

M: acdeabde

abcdeabde
duplicationA : a b c d e

X : a c d e a b d e a b d e

Y : a c d e

1 1 1 1 1

1 1 1 1 2 1 2 2 3 2 3 3

1 1 1 1

duplication duplication
duplication

loss

loss loss

Figure 1 Left: a labeled alignment for strings A=“abcde”, X=“acdeabdeabde” and Y=“acde”.
Right: The visible history for A|XY and the center M obtained from this alignment.

Cf (|A|, |X|, |Y |) from C(|A|, |X|, |Y |).

• Step 1. Finding a Labeled Alignment by a dynamic programming ap-

proach.

As explained previously, transpositions are implicitly considered by allowing the

source and target of a duplication to belong to two different genomes. Therefore,

we will restrict our presentation to the model O = {D,L,R}.
To compute C(i, j, k), we consider all the possibilities for the last column of an

alignment of the three prefixes A[1, i], X[1, j] and Y [1, k] and interpret it by the

minimum number of operations. In the following, a column is represented as a

triplet of characters from Σ−, were different letters denote different characters of

Σ. Clearly, each column can be interpreted by no more than 2 operations. If two

operations are required to interpret a given column, then we assume them to be

of the same size. This eliminates the case of a column of the form [a, x, y], as this

would require two reversals of different sizes.

C(i, j, k) is the minimum over all the computed costs.

1 [a, a, a]: All matches.

M(i, j, k) =

{
C[i− 1, j − 1, k − 1] if A[i] = X[j] = Y [k]

+∞ otherwise

2 [a, x, x]: Reversal in both X and Y (i.e. in M).

RXY (i, j, k) =

{
minm∈E(C[i−m, j −m, k −m] + c(R(m))) if E 6= ∅
+∞ otherwise

where E is the set {e1, e2, . . . , el} of maximum cardinality such that A[i−ep, i]
is the reverse of both X[j − ep, j] and Y [k − ep, k] for all 1 ≤ p ≤ l.

3 [a, x, a]: Reversal in X. (The case [a, a, y] is treated similarly)

RX(i, j, k) =

{
minm∈E(C[i−m, j −m, k −m] + c(R(m))) if E 6= ∅
+∞ otherwise

where E is the set {e1, e2, . . . , el} of maximum cardinality such that A[i −
ep, i] = Y [k−ep, k] and A[i−ep, i] is the reverse of X[j−ep, j] for all 1 ≤ p ≤ l.
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4 [−, x, x]: Duplication in both X and Y (i.e. in M)

DXY (i, j, k) =

{
min1≤m≤l+1(C[i, j −m, k −m] + c(D(m))) if X[j] = Y [k]

+∞ otherwise

where l is the largest value such that X[j − l, j] = Y [k − l, k] and X[j − l, j]
has an occurrence in A.

5 [a, x,−]: Reversal in both X and Y , and loss in Y . (The case [a,−, y] is treated

similarly)

RX/Y (i, j, k) =

{
minm∈E(C[i−m, j −m, k] + c(R(m)) + c(L(m))) if E 6= ∅
+∞ otherwise

where E is the set {e1, e2, . . . , el} of maximum cardinality such that A[i−ep, i]
is the reverse of X[j − ep, j] for all 1 ≤ p ≤ l.

6 [−, x, y]: Duplication in both X and Y , and reversal in Y .

DRX/Y (i, j, k) =

{
minm∈E(C[i, j −m, k −m] + c(D(m)) + c(R(m))) if E 6= ∅
+∞ otherwise

where E is the set {e1, e2, . . . , el} of maximum cardinality such thatX[j−ep, j]
is the reverse of Y [k−ep, k] for all 1 ≤ p ≤ l and X[j−ep, j] has an occurrence

in A.

(similar formulae for DRY/X(i, j, k))

7 [a,−, a]: Loss in X. (The case [a, a,−] is treated similarly)

LX(i, j, k) =

{
min1≤m≤l+1(C[i−m, j, k −m] + c(L(m))) if A[i] = Y [k]

+∞ otherwise

where A[i− l, i] is the longest suffixe of A[1, i] such that A[i− l, i] = Y [k− l, k].

8 [a,−,−]: Loss in both X and Y .

LXY (i, j, k) = min0≤m≤i−1(C[m, j, k] + c(L(i−m)))

9 [−, x,−]: Duplication in X. (The case [−,−, y] is treated similarly)

DX(i, j, k) =

{
min1≤m≤l+1(C[i, j −m, k] + c(D(m))) if X[j] has an occurrence in A, X or Y

+∞ otherwise

where l is the largest value such that X[j − l, j] has an occurrence in A, X or

Y .

After computing all the values leading to C(|A|, |X|, |Y |), the labeled alignment

L(A,X, Y ) obtained by a backtracking approach is not necessarily a feasible align-

ment as it may contain cycles. Notice that, since A is an ancestor of both X and Y ,

the target of an event cannot belong to A. Therefore only events with source and

target in X or Y may belong to a cycle.

• Step 2. Resolving cycles.

Let Oc = {O1, O2, . . . , Oh} be a cycle of a labeled alignment L(A,X, Y ) output

by the above algorithm.
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A : a b c d e

X : a c d e a b d e a b d e

Y : a c d e

L

L

1 1 1 1 1

1 1 1 1 2 1 2 2 3 2 3 3

1 1 1 1
Labeled alignment with cycle : 2 duplications (cycle of duplications) and
1 loss in both X and Y

A : a b c d e

X : a c d e a b d e a b d e

Y : a c d e

L

L

1 1 1 1 1

1 1 1 1 2 1 2 2 3 2 3 3

1 1 1 1
Feasible labeled alignment after resolving cycle : 3 duplications, 1 loss
in both X and Y and 1 loss in Y.

L

Figure 2 Two different labeling for the alignment of strings A=“abcde”, X=“acdeabdeabde”
and Y=“acde”. Losses are denoted by “L” and duplications by arrows from source (indicated by
bracket) to target. In the left labeling, “a2b1d2e2” is interpreted as the target of a duplication. In

the right one, it is interpreted in L(X,Y ) as a loss, and in L(A,X) as 2 duplications.

Lemma 1 Any event of Oc is a duplication event.

Proof: Suppose the contrary and let Op be an event which is not a duplication.

Then, by definition, the target OT
p of Op overlaps the source of OS

p+1 of Op+1.

Clearly, Op cannot be a loss as otherwise OT
p is empty and cannot have a non-

empty intersection with OS
p+1. Therefore Op should be a reversal. Assume w.l.o.g.

that OT
p is in Y and let Y [q] be an element of both OT

p and OS
p+1. Let X[r] be

the character of X aligned with Y [r] in L(A,X, Y ). Then X[r] should be in the

source of Op and in the target of Op+1. But this leads to an interpretation of the

corresponding column of L(A,X, Y ) with two events instead of one, which is in

contradiction with the recurrences leading to a minimum number of events for each

column. 2

We resolve cycles as follows. Let Z be the set of all overlapping strings

{Z1, Z2, . . . , Zh} of Oc. Let Ei = {zi1 , zi2 , · · · zil} be a set of substrings of Zi(1≤i≤h)

of minimum cardinality such that zi1zi2 · · · zil = Zi and zik(1≤k≤l) has an occur-

rence in A. Let Zt be the string for which |Et| = min(|E1|, |E2|, . . . , |Eh|). Assume

w.l.o.g. that Zt is a substring of X. Then Zt in L(X,Y ) is covered by a loss in Y ,

and each substring of Zt in L(A,X) is covered by a duplication in X (source in A)

(see Figure 2 for details).

Complexity: For simplicity, assume that |A| = |X| = |Y | = n. From the recur-

rences detailed above, each C(i, j, k) can be computed in linear time, leading to an

O(n4) worst-time complexity for Step 1. Now, the complexity of Step 2 depends on

the complexity for finding all cycles and resolving them. As cycles can only involve

strings from X and Y , the problem reduces to the case of cycle-resolution for a

pair-wise alignment, which has been shown quadratic (submitted journal version

of [17]). This leads to a worst-time complexity of O(n4) for the whole algorithm.

Experimental Results
We call multiOrthoAlign our algorithm for the phylogenetic alignment problem based

on the steinerization approach described in Section and using our 3-star algorithm

for the iteration step.

In this section, we compare multiOrthoAlign with DupLoCut [20], on simulated

and real-world instances. DupLoCut is an “almost” exact heuristic based on linear
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Average running times in minutes after one round of reoptimization
Parameters (n, σ=n/10, l=n/3) multiOrthoAlign DupLoCut
(150,15,50) 0.33 48.93
(200,20,67) 0.90 110.12 (' 2 hours)
(250,25,84) 3.07 370.60 (> 6 hours)

Table 1 Running times comparison between multiOrthoAlign and DupLoCut on simulated triplet
phylogenies after one round of reoptimization. Times are averaged over 50 simulations for the first
choice, and 10 simulations for the second and the last one. Average running times are reported in
minutes.

programming. For the sake of comparison with DupLoCut [20], we consider a model

restricted to duplications and single gene losses. Indeed, DupLoCut is restricted to

this evolutionary model. Moreover, we consider the default cost of one for each

event.

Simulations

We generate phylogenetic trees with 3 extant genomes. The genome at the root is

generated in 2 steps. First, a random sequence R of length n on an alphabet of

size σ is generated. Then, l moves (duplications and single gene losses) are applied

to R where duplication length follows the geometric distribution of parameter 0.5.

All other genomes along the tree are generated by applying l moves to their direct

ancestor.

Execution time: We compare the running-time of our 3-star algorithm with that

used in DupLoCut for the reoptimization steps. Running times were recorded using

a 8-core Intel(R) 3.6 GHZ processor, with 16 GiB of memory. Table 1 gives average

running times after one round (iteration) of reoptimization for simulations generated

with three choices of parameters n, σ and l. Although multiOrthoAlign’s running

time increases slightly with increasing values of n, σ and l, it is still within a few

minutes for n = 250. In comparison, the same data took more than 6 hours to be

processed by DupLoCut.

Accuracy: In order to test the performance of multiOrthoAlign in terms of accuracy,

we used two measures: Error = Inf−Opt
Inf where Inf is the number of events inferred

by multiOrthoAlign and Opt is the “almost optimal” number of events obtained by

running DupLoCut; Accuracy = NbOpt
Total , where NbOpt is the number of simulations

among Total (number of all simulations) for which multiOrthoAlign returns the same

number of events as DupLoCut.

The same algorithm (2-SPP [19]) was used for the initialization step of both

multiOrthoAlign and DupLoCut. Figure 3 gives results for different choices of the

parameter l. With ratios σ/n = 1/2 and l/n = 1/20, multiOrthoAlign returns the

same cost as DupLoCut for more than 96% of the simulations. This accuracy rate

remains stable for decreasing alphabet size (results not shown), i.e., for increasing

number of gene copies, but decreases quickly as the number l of moves increases

(left diagram of figure 3). However, the average Error remains lower than 0.008

(right diagram of figure 3).

In order to test the algorithm on larger trees, we generated a phylogenetic tree

with 100 extant genomes. The genomes along the tree were generated as described
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Figure 3 The genome length is fixed to n = 100 and the alphabet size to σ = n/2; diagrams are
obtained by varying the number of moves l (x-axis is l/n); results are averaged over 50
simulations. Left: Accuracy of multiOrthoAlign compared with DupLoCut. Right: the average
Error.

above for triplet phylogenies, with parameters n = 100, σ = 50 and l = 5. Fig-

ure 4 illustrates the total cost of the tree (number of duplication/single gene loss

events) obtained after each iteration of multiOrthoAlign (blue line) and DupLoCut

(red line). After the initialization step (iteration 0), the total cost obtained by mul-

tiOrthoAlign is 1632. After 6 rounds of reoptimization, the two programs converge

to a local minimum (no improvement can be made), with a total cost of 1100 for

multiOrthoAlign and of 1124 for DupLoCut. Our cost is always slightly better in this

case. Notice that, although DupLoCut is “almost” exact for the median problem,

the whole steinerization procedure does not guarantee any optimality result.

 1100

 1632

 1930

 0  1  2  3  4  5  6

T
ot

al
 c

os
t

Iteration

Total cost

MultiOrthoAlign (with OrthoAlign)
DupLoCut

MultiOrthoAlign

Figure 4 Total cost obtained by multiOrthoAlign versus the one obtained by DupLoCut. Blue
refers to the cost obtained by multiOrthoAlign when we used the 2-SPP algorithm for the
initialization step, green to the cost obtained by multiOrthoAlign when we used OrthoAlign for
the initialization step, and red to the cost obtained by DupLoCut.

Using OrthoAlign instead of the 2-SPP algorithm for the initialization step would

be something natural to do for reducing the running time of the whole procedure.
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Figure 5 Phylogenetic tree of the 12 Bacillus strains taken from the webpage
(http://ccb.jhu.edu/software/duplocut).

However, as illustrated in Figure 4 (green line), the initial assignment obtained with

OrthoAlign in this case leads to a cost of 1930 which is far from the best solution

found. Notice that 2-SPP is an exact algorithm for pair-wise alignment and Or-

thoAlign is a heuristic which does not guarantee the optimal result. multiOrthoAlign

converge to a local minimum of 1401 events after 4 rounds of reoptimization.

Real data

We also compared the two approaches on the set of real-world instances used in [20].

The set contains the stable RNA genes of 12 Bacillus strains of four species (amy-

loliquefaciens, subtilis, thuringiensis, and cereus). The phylogeny shown in Figure 5

is taken from the webpage (http://ccb.jhu.edu/software/duplocut).

Using 2-SPP for the initialization step, multiOrthoAlign leads to a cost of 136 after

the initialization step, and converges to a local minimum of 123 events after 2 rounds

of reoptimization. As for DupLoCut, it converges to a local minimum of 120 events

after 5 rounds of reoptimization. However, using OrthoAlign instead of 2-SPP for

the initialization step, multiOrthoAlign leads to a cost of 131 after the initialization

step, which is not refined by subsequent iterations. It therefore appears that 2-SPP

is a more appropriate initialization procedure than OrthoAlign.

Conclusion
We have developed multiOrthoAlign, a phylogenetic alignment algorithm for a

genome-wide evolutionary model involving duplications, losses and rearrangements.

It uses a generalization of OrthoAlign [21], a recently developed pair-wise alignment

algorithm, to the median of three genomes. Our algorithm for the median problem

is a heuristic that does not guarantee any optimality result. Compared with DupLo-

Cut, the most closely related existing algorithm, multiOrthoAlign exhibits similar

results but is much faster. The method can be easily extended to other content-

modifying and rearrangement operations such a substitutions, insertions, tandem

duplications or inverted duplications. However, the more operations we add, the

more challenging is the problem of finding appropriate costs for operations, and

appropriate criteria to deal with the non-uniqueness of solutions.
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