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Abstract

Background: The “small phylogeny” problem consists in inferring ancestral genomes associated with each

internal node of a phylogenetic tree of a set of extant species. The existing methods can be grouped into two

main categories: the distance based methods aiming at minimizing a total branch length, and the synteny-based

(or mapping) methods that first predict a collection of relations between ancestral markers in term of “synteny”,

and then assemble this collection into a set of Contiguous Ancestral Regions (CARs). The predicted CARs are

likely to be more reliable as they are more directly deduced from observed conservations in extant species.

However the challenge is to end up with a completely assembled genome.

Results: We develop a new synteny-based method that is flexible enough to handle a model of evolution

involving whole genome duplication events, in addition to rearrangements and gene insertions and losses.

Ancestral relationships between markers are defined in term of Gapped Adjacencies, i.e. pairs of markers

separated by up to a given number of markers. It improves on a previous, more conservative method, restricted

to direct adjacencies, that revealed a high accuracy for adjacency prediction, but with the drawback being of

generating a high number of CARs. Applying our algorithm on various simulated data sets reveal good

performance as we usually end up with a completely assembled genome, while keeping a low error rate.

Availability: Text for this section of the abstract . . .
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1 Background

One of the aims of comparative genomics is to reveal the evolutionary scenario that has led to an observed

set of present-day genomes from hypothetical common ancestors. When a speciation history, represented as

a phylogenetic tree, is already known, then the problem reduces to that of finding ancestral genomes, in

terms of content and organization, for non-terminal nodes of the tree. The reconstruction of ancestral

karyotypes and gene (or any markers) content and order has been largely considered by the computational

biology community [1–8]. For most formulations in terms of different kinds of genomes (circular,

multichromosomal, single or multiple gene copies, signed or unsigned genes) and different distance metrics,

even the simplest restriction in term of the median of three genomes, has been shown NP-hard [9]. As

reviewed in [10, 11], the considered methods can be grouped into two main classes. The distance-based

methods aim at labeling ancestral nodes in a way minimizing total branch length over the

phylogeny [3,6–8,10]. On the other hand, the synteny-based (or mapping) methods [2,4,5,12] rely on three

steps: (1) Infer a collection of ancestral genes; (2) Infer a collection of relations between ancestral genes in

terms of “synteny”; (3) Assemble this collection into an ancestral genome. In contrast to a distance-based

approach, the output of a synteny-based approach is a set of Contiguous Ancestral regions (CARs) that is

not guaranteed to be completely assembled into a genome. However, the predicted CARs are likely to be

more reliable as they are more directly deduced from observed conservations in extant species. The first

formal method based on this approach was developed by Ma et al. [5]. In this algorithm, syntenies are

adjacencies, sets of ancestral relations are computed by the Fitch parsimony algorithm and a greedy

heuristic is used for the assembly. Another class of synteny-based methods [4, 13] define ancestral relations

in term of common intervals, represent them in a 0-1 matrix, and then use an approach known as the

Consecutive Ones problem (C1P) [14] to translate the matrix into sets of ancestral CARs. The translation

is direct in case of a collection of ancestral relations being all compatible, but in general the problem of

transforming the matrix into a C1P matrix in an “optimal” way is hard, and appropriate simplifications

are considered. The result of such methods is not a unique ancestral gene order but rather a PQ-tree

representing a collection of possible orders.

Most computational methods for comparative genomics account only for markers with exactly one copy in
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every considered extant genome. A few extensions to genomes with unequal gene content have also been

considered [2,13,15]. The case of multiple gene copies is more challenging as the one-to-one correspondence

between orthologs is missing. Recently, a number of ancestral genome inference studies have accounted for

multiple gene copies in the very special case of an evolution by Whole Genome Duplication (WGD). WGD

is a spectacular evolutionary event that has the effect of simultaneously doubling all the chromosomes of a

genome. Evidence of WGD has shown up across the whole eukaryote spectrum. A distance-based approach

for inferring a pre-duplicated genome has been developed in 2003 [16], and extended to the median

problem [17–19]. However, the synteny-based approach is more naturally extendable to WGD events.

Indeed, as the pre-duplicated genome has single gene copies, as long as an appropriate way for inferring

“Double Conserved Synteny” (DCS) relations between ancestral markers is found, the assembly part can

be taken without any modification. In [20], Gordon et al. used a “manual” approach to reconstruct the

ancestral yeast genome. Formal extensions of the synteny-based approach to handle WGD have also been

developed [2, 10, 21].

In this paper, we present a new synteny-based method for ancestral genome inference, allowing for

evolutionary scenarios involving WGDs and gene losses, where relations between ancestral genes are

defined as Gapped Adjacencies , i.e. pairs of genes separated by up to a fixed number of genes. It is an

extension of a previous method [2] where relations between genes were defined in term of “direct”

adjacencies. The assembling step is based on the computation of a rigorous score for each potential

ancestral gapped adjacency (g, h), reflecting the maximum number of times g and h can be adjacent in the

whole phylogeny, for any setting of ancestral genomes. To make the link with the “consecutive one”

framework [4, 13], the syntenies that we consider in this paper can be related to gapped gene teams, while

those considered in [4] are related to various types of common intervals [22]. However the assembling

methods and the output of the algorithms (a set of CARs versus a PQ-tree) are very different. In the

absence of WGD events and gene losses, the approach most comparable to ours is the one developed by Ma

et al. [5]. In case of direct adjacencies, the algorithm in [2] revealed a higher accuracy for adjacency

prediction than Ma’s algorithm, but with the counterpart being a higher number of CARs, preventing from

recovering a completely assembled genome. In this paper, relaxing the constraint of adjacency to gapped

adjacency allows to improve on these results. Indeed, applying our algorithm on simulated data sets reveals

that we usually end up with a completely assembled genome, while keeping a low error rate.

3



2 Methods
2.1 Problem statement and preliminary concepts

Problem statement:

Input: A set Γ of n modern genomes, a species tree S for Γ, and an internal node ν of S representing a

speciation event of interest;

Output: An ancestral genome at node ν.

Formally, a species tree (or phylogeny) for Γ is a tree S with n leaves, where each genome of Γ is the label

of exactly one leaf, and each internal node (called speciation node) has exactly two children and represents

a speciation event. We say that S is labeled if each internal node u of S has a label G(u) corresponding to a

hypothetical ancestral genome just preceding the considered speciation event.

Considering a set Σ of genes, a genome is a set {C1, C2, · · ·CN} of chromosomes, where each chromosome

is a sequence of signed elements from Σ. Chromosomes can be circular or linear, but we always use a

circular representation by adding an artificial gene O at the end of a linear choromosome and considering

the augmented chromosomes as circular. Given a genome G, we call the gene set of G and denote by

ΣG ⊆ Σ the set of genes present in G (including O). For example, the gene set of the genome labeling the

leftmost leaf of the tree in Figure 1 is {O, a, b, c}. We further denote by ±ΣG the set obtained from ΣG by

considering each gene in its positive and negative directions. By convention, the gene O is always

considered positive. A multiset of ±ΣG is a subset of ±ΣG with possibly repeated genes. Given a gene

g ∈ ΣG, we denote by mult(g, G) the multiplicity, i.e. number of copies, of g in G. In particular, the

multiplicity of O is the number of chromosomes of G. For example, the multiplicity of gene a in the

genome labeling the leftmost leaf of the tree in Figure 1 is 4. We extend our notation to define, for node u

of the tree, Σu and mult(g, u) as the set of genes present in the genome at node u and the multiplicity of g

in that genome.

2.1.1 Evolutionary model

Our model involves rearrangements and content-modifying operations. As we adopt a synteny-based

approach, rearrangements are only implicitly considered, as only traces of these rearrangements in term of

disrupted gene adjacencies are considered. In other words, all kinds of rearrangement events can be present

in the history. Our approach also allows for unequal gene content, resulting from gene losses or insertions.

As for the multiplicity of genes, the only operation leading to multiple gene copies (genes with multiplicity
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≥ 2) considered is the Whole Genome Duplication (WGD). Formally, a WGD is an event transforming a

genome G = {C1, C2 · · ·CN} of N chromosomes into a genome GD containing 2N chromosomes, i.e.

GD = {C1, C
′
1, C2, C

′
2 · · ·CN , C′

N}, where, for each 1 ≤ i ≤ N , Ci = C′
i.

In addition to the assumption that WGDs are the only events responsible for gene multiplicity (in

particular, single-gene duplications are not considered), we suppose that, in each genome, at least one gene

reflects the doubling status of the genome, i.e. there exists a gene that has not lost any copy. As noticed by

Zheng et al. [19], under these assumptions, the number and position of WGD events can be easily deduced

from the multiplicity of the most frequent gene found in each genome. To account for such events, new

internal nodes, called WGD nodes , are added appropriately on the edges of S (see Figure 1). Contrary to

speciation nodes, each WGD node has only a single child. Moreover, if all extant genomes have a gene with

multiplicity greater than 1, then a WGD node is inserted above the root of S.

{a:2,b:2,c:1}

{a:2,b:2,c:1}

O a a b c
O b a a c

{a:1,c:1}

O a cO a a b cO a a b c b

{a:1,b:1,c:1}

loss of c

loss of b

insertion of b

loss of b

{O:2,a:4,b:2,c:2} {0:1,a:2,b:2,c:1} {O:1,a:2,b:1,c:1} {O:1,a:2,c:1}

{a:2,b:1,c:1}

d

r

Figure 1: A species tree with each leaf labeled with its corresponding genome. For simplicity, we consider all the genes to be
positively signed. The last line below each leaf is the gene set and multiplicity of each gene. Single circles indicate speciation
nodes, while double-circles indicate WGD nodes. Applying the procedure described in the text leads to the gene set assignment
and multiplicity given as labels of internal nodes. This assignment leads to the indicated insertion and losses.

2.1.2 Adjacencies

Given a genome G, let g ∈ ΣG and h ∈ ±ΣG. We say that h is a 1-adjacency, a direct adjacency or simply

an adjacency of g in G iff it is a left or right adjacency of g where: h is a left-adjacency of g in G iff

“h + g” or “ − g − h′′ is a substring of G. Symmetrically h is a right-adjacency of g in G iff “ + g h′′ or

“ − h − g” is a substring of G.

We now extend 1-adjacencies to gapped adjacencies , i.e. to α-adjacencies for an arbitrary value of α, by

allowing for interleaving genes. Let G = g1g2...gn. As already defined, the set of 1-adjacencies of gi is

{gi−1,gi+1}. We can as well define the set of 2-adjacencies of gi as {−gi−1, gi−1,−gi+1, gi+1}, etc. In

general, for α ≥ 1, gi is α-adjacent to {gi±k | 1 ≤ k ≤ ⌊(α + 1)/2⌋} ∪ {−gi±k | 1 ≤ k ≤ ⌊α/2⌋}.

We denote by LA(g, α, G) and RA(g, α, G), or just LA(g, G) and RA(g, G) if α = 1, the multisets of left
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and right α-adjacencies of the one or more copies of g in G. For example, for the genome G labeling the

leftmost leaf in the tree of Figure 1, we have LA(a, 1, G) = {O, a, b, a} and RA(a, 1, G) = {a, b, a, c}.

2.1.3 Conserved Adjacencies

For genomes with single gene copies, it is easy to define the number of α-adjacencies preserved along a

branch (u, v) of a labeled tree S as the number of substrings of size α + 1 between G(u) and G(v) bounded

by the same genes. This definition is not directly transposable for genomes with multiple gene copies, as

the one to one orthology between genes is not set. Instead, for each gene g, we compare its left and right

α-adjacency multisets in G(u) and G(v). More precisely, we define

adjCons(g, α, G(u), G(v)) = |LA(g, α, G(u)) ∩ LA(g, α, G(v))| + |RA(g, α, G(u)) ∩ RA(g, α, G(v))|, as the

number of left and right conserved α-adjacencies of g on (u, v), and

adjCons(α, G(u), G(v)) =
∑

g∈Σu∩Σv

adjCons(g, α, G(u), G(v))

as the number of conserved α-adjacencies on the branch (u, v). Finally, the number of conserved

α-adjacencies over the whole tree S, denoted as adjCons(α, S) (or just adjCons(S) for α = 1), is the sum

of adjCons(α, G(u), G(v)) for all branches (u, v) of S.

Remark: In adjCons(α, G(u), G(v)) we account for each adjacency conservation twice. It may appear that

right adjacencies alone (or, symmetrically, left adjacencies) are sufficient to reflect adjacency conservation

between two genomes. But consider, for example, the sequence “+1 − 2 + 3 − 4”. If we just consider right

1-adjacencies, then the subsequence “+1 − 2” will be considered twice (as −2 is the right adjacency of 1

and −1 is the right adjacency of 2) but the subsequence “−2 + 3” will not be considered (as −3 is the left

adjacency of 2 and −2 is the left adjacency of 3).

2.2 Ancestral gene content

The first step of any ancestral inference method is to assign ancestral gene content and multiplicity at each

ancestral node. We consider a natural procedure, inspired from [20], assuming a model with no convergent

evolution and minimum losses. We say that a node v is a direct descendant of a WGD node u if and only if

v is a WGD node or a leaf and there is no other WGD node on the branch from u to v. To assign gene

content Σu and gene multiplicity at each internal node u of S, we apply the two following operations in two

bottom-up traversals of S: (1) For each WGD node u and each gene g, let v be the direct descendant of u

with maximum multiplicity for g. If mult(g, v) ≥ 2 then assign g to u and define mult(g, u) = ⌊mult(g,v)
2 ⌋.

6



For example after a traversal of the species tree S of Figure 1, the gene set of the WGD node d only

contains a and b, as the maximum multiplicity of c in the direct descendants of d is 1; (2) Assign a gene g

to any internal node u of S on a path from the node of S representing the least common ancestor (LCA) of

all the nodes containing g (leaves or WGD nodes), to any leaf containing g. Moreover, if not already

defined, define mult(g, u) as the maximum multiplicity of g in u’s children.

In the rest of this paper, we will assume that gene content and multiplicity is set for all nodes of S. A

correct labeling, or simply a labeling G(u) of a node u of S will refer to a genome respecting the content

and multiplicity constraints given by Σu. Notice that, by construction (taking the maximum multiplicity of

each gene at each internal node), there is no increase of multiplicity (except in case of an insertion) from a

node u to a child v, unless u is a WGD node, in which case the multiplicity of a gene is at most doubled.

Such a construction guarantees that any labeling of S can be explained by an evolutionary scenario in

agreement with the hypothesis of WGDs being the only events responsible for gene multiplicity.

2.3 A synteny-based method accounting for direct adjacencies

In [2], we have presented a synteny-based method that infers a pre-duplicated ancestral genome at a node

ν corresponding to a highest WGD node of S, or any node preceding a first WGD node. More precisely,

the method infers a genome G(ν) such that adjCons(S|G(ν)) is maximized, where adjCons(S|G(ν)) is the

maximum number of conserved adjacencies over the whole tree S, for any ancestral genome assignment,

with the constraint that genome G(ν) is assigned at node ν (see details in [2]).

For any node u of S, define LeftAdj(g, S|LA(g,G(u))=X) (resp. RightAdj(g, S|RA(g,G(u))=X)) as the

maximum number of left (respec. right) adjacencies that can be preserved over the whole tree, for any

ancestral genome assignment with the constraint that the genome G(u) satisfies LA(g, G(u)) = X , where

X is a multiset of mult(g, u) potential adjacencies selected from ±Σu \ {g} . The following upper bound on

the objective function allows to treat each gene independently.

adjCons(S|G(u)) ≤
∑

g

LeftAdj(g, S|LA(g,G(u))=X) +

RightAdj(g, S|RA(g,G(u))=X)

The method, that we call DirectAdj, proceeds in two steps summarized below.

STEP 1: For each internal node u of the tree (speciation or WGD node), each gene g ∈ Σu, and each

multiset X of possible adjacencies of g at node u, we compute LeftAdj(g, S|LA(g,G(u))=X) and
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RightAdj(g, S|LA(g,G(u))=X) using a Dynamic Programming Algorithm. The values at a node u are

computed from the values at the two children and also at the parent of u. An illustration is given in

Figure 2.

g {a,b} g {a} g {a}

g {a}

{a,b} : 6

{a,a} : 6

{b,b} : 4
g

g {a}
1

1 1

2 1

u

(2)

(2)

(1) (1)

(1)

(1)

Figure 2: An illustration of STEP 1 for a gene g and an internal node u. Numbers in brackets indicate the multiplicity of
gene g at each node of the tree. Multisets at leaves represent (say left) adjacencies of gene g in the corresponding genome. All
multisets X of possible adjacencies of g at node u are shown, followed by the value of LeftAdj(g, S|LA(g,G(u))=X). The rest of
notation illustrates how the value 6 is obtained at u for the multiset {a, a}: the root and WGD node labels are the adjacencies
that have to be set for g, and the label of an edge (v, w) is the number of conserved adjacencies for g on that branch.

STEP 2: For the node ν for which an ancestral genome is sought, we obtain the desired pre-duplicated

genome by chaining adjacencies. As ν is a node in a tree with no WGD, or a first WGD node in a history,

the multiplicity of genes can be ignored at ν, as in the first case each gene g of Σν is present exactly once

at ν, and in the second case all copies of g have the same adjacency. At this node we use the notations

L(g, h) = LeftAdj(g, S|LA(g,G(ν))={h}) and R(g, h) = RightAdj(g, S|RA(g,G(ν))={h}). We proceed by a

reduction to the Traveling Salesman Problem (TSP) on a complete undirected graph Q where vertices

correspond to genes, and an edge (g, h) is weighted according to a ratio (L(g, h) + R(h, g))/MaxAdj(g, S),

where MaxAdj(g, S) is the number of nodes of S containing g. The division by MaxAdj(g, S) allows to

correct for genes that are lost in some parts of the tree, which avoids favoring genes with high multiplicity.

Moreover, as noticed in [2], the result of the TSP is usually one long chromosome concatenating long

CARs. To avoid this drawback, we define TSP-τ by augmenting the initial TSP heuristic with the

procedure of cutting, from the inferred ancestor, all adjacencies with weight less than a certain threshold τ

(see Section 2.4.2). All details on costs, the heuristic used to solve the TSP and how to handle

chromosomal endpoints and gene signs, are given in [2]. In the following section, we generalize the

approach described above to allow for a more flexible notion of synteny in term of gapped-adjacencies.

2.4 Generalization to gapped adjacencies

Before describing our new algorithm called GapAdj, which is a generalization of DirectAdj accounting for

α-adjacencies for increasing values of α, we motivate our new approach in the following section.
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Many adjacencies in an ancestral genome are likely to be no longer present in some present-day genomes

due to rearrangements and content-modifying operations, preventing from reconstructing large CARs.

However, assuming that small and local evolutionary events are more frequent than large and far-reaching

operations, which has been largely supported in the literature [23], we can expect to reconnect neighboring

CARs by considering gapped adjacencies of increasing gap-size.

Consider for example the species tree (A) of Figure 3. As a and b are neighboring genes in all three

genomes, we expect the inferred ancestral genome at the root of the tree to have a CAR with neighboring

genes a and b. However, as all (right) direct adjacencies of a are different (b in 1, −b in 2 and x in 3), none

of these adjacencies would have a score attaining a reasonable minimum cost τ for the TSP, and a and b

will end up in two different CARs with algorithm DirectAdj. However, as b (and also −b) is a 2− adjacency

of a in two extent genomes, and a 3 − adjacency of a in all three genomes, they will be in the same CAR

after the second or third iteration of GapAdj algorithm.

As another example, consider a “true” evolutionary scenario depicted in Figure 3.(B). Consider a threshold

τ for TSP-τ corresponding to an adjacency being present in two of the three extent species. Then, as the

only direct adjacency present at least twice in extent genomes is bc, the result of DirectAdj is a set of CARs

with a and bc being in two separate CARs. However, as b is a 3-adjacency of a in species 1 and 2 (it is

actually the only adjacency reaching the threshold up to α = 3), GapAdj would end up with a CAR

containing the sequence abc after iteration α = 3.

... a b c ...
(A)

... a x b ... 

(B)

... a b c ... ... a −b c ... ... a −c −b ... ... a −b ...... a b ...
1 2 3 1 2 3

... a b c ...

1 inversion

1 inversion

Figure 3: A species tree for the set of species Γ = {1, 2, 3}, with two different genome assignments at leaves. Example (B)
depicts a most parsimonious inversion scenario leading to the observed genomes.

2.4.1 Algorithm

The full GapAdj algorithm is given in Supplementary Algorithm 1 (appendix). The output of GapAdj is

the set of CARs C representing the ancestral genome at node ν of S. This set is first initialized to the set

Σν of genes at ν (each gene being assigned to its own CAR). The algorithm proceeds by iterating the

two-step procedure described in Section 2.3 on increasing values of α, from 1 to a constant MAXα. Step 1

consists in computing α-adjacency scores. The dynamic programming algorithms detailed in [2] for
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computing the scores LeftAdj(g, S|LA(g,G(u))=X) and RightAdj(g, S|RA(g,G(u))=X) of left and right

adjacencies of a gene g with a multiset X at a node u of S are directly generalizable to account for

α-adjacencies, i.e. to compute the scores LeftAdj(g, S|LA(g,α,G(u))=X) and RightAdj(g, S|RA(g,α,G(u))=X).

As for Step 2, we proceed by constructing a complete undirected graph Q where vertices are the two

extremities of each CAR, and edges are weighted according to α-adjacencies scores, computed at Step 1, of

the two genes at the extremities of each CAR. A heaviest Hamiltonian cycle through Q, where edges under

a threshold τ are excluded, corresponds to an hypothetical ancestral genome characterized by a set of

CARs Cα with |Cα| ≤ |Cα−1|. This instance of the TSP is solved using the Chained Lin-Khernigan

heuristic implemented in the Concord package [24].

2.4.2 Choice of parameters

An important parameter of our algorithm is the cut-off value τ used to filter out less reliable adjacencies

from the solution produced by the TSP algorithm. Based on the simulations that we have performed in [2],

we choose a fixed threshold allowing for the best balance between error rate and number of CARs

produced. The chosen threshold τ corresponds roughly to keeping an adjacency if and only if it is

conserved in at least 70% of the tree branches. Another important parameter of our algorithm is the

constant MAXα, corresponding to the maximum value of α to be considered, which affects both the

running time, the final number of CARs and their accuracy. Clearly MAXα does not need to be more than

the size of the longest chromosome of Γ, as no improvement can be achieved for larger values. Unless

explicitly indicated, we use MAXα = 50.

3 Results and Discussion

To evaluate the accuracy and running time of our approach, we first used data obtained from simulated

genome evolution. This allows us to dissect the impact of each aspect of the method and of the data on the

accuracy of the reconstructed ancestor. Our simulations are based on the phylogenetic tree of yeast species

shown in Figure 4 (A), which is ideal for this type of study as it contains a phylum affected by a

whole-genome duplication and another that remains non-duplicated. Each of the simulation-based results

reported in this section are averaged over 50 repetitions.
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ancestor
non−duplicated

pre−duplicated
ancestor

pre−duplicated
ancestor

Oryza sativa Brachypodium distachyon
1012

10720

5

10649 9364

Sorghum bicolor

(B)
Zygosaccharomyces rouxii

Candida galabrata

Saccharomyces cerevisae

0

Kluyveromyces lactis

Eremothecium gossypii

Saccharomyces bayanus*

Naumovia castellii*

Vanderwaltozyma polyspora*

reconstructed ancestor
Gordon et al.

Lachancea kluveri

Lachancea walti*

700

342

377

527
120

186

0

3692

245

6

5012
209

73
107

140

17

65

46

0

145

97

225

4705
8

7
4557

6
4503

7
4384

19
4429

8
4523

8
4601

5127
249

4906
13

242
4636

5157
16

Post−WGD
species

Non−WGD
species

[12]

(A)

Lachancea thermotolerans

ρ

σ

τ

Figure 4: (A) Evolution of the 11 yeast species recorded in the Yeast Gene Order Browser, as given by [25]. The * indicates
partially sequenced organisms. At leaves, the top number is the number of chromosomes, contigs or scaffolds. The bottom
number is the number of genes, as reported in [20]. On each branch, the label is the number of gene losses, which is directly
inferred from the gene content at leaves. The simple circle is the root of the monophyletic group of non-duplicated species,
referred in the text by σ. (B) The phylogenetic tree for Oryza sativa (rice), Brachypodium distachyon (brachypodium) and
Sorghum bicolor (sorghum). At leaves, the top number is the number of chromosomes. The bottom number is the number of
markers used in the study of Section 3.4.

3.1 Simulations with no WGD

In the absence of WGD events, the method that is most comparable to ours is the one of Ma et al. [5],

implemented in a program called InferCAR. As this method does not support gene losses, we first restrict

our simulations to a model with rearrangements only. In addition, as a first validation, we consider single

chromosomal genomes, and inversions as the only rearrangement events.

We simulated data sets based on the yeast phylogenetic tree but excluding the portion affected by the

WGD. The tree contains six non-duplicated species. The node of interest is the root σ of the monophyletic

group of five species (indicated by a simple circle in Figure 4 (A)). A simulated genome of two hundred

genes is placed at the root ρ of the tree, and a number r of inversions are randomly performed on each

branch of the tree, where r is chosen randomly in the interval [ rmax
2 , rmax], for a given constant value

rmax. Notice that the maximum value rmax = 25 considered in our simulations leads to some of the leaf

genomes being almost completely shuffled, as four or five branches separate them from the root, which lead

to the creation of about 160 to 200 breakpoints. The length of inverted segments follows a geometric

distribution with p = 0.5, resulting in the majority of inversion involving a small number of genes, as

previously suggested [23].

Figure 5 (two left diagrams) illustrates the two algorithms’ error rates, computed as the fraction of inferred

α-adjacencies (for 1 ≤ α ≤ MAXα) that are not present as α-adjacencies in the true simulated ancestor at

σ, while the right diagram illustrates the number of CARs obtained (on average) for that ancestor. Both
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algorithms show a high accuracy for adjacency prediction, as the error rate is always lower that 10%. Our

GapAdj algorithm almost always recovers a complete genome (i.e. a single CAR), which is very rarely the

case of InferCAR, which yields an average of 6 CARs for rmax = 25. However, this increase in CAR

concatenation is obtained at the cost of a small loss of precision.
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Figure 5: Simulations for a tree without WGD, and a maximum of rmax inversions (x-axis on the two left diagrams) on each
branch. Red curves are the results of GapAdj and the blue ones those of InferCAR. From left to right, (1st): Error rate for the
inferred ancestral genome; (2nd) Number of inferred CAR; (3d) Error rate and (4th) Number of CARs obtained by GapAdj .
For these two diagrams rmax = 20 and values on the x-axis correspond to the parameter MAXα.

Figure 5 (two right diagrams) illustrates the progression of the error rate and CAR number for increasing

values of α. It provides a comparison with the initial algorithm DirectAdj [2] that only considers direct

adjacencies (α = 1). From α = 1 to α = 50, the number of CARs drops from 20 to a single chromosome,

while the error rate is increased by less than 4%. These preliminary results are promising as the initial goal

of obtaining a completely assembled genome while keeping a low error rate is attained in this case.

We then consider an extended model of evolution for multichromosomal genomes that evolve through

inversions, inter-chromosomal rearrangements (translocations, fusions, fissions) and gene losses. Based on

the same six-leaf species tree described above, we simulate data sets starting with a 2-chromosome,

200-gene genome at the root ρ of the tree. The number of gene losses on each branch is proportional to

that observed in actual yeast genomes, while the proportion of each type of rearrangement operation is

chosen to be similar to that reported for S. cerevisiae in [20]: (Inv : Trans : Fus+Fiss) = (5 : 4 : 1). The

results given in Figure 6 (two leftmost diagrams) reflect the difference in gapped-adjacencies and number of

chromosomes between the real and predicted genome at node σ. Notice that chromosomal fusions and

fissions may occur on the branch from ρ to σ, so the true number of chromosomes depicted in the second

diagram of Figure 6 is not always 2. Interestingly, the curve for inferred CARs roughly follows the curve

for true CARs. In addition, the error rate remains lower than 12% in all cases.
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Figure 6: From left to tight, (1st) Error rate and (2nd) Number of CARs obtained by GapAdj on simulations following a
model accounting for multichromosomal genomes evolving through gene losses, and a maximum of rmax (x-axis) inversions
and inter-chromosomal rearrangements per branch of the tree. (3d) Error rate obtained by GapAdj on simulations performed
according to the cereal tree (Figure 4(B)) and the subtree of yeast rooted at τ (Figure 4(B)). The model accounts for inversions,
inter-chromosomal rearrangements, gene losses and one WGD. The two red (resp. blue) curves correspond to the results for
cereal (resp. yeast) by performing 50 and 100 losses just following the WGD. (4th) Running time of GapAdj for one data set
following the “cereal 50” model, and with rmax=20.

3.2 Simulations with WGD

For simulations with WGD, we used two trees: one being the subtree of yeast (Figure 4 (A)) rooted at τ ,

and another (Figure 4 (B)) corresponding to the evolution of three cereals (rice, brachypodium and

sorghum), that we will study in Section 3.4. We simulate data sets starting with a pre-duplication

2-chromosome, 200-gene genome at the root of the tree and performing a number of gene losses and a

maximum rmax of rearrangements on each branch. As WGD events are usually followed by extensive

losses, we perform 50 or 100 random losses between the duplication and first speciation event, followed by 5

random losses on each branch of the tree. As for the rate of various rearrangements, we use the same as

before. Error rates are given in Figure 6 (third diagram). The number of CARs produced by the algorithm

typically slightly overshoots the correct number, varying from 2 to 4. Note that the losses that occurred

immediately after the duplication event result in many false adjacencies inferred, as depicted by the

difference in error rate between simulations with only 50 post-duplication losses and those with 100. Since

those are ancient events, their effects are seen on many or all of the leaf gene orders, preventing us from

inferring the right order in areas surrounding the lost genes in the ancestor. Interestingly, the fact that an

outgroup (a genome that is not descendant of the WGD) is available for yeast allows to circumvent this

problem as adjacencies can be grasped from this genome not affected by losses, which explains the better

results obtained for yeast.

Figure 6 (last diagram) shows the running time of our algorithm for rmax = 20, as a function of MAXα.

Although the running time increases cubically with MAXα, it remains quite manageable. In the absence of

the WGD, the running time is significantly smaller, as it remains under 2 seconds even for MAXα = 50

(results not shown).
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3.3 Study of yeast genome evolution

We applied our method to the full yeast species tree (Figure 4 (A)) with the gene data sets of the Yeast

Gene Order Browser [20], to infer the pre-duplicated ancestral genome of Sccharomyces cerevisiae. We

then compared our predicted ancestor with the 8-chromosome genome manually inferred by Gordon et

al. [20]. Figure 7 (left) gives the fraction of α-adjacencies that we infer but are in contradiction with the

genome inferred by Gordon et al. For all tested values of α, this fraction remains below 2%. Importantly,

considering gapped adjacencies in addition to direct adjacencies allows to reduce the number of CARs from

23 to 12, which is significantly closer to the number of ancestral chromosomes predicted by Gordon et al.

Among the 11 additional inferred 1-adjacencies, 7 are shared with the ancestor of Gordon et al .
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Figure 7: (Left) Fraction of adjacencies in disagreement between the pre-duplicated yeast ancestor inferred by GapAdj and
that inferred by Gordon et al. in [20]. (Right) Number of CARs inferred with GapAdj algorithm.

3.4 Study of cereal genome evolution

We now focus on three of the four completely sequenced cereal crop genomes studied by Murat et al. [26],

namely rice (Oryza sativa), sorghum (Sorghum bicolor) and brachypodium (Brachypodium distachyon). As

demonstrated by various studies, these species have evolved following a whole genome duplication that has

occurred about 60 million years ago (see Figure 4.(B)). Maize, the fourth species considered in [26] was

excluded here to avoid noise due to an additional maize-specific WGD and ensuing massive gene loss. We

used the sets of markers (10,720 from rice, 10,649 from brachypodium, and 9,364 from sorghum) and the

homology relationships provided by Murat et al., and the orders for these markers from the annotations

in [27–29].

Supplementary Figure 1 shows the predicted pre-duplication genome and its extant descendants. Syntenic

regions (homologous sets of genes with conserved order) are painted using the Cinteny web server [30].

Running GapAdj with a maximum value of α (up to the size of the largest chromosome which is about

3500), we end up with a set of 6 CARs (plain bars in Supplementary Figure 1), which is one more

chromosome than that inferred by Murat et al. [26]. Looking carefully at the obtained results, we can see

that the ancestral CARs 5 and 6 are clustered (and shuffled) into a single chromosome in Brachypodium
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(chromosome 2), and in two chromosomes in rice and sorghum (chromosomes 1 and 5 in the rice, and 3 and

9 in sorghum). Moreover there is no other segment of the CARs 5 and 6 in any other extant chromosome.

This observation suggests that these two CARs should be concatenated into a single and complete

chromosome. This would be consistent with the results reported by Murat et al. [26], who infer that a

single pre-duplicated chromosome C is the ancestor of the same chromosome in Brachypodium (2) and the

same two chromosomes in rice (1 and 5) and sorghum (3 and 9). The reason our algorithm did not

concatenate them is probably that the genes at both extremities of the ancestral CAR 5 are in two

different chromosomes in rice and sorghum. This suggests a future extension of our algorithm that would

consider the α-extremities of each current CAR for subsequent concatenations.

Comparing our observations with Murat et al., we notice a number of striking similarities. In particular,

one of the main discovery of the paper [26] is that some chromosomes have evolved following a particular

evolutionary event, called nested fusion, resulting in the insertion of one chromosome inside another

(non-telomeric fusion). Indeed, chromosome 2 of Brachypodium is explained in [26] as resulting from a

nested chromosome fusion of the two copies of the chromosome C (introduced in the previous paragraph),

that has occurred after the speciation leading to the Brachypodium lineage. Interestingly this nested fusion

is clear in our results, as our chromosome painting is in agreement with chromosome 2 of Brachypodium

being the result of an insertion of the ancestors of rice chromosome 5 in the middle of the ancestor of rice

chromosome 1.

4 Conclusions

Any method for ancestral genome inference is debatable by nature, as it should be based on a model of

evolution that is set a priori , even though we have no direct access to the history of genomes. Moreover, as

real ancestors are not known, any validation method is open to criticism, and there is no direct way of

evaluating one solution compared to another.

Based on the first observation, we opted for a synteny-based method that is based as much as possible on

the observed data sets, without the need for explicitly defining the rearrangement events acting on these

genomes. It is the first synteny-based method that fully capitalizes on the observed adjacencies in present

day genomes in relation with their phylogenetic organization. It is flexible enough to apply to genomes

that have evolved through whole genome duplication events, in addition to rearrangements and gene

insertions and losses.

Based on the second observation, we first opted in [2] for a conservative approach concatenating two
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ancestral genes g and h only if the direct adjacency (g, h) is observed in a large fraction of extant genomes

and sufficiently supported by the phylogeny. The result was an algorithm with high accuracy for adjacency

prediction, but with the counterpart being a high number of CARs. Our generalization to gapped

adjacencies while maintaining a conservative strategy for each gap size has led to a reasonable compromise

between accuracy in adjacency and karyotype reconstruction.
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17. Gavranović H, Tannier E: Guided genome halving... In SIAM Journal on Computing, Volume 15 of Pacific
Symposium on Biocomputing 2010:21-30.

18. Zheng C, Zhu Q, Adam Z, Sankoff D: Guided genome halving: hardness, heuristics and the history of
the Hemiascomycetes. In SIAM Journal on Computing, ISMB 2008:96 - 104.

19. Zheng C, Zhu Q, Sankoff D: Descendants of Whole Genome Dup. within Gene Order Phylogeny.
Journal of Computational Biology 2008, 15(8):947-964.

16



20. Gordon J, Byrne K, Wolfe K: Additions, Losses, and Rearrangements on the Evolutionary Route
from a Reconstructed Ancestor to the Modern Saccharomyces cerevisiae Genome. PloS Genetics

2009, 5(5).

21. Ouangraoua A, Tannier E, Chauve C: Reconstructing the architecture of the ancestral amniote
genome. Bioinformatics 2011, 27(19):2664- 2671.

22. Bergeron A, Chauve C, Gingras Y: Formal models of gene clusters. In Bioinformatics algorithms:

techniques and applications, Wiley 2008.

23. Kent WJ, · · ·, Haussler D: Evolution’s cauldron: duplication, deletion, and rearrangement in the
mouse and human genomes. Proc Natl Acad Sci U S A 2003, 100(20):11484–11489.

24. Lin S, Kernighan B: An effective heuristic algorithm for the traveling salesman problem. Operations

Research 1973, 21:498- 516.

25. Hedtke S, Townsend T, Hillis D: Resolution of phylogenetic conflict in large data sets by increased
taxon sampling. Systematic Biology 2006, 55:522- 529.

26. Murat F, Xu J, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J: Ancestral grass karyotype
reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution.
Genome Research 2010.

27. et al SO: The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic

Acids Research 2007, 35:D883- D885.

28. et al AP: The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457:551- 556.

29. Initiative IB: Genome sequencing and analysis of the model grass Brachypodium distachyon . Nature

2010, 463:763- 768.

30. Sinha A, Meller J: Cinteny: flexible analysis and visualization of synteny and genome
rearrangements... BMC Bioinformatics 2009, 8:82.

17



Additional Files

Supplementary algorithm 1

Algorithm Gapped-Adjacencies (GapAdj): (Σ, S, ν, τ , MAXα)

Initialize the set C of CARs to Σν ;
For α = 1 to MAXα Do
STEP 1:

For each internal node u of S (bottom-up traversal) Do
For each g ∈ Σu Do

For each multiset X of possible adjacencies
of g at u Do

Compute LeftAdj(g, α, S|LA(g,α,G(u))=X );
Compute RightAdj(g,α, S|RA(g,α,G(u))=X);

End For
End For

End For
STEP 2:

Construct the graph Q with vertices being the genes of
Σ, and edges weighted according to computed α-adjacencies;
By applying TSP-τ on Q, update the set C of CARs;
Restrict Σ to the α-extremities of each CAR of C;

End For
Return (C);
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Supplementary Figure

Supplementary Figure 1. Syntenic regions of three cereal species karyotype with respect to their ancestor
inferred using our GapAdj algorithm. 19


