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Abstract

In this paper, we provide a heuristic procedure, that performs well from a global optimality point of view, for an
important and difficult class of bilevel programs. The algorithm relies on an interior point approach that can be inter-
preted as a combination of smoothing and implicit programming techniques. Although the algorithm cannot guarantee
global optimality, very good solutions can be obtained through the use of a suitable set of parameters. The algorithm
has been tested on large-scale instances of a network pricing problem, an application that fits our modeling framework.
Preliminary results show that on hard instances, our approach constitutes an alternative to solvers based on mixed 0–1
programming formulations.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Our aim in this work is to design an efficient algorithm for solving a class of bilevel programs upon which
pricing and revenue management problems have been based (see [9,22,23]). Bilevel programming, or math-
ematical programming with equilibrium constraints (MPEC), is a branch of mathematics concerned with
the optimization of an objective function over the solution set of some mathematical program [32,33]. It
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is closely related to Stackelberg games, where a leader incorporates within her decision process the reaction
of the followers to her course of action. It can be fairly argued that all decision-making processes involving
variables that are not in the direct control of the leader fit this framework. Examples of such instances
abound in industry or government, where the impact of policies on customers should be evaluated before
they are implemented. Its mathematical formulation is:
1 No
solvers

2 Th
3 Th
ðBP Þ min
ðu;vÞ

F ðu; vÞ

u 2 U � Rnu ;

v 2 arg min
v2V ðuÞ�Rnv

f ðu; vÞ;

(

where u and v are respectively, the upper and lower-level variables. It is well known that bilevel program-
ming is intractable (see e.g. [19,34,1]), yielding different research avenues. One trend focuses on exact algo-
rithms. Indeed, it is sometimes possible to transform a bilevel program into a (one-level) mixed 0–1
program (see e.g. [1]). Although this has the advantage that general-purpose solvers can be used, this frame-
work tends to break down on large instances.

Another line of attack consists in replacing the follower�s optimization problem, whenever it is convex,
by its stationarity conditions. This yields a one-level program with complementarity constraints, known as
MPEC [25]. The complementarity constraints, that hide the combinatorial structure of the problem, are
particularly difficult to handle. Moreover, MPECs are ill-structured in the sense that they generally satisfy
no constraint qualification, and that stationarity can fail to be characterized by a Karush–Kuhn–Tucker
system, and that general-purpose NLP solvers may fail to uncover such local minima or even mere station-
ary points.1 Different approaches have been developed to solve MPECs, and we mention three that are re-
lated to our line of attack. First, the implicit programming approach (see e.g. [26,25,11]) can be applied
when the follower�s choice is unique for every decision made by the leader. It usually leads to the use of
nonsmooth analysis techniques [8]. Next, in the smoothing approach [12,16,17,20,30], one reformulates
the complementarity constraints as nondifferentiable constraints and then applies smoothing techniques
on these constraints.2 A third approach is provided by the algorithm PIPA of Luo et al. [25], which is based
on interior-point methods (see however [24]). From a practical point of view, one drawback of these tech-
niques is that they guarantee local optimality, at best, under a variety of strong assumptions.

Bilevel programming is particularly suited at modeling pricing problems. In this paper, we focus on a
network pricing problem (MAXTOLL in the sequel) that has been defined and analyzed by Labbé et al.
[22,23]. In this model, the follower consists in travelers moving between their respective origin and destina-
tion, using only shortest paths. At the upper level, the leader has the power to levy tolls on a subset of road
segments, and aims at maximizing his revenue. The leader�s dilemma is to avoid tolls too low—because they
produce low revenue—, and tolls too high—because they urge the network users to choose toll-free paths. It
was recently shown that MAXTOLL, even in its simplest form, is strongly NP-hard [27].3

Besides toll optimization, variants of the basic model can be useful for pricing purposes in the airline and
telecommunication industries [9]. See also [2] for a related model with applications to tax credits in biofuel
production. Actually, our algorithm can be applied to a much larger class of problems, i.e., bilevel pro-
grams with bilinear objectives and linear constraints.

In this paper, our aim is to combine the implicit programming and smoothing techniques, and design an
algorithm that is both efficient on large realistic instances and performs well from a global optimality point
of view. Our choice to study the special case of MAXTOLL has been motivated both by its practical
te however that recent attempts at tackling MPECs with general NLP solvers such as SQP solvers [14,15] or interior-point
[3] have been successful, to some extent.

is technique originated in works on complementarity problems. For references, see [5,13].
e classic reference on NP-hardness is [18].
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importance and by the availability of exact solvers that are useful for numerical comparisons. Note that, for
MAXTOLL, the issue of local convergence is to some extent irrelevant, in the sense that locally optimal toll
schedules can easily be derived from the knowledge of lower level basic solutions.

The rest of the paper is organized as follows: following preliminaries in Section 2, the algorithm is pre-
sented in Section 3 and numerical results are detailed and analyzed in Section 4.
2. Problem formulation and preliminaries

2.1. Problem formulation

Following [22,23], we specialize (BP) to a formulation suited for pricing or taxation problems, where the
objective functions are bilinear and constraints are linear. To be more specific, we assume that a network
structure with a set K of commodities underlies the problem (but this is not necessary). One may think of
jKj classes of users4 going from sk to tk, k 2K, in the network. The users travel on shortest paths and the
leader maximizes its profit by appropriately setting tolls on a subset of arcs. The resulting bilevel program,
which we refer to as MAXTOLL, is
4 We
MaxToll max
t;xk ;yk

t0
X
k2K

xk

min
xk ;yk
ðcþ tÞ0

P
k2K

xk þ d 0
P

k2K
yk

8k 2K
A1xk þ A2yk ¼ bk;

xk; yk P 0;

(
8>>><
>>>:
where t 2 Rmx is the toll vector (the control variable), xk 2 Rmx is the flow of commodity k on toll arcs and
yk 2 Rmy is the flow of commodity k on toll-free arcs. The vectors c 2 Rmx and d 2 Rmy are fixed costs on
tolled and toll-free arcs, respectively, and the linear constraints at the lower level are flow conservation con-
straints characterized by the node-arc incidence matrix (A1, A2) and the commodity demand vectors bk, i.e.,
bk
i ¼

nk if i is the origin node of commodity k;

�nk if i is the destination node of commodity k;

0 otherwise.

8><
>:
(See Fig. 1 for an example).
Of course, one could also have introduced coupling constraints (e.g. capacity constraints), fixed costs,

commodity dependent tolls (e.g. users having a different perception of time and money) for modeling
purposes.

To simplify notation, we define A ¼ ½A1 A2 �; CðtÞ ¼ ðc0 þ t0; d 0Þ0; zk ¼ ðxk0 ; yk0 Þ0; x ¼
P

k2Kxk and
z ¼

P
k2Kzk. This yields the equivalent program
max
t;zk

t0x

min
zk

CðtÞ0z

8k 2K
Azk ¼ bk;

zk P 0.

(
8>><
>>:
denote the cardinality of a set S by jSj.
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Fig. 1. An instance of MAXTOLL with 8 origin–destination pairs (sk, tk), k = 1, . . . , 8, unitary demands and one toll arc (dashed). Arc
labels refer nonzero fixed costs. Unlabeled arc have fixed cost 0. The optimal toll is t = 5 with a revenue of 35. All flows, except the one
going from s1 to t1, go through the toll arc.
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2.2. Complementarity constraints and smoothing

For a fixed toll vector t, the lower level of MAXTOLL is a linear program. If that linear program is re-
placed by its optimality conditions, MAXTOLL transforms into the single-level program:
5 To
ðMTÞ max
t;zk ;kk ;sk

t0x

8k 2K

Azk ¼ bk;

A0kk þ sk ¼ CðtÞ;

Zksk ¼ 0; ð�Þ

zk; sk P 0;

8>>>>>><
>>>>>>:
where 0 is the null vector of appropriate size, W is a diagonal matrix diag(w) whose entries match those of
the vector w. Since a simple manipulation [22,23] can make the objective linear, it turns out that the main
difficulty in solving (MT) is concentrated in the set of complementarity constraints (*). In addition to
being nonlinear, it is well-known [6] that these constraints may fail to satisfy any constraint qualification,
indicating that the problem is numerically ill-posed. In fact, these constraints are combinatorial con-
straints in disguise. One way to tackle them is to replace (*) by the equivalent5 equation min(zk, sk) = 0
(componentwise), and to smooth this new equation. Different such smoothing techniques have been pro-
posed (see for e.g. [10,21,7,5,13]). One of them consists in solving, for a given positive value of l, the para-
metric problem
gether with zk, sk P 0.
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Zksk ¼ le;

zk; sk P 0;
where e ¼ ð1; 1; . . . ; 1Þ0 2 Rmxþmy and l > 0. This leads to the following mathematical program:
ðMTlÞ max
t;zk ;kk ;sk

t0x

8k 2K

Azk ¼ bk

A0kk þ sk ¼ CðtÞ

Zksk ¼ le

zk; sk P 0

8>>>>><
>>>>>:

3
777775ðPDt;lÞ;
where the parameter l is driven to zero according to some sequence {ll}. We will pursue this idea in Section
3. Note that the set of constraints in (MTl) is exactly the perturbed primal-dual system used in path-fol-
lowing interior-point methods for linear programming (see e.g. [4,35] for a gentle introduction). This en-
sures that for all t 2 Rmx and l > 0, there exists a unique solution zk

lðtÞ > 0; sk
lðtÞ > 0 and kk

lðtÞ to the set

of constraints—if a strictly interior point exists. Moreover, this solution is differentiable with respect to t

and l—given that A has full row rank. This leads to an implicit formulation of (MTl):
ðIMTlÞ max
t

t0xlðtÞ.
This smooth, unconstrained formulation is the starting point of our procedure.
In the view that bilevel programs (and MPECs) are generically intractable, solving (MT) looks problem-

atic. Indeed, it does not satisfy most regularity assumptions used in the MPEC literature to prove conver-
gence of standard algorithms to a stationary point. We briefly discuss three of them. One of the most
stringent assumptions is the existence of a unique solution to the lower-level program when upper-level
variables are fixed. In MAXTOLL, the lower level is a parametric linear program that admits a potentially
infinite number of solutions for some values of the toll vector. Another strong assumption is the strict com-
plementarity of the optimal solution, i.e., zk + sk > 0 for all k. This is usually not satisfied in (MT). Typ-
ically, the optimal solution consists in a set of path flows, one for each commodity. At least one of these
paths is such that there exists an alternative path of identical length with the same origin/destination (other-
wise tolls and revenue can be raised). This implies that the primal solution is not unique, and that strict
complementarity does not hold.

In MPEC, the regularity condition MPEC-LICQ [29,31] relaxes the standard linear independence con-
straint qualification by requiring that the gradients of the active constraints, with the exception of the com-
plementarity constraints, be linearly independent. In our situation, for every commodity k, a typical
solution has at least one node with no flow from k passing through it. The corresponding constraints
zk P 0 are active and the gradients of these constraints suffice to construct, by linear combination, the gra-
dient of the line of Azk = bk corresponding to the node without flow. Hence, generically, MPEC-LICQ does
not hold. However, we will see in the next sections that this lack of regularity does not impede on the good
numerical behavior of the proposed method.
2.3. Exact solutions and inverse optimization

We first recall an exact formulation [22,23] that will be useful for comparisons. It is possible to obtain a
global optimal solution to MAXTOLL by solving the standard mixed 0–1 program
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ðMIPÞ max
t;zk ;kk ;sk ;tk

X
k2K

Xmx

i¼1

nktk
i

8k 2K

Azk ¼ bk;

A0kk
6 CðtÞ;

Cð0Þ0zk þ
Pmx

i¼1

tk
i ¼ bk 0kk; ð��Þ

�Mxk
i 6 tk

i 6 Mxk
i 8i 2 ½mx�; ð� � �Þ

�Mð1� xk
i Þ 6 tk

i � ti 6 Mð1� xk
i Þ 8i 2 ½mx�; ð� � �Þ

zk P 0;

xk 2 f0; 1gmx ;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:
where M is some large constant and [n] denotes {1, . . . , n}. In the above formulation, the complementarity
constraints (*) have been replaced by the equivalent linearized constraint (**), using variables tk

i that rep-
resent the revenue associated with arc i and commodity k. Equations (***) force the equality of commodity
tolls on toll arcs that carry positive flows. The program (MIP) will be used to evaluate the quality of the
solutions produced by our heuristic procedure.

Next, we will use the fact that one can efficiently find the best toll vector compatible with a lower-level
flow solution. Indeed, assume that the paths used by the various commodities are known a priori. This im-
plies that the variables zk are fixed and that the complementarity constraints (*) become linear. Therefore,
(MT) transforms into
ðMTzÞ max
t;kk ;sk

x0t

8k 2K

A0kk þ sk ¼ CðtÞ;
Zksk ¼ 0;

sk P 0;

8><
>:
where Zk; k 2K and x are fixed. This is a linear program that can be solved by computing shortest paths
from all origins to all destinations (see [23]). This inverse optimization procedure will be used to optimize the
toll vector with respect to the commodity flows produced by the smoothing algorithm.
3. A smoothing algorithm

3.1. The algorithm

The global smoothing heuristic (GSH), that is detailed in Fig. 2, is based on the implicit formulation
(IMTl) presented in Section 2.2.

For given l and t, the solution xl(t) is unique, and this allows to work in t-space only (at fixed l). As a
function of t, the objective Fl(t) � t 0xl(t) is nonlinear and has a large number of local optima (see Fig. 3).
As l increases, however, the smoothing tends to eliminate many of these optima. Our insight is that for l
large enough, Fl(t) is almost unimodal and has a global optimum that corresponds roughly to the global
optimum of F0(t). More precisely, one can slowly decrease l toward 0, and follow the optimum of Fl(t) to
the global optimum of F0(t) (see Fig. 3). This is the idea behind the algorithm: GSH starts with a large l,
finds the optimum of Fl(t) with a simple gradient method, decreases l gradually, and recomputes the
optimum at each step—starting from the previous solution—until l is small enough. We claim that this



Fig. 2. Algorithm global smoothing heuristic (GSH).
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procedure yields near-optimal solutions. Although we have no theoretical result to back this claim, the
numerical experiments reported in Section 4 support it.
3.2. Detailed description of GSH

Recall the definition of (PDt,l) in (MTl) of Section 2.2. To solve (PDt,l), we apply Newton�s method. At
each step, the linear systems
ADzk ¼ rk
z ;

A0Dkk þ Dsk ¼ rk
k;

ZkDsk þ SkDzk ¼ rk
l

3
775ðN kÞ
are solved for (Dzk,Dkk,Dsk), with the residuals



Fig. 3. Revenue vs. toll for different values of the smoothing parameter l in the example of Fig. 1. Values of l are indicated on the
right next to each curve. The thick line corresponds to no smoothing and the upward triangles point to the maximum of each curve. By
following these triangles, one is led to the global optimum of MAXTOLL.

6 We

J.-P. Dussault et al. / European Journal of Operational Research 174 (2006) 1396–1413 1403
rk
z ¼ bk � Azk;

rk
k ¼ CðtÞ � A0kk � sk;

rk
l ¼ le� Zksk.
This system reduces to the normal equations
½AZkðSkÞ�1A0�Dkk ¼ rz þ AðSkÞ�1ðZkrk
k � rk

lÞ;

Dsk ¼ rk
k � A0Dkk;

Dzk ¼ �ðSkÞ�1ð�rk
l þ ZkDskÞ.
If A has full row rank,6 and if zk and sk are strictly positive, the matrix [AZk(Sk)�1A 0] is symmetric positive
definite, and the system has a unique solution. We proceed with Newton steps until
krk
zk

maxð1; kbkkÞ
þ krk

kk
maxð1; kCðtÞkÞ þ

krk
lk

maxð1; klekÞ < �0;
where kÆk denotes the Euclidean norm and � 0 is a strictly positive tolerance.
Another major step of GSH is the computation of the gradient of Fl(t) = t 0xl(t). This is given by the

implicit function theorem. Let Dt be the differential operator with respect to t. Since one requires Dtz
k

to derive
DtF lðtÞ ¼ xlðtÞ þ ðt0DtxlðtÞÞ0;
assume that the underlying undirected graph is connected so that A has full row rank when an arbitrary row is removed.
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one must solve the systems Nk, for all k, with the residuals rk
z ; rk

k; rk
l replaced by
7 Wh
8 No

makes
discon
rk
z ¼ 0;

rk
k ¼

ei

0

� �
;

rk
l ¼ 0;
where ei is the unit vector of size mx in the ith component direction.
One last point that we need to address is the choice of a, the gradient step length. Because the very com-

putation of the objective Fl(t) requires solving (PDt,l) repeatedly, performing a line search is out of the
question. In Fig. 2, we actually set the stepsize to a constant value. Since a constant a performs very poorly
and may even prevent convergence, we opted for a compromise that exploits the bilinearity of the objective
function. In the direction of Dt, Fl(t) can be approximated in the following fashion:
F lðt þ aDtÞ ¼ ðt þ aDtÞ0xlðt þ aDtÞ � ðt þ aDtÞ0ðxlðtÞ þ aðDt0DtxlðtÞÞ0Þ.

This last expression is maximized at
a� ¼ � 1

2

ðDtF lðtÞÞ0ðDtF lðtÞÞ
ðDtF lðtÞÞ0DtxlðtÞðDtF lðtÞÞ
and this value was adopted in our numerical experiments (the algorithm in Fig. 2 should be modified
accordingly). Note that we sidestep the computation of the second derivative, which is extremely time-
consuming.

3.2.1. Pre- and post-processing

Solving (PDt,l) requires the existence of a strictly interior solution to (PDt,0). In MAXTOLL, a strictly fea-
sible primal solution for a given commodity k is a flow with source sk and sink tk using all arcs in the net-
work; this must be satisfied for each commodity separately. Such a flow exists if and only if for each arc a

and each commodity k, there is a path from sk to tk that includes a. (Note: this is not satisfied in the example
of Fig. 1.) One way of achieving this is to add one node that is linked to every other node (both ways) with
toll-free arcs of arbitrarily high fixed cost; the drawback of this approach is that many arcs need to be
added. Typically, however, each arc connects both the source and the sink of at least one commodity
(otherwise this arc is useless and can be removed). Therefore, one only needs to connect the origins and
destinations to an extra node. This is the solution adopted in the numerical tests. Once the existence of
a strictly feasible primal solution is guaranteed, the boundedness of the primal feasible set (0 6 zk

6 nk)
ensures that a strictly feasible dual solution exists as well (see e.g. [28]).

Algorithm GSH returns a flow and a toll vector. Since the lower threshold l is not 0 and should not be
too small in order to improve computing time and prevent numerical instability,7 the solution returned is
only approximate. The following post-processing step fixes the problem. For each commodity and starting
from the corresponding origin, we greedily construct a path by selecting the arcs having the largest com-
modity flow, until the destination is reached. Since all initial costs are nonnegative, there are no negative
cycles and the procedure is bound to terminate finitely. Then, we use the inverse optimization step described
in Section 2.3 to compute the best tolls consistent with the selected paths.8
en l is small, Dtzk
lðtÞ becomes nearly singular because of the absence of strict complementarity.

te that the converse approach that consists in keeping the tolls provided by GSH and computing the best paths for these tolls
less sense because of the discontinuities in the revenue function (see Fig. 3). A priori, one does not know on which side of the
tinuity GSH will land.
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4. Numerical results

The numerical tests presented in this section give a fairly good idea of the performance of the algorithm
and suggest possible directions of improvement. We proceed in three steps. First we choose appropriate
values for the parameters of the heuristic. Then, on a set of instances of varying sizes, we estimate the per-
formance of the algorithm by comparing the output to the exact solution. Finally we test the algorithm on a
family of ‘‘hard’’ instances. The tests were performed on a Sun Ultra 60 workstation. The exact algorithm
uses the standard MIP solver of CPLEX 8.1 with the formulation (MIP). Algorithm GSH runs on MAT-
LAB 6.0.

4.1. Problem instances

Pure random networks tend to be fairly easy to solve for the exact algorithm and were consequently dis-
missed. Instead, we opted for a more structured family of instances that proved to be hard to solve exactly
for moderately large sizes. The underlying network is a Manhattan-like grid illustrated in Fig. 4. Our prob-
lems involve unit demand for every commodity. Each arc has a fixed cost uniformly chosen in the range
{2, 3, . . . , 20}, and its probability of being a toll arc is set to p. Sources and sinks are located arbitrarily
on the ‘‘boundary’’ of the network. To ensure that there exists a toll-free path between each origin–desti-
nation (OD) pair, we add one toll-free arc of arbitrarily large cost between each pair. In the tests, we used
square grids of size 5 · 5 to 10 · 10 with density p varying between 10% and 50%.

4.2. Choice of parameters

Preliminary experiments indicate that the parameters �l, l and b strongly influence the performance of
the algorithm. Other parameters play a lesser role and were set to the following arbitrary values:
� ¼ 0:025;

�0 ¼ 0:1.
The parameter a is set to a* as explained in Section 3.2.
Parameter �l seems to be the most critical. To set its value, we fixed b and l to conservative values,

b = 0.9 and l = 0.001, respectively, and tested the algorithm with different values of �l on networks of size
Fig. 4. The underlying network (size may vary).
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5 · 5, with p = 10% and 6 ODs. The corresponding results are shown in Fig. 5, where each point is the
average of 5 random instances. The value �l ¼ 0:20 gives the best results. To determine the dependency
of the appropriate value of �l on the size of the instance, we performed identical tests on networks of size
10 · 10 with p = 10% and 16 origin–destination pairs, as well as on networks of size 5 · 5 with p = 20%
and 6 OD pairs. The results are shown in Fig. 5. Again, �l ¼ 0:20 gives the best results. It is striking that
the quality of the solution decreases as the parameter �l increases, although this is not a surprising result.
Indeed, we expect poor solutions for small �l, as the smoothing is not strong enough to prevent the algo-
rithm from being trapped in local optima. However, performance also decreases for large values of �l. This
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Fig. 5. Accuracy for varying values of �l (referred to as initial l).
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probably comes from the fact that in the initial stages of the algorithm, a rough smoothing takes the algo-
rithm very far from the optimal tolls. The algorithm then gets stuck into the flat valley in the large tolls
region (see Fig. 3). A larger value of b and a smaller value of � may help to recover properly from that
situation.

We proceeded similarly for the parameters b and l. For b, we set �l ¼ 0:2 and l = 0.001 and tested the
heuristic on the same networks as for �l. The results are shown in Fig. 6. In this case, the quality of the
results depend on problem size, which led to our choosing a cautious value of b = 0.9. The figures suggest
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that an even larger value of b might give better results. However, this advantage is somewhat offset by the
large computation times associated with large values of b.

For l, we set �l ¼ 0:2 and b = 0.9 and tested GSH on the same instances. The results are shown in Fig. 7.
Similar to the parameter b, the quality of the results depends on problem size. We chose l = 0.01. For the
rest of the numerical tests, the values of these parameters are fixed. Note finally that, contrary to the case of
�l, the relationship between the quality of the solution and the value of b and l is in line with our intuition:
quality is an increasing function of b (respectively a decreasing function of l).
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Fig. 7. Accuracy for varying values of l (refered to as final l).



Table 1
Accuracy and computation time for problems with varying sizes

Instance

5 · 5 6 · 6 7 · 7 8 · 8 9 · 9 10 · 10

n 25 36 49 64 81 100
m 86 128 178 236 302 376
K 6 8 10 12 14 16
p 10% 10% 10% 10% 10% 10%
%OPT 97.5 (6.6) 97.1 (3.4) 94.5 (4.5) 95.6 (4.0) 93.3 (5.1) 95.1 (3.8)
Min. 77.8 89.7 87.0 87.2 82.4 88.1
Max. 100 100 100 100 100 100
%LP 87.3 84.8 77.5 80.9 78.9 82.6
tGSH 29.6 (3.1) 58.1 (7.3) 100.2 (10.4) 166.1 (11.4) 250.2 (24.1) 385.3 (30.4)
tCPLEX 0.6 (0.1) 1.1 (0.6) 1.4 (0.5) 4.9 (3.8) 24.6 (34.1) 9.7 (5.8)
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4.3. Solution accuracy

A natural measure of the quality of a suboptimal solution is the ratio of its objective with respect to the
global optimum. Expressed as a percentage, we call this ratio the accuracy of the solution. To estimate the
accuracy of the solutions produced by GSH, we performed three series of tests. In the first series, we used
problems of increasing size. The results are shown in Table 1. Each column provides averages over 10 ran-
dom instances.9 Throughout this section and the next, we use the following notation:

• n: number of nodes,
• m: number of arcs,
• K: number of OD pairs,
• p: average fraction of toll arcs,
• %OPT: ratio of the GSH solution over the global optimum,
• %LP: objective value returned by heuristic divided by linear relaxation value,
• tGSH: computation time of GSH (in seconds),
• tCPLEX: computation time of exact algorithm (in seconds).

Numbers in parentheses indicate the standard deviation, expressed in the same units as the averages.
From the results of Table 1, we observe that the accuracy of GSH lies around 95%, and that the corre-

sponding standard deviation is small. While smaller instances are easier to solve, the performance is not
much influenced by problem size. Accuracy can be as high as 100% and as low as 75%. However, a quick
experimentation suggested that low accuracy cases can be significantly improved through a suitable choice
of parameters �l and b.

The computation time of algorithm GSH is roughly linear in m Æ K. This is what we expect: in the absence
of capacity constraints, the implicit formulation decouples the commodity flows. By exploiting the network
structure, the linear systems can be solved in a time linear in m for each OD pair. It is hard to deduce any-
thing from the values of tCPLEX except that it seems to grow slightly faster than tGSH. It is clear though that
the exact algorithm runs faster on the small instances. Note however that our ultimate goal is to demon-
strate that the heuristic performs better on large instances, and this will be done in the next section. The
objective of this section is only to get reliable estimates for the accuracy of the heuristic. Also note that
9 To avoid degenerate instances, we considered only those instances with an optimal objective value of at least 10.



Table 2
Accuracy and computation time for problems with varying fractions of toll arcs

Instance

7 · 7 p = 10% 7 · 7 p = 20% 7 · 7 p = 30% 7 · 7 p = 40% 7 · 7 p = 50%

n 49 49 49 49 49
m 178 178 178 178 178
K 10 10 10 10 10
p 10% 20% 30% 40% 50%
%OPT 94.3 (3.7) 96.4 (4.4) 92.6 (9.0) 95.5 (4.8) 95.5 (2.8)
Min. 89.1 87.0 74.5 85.3 89.9
Max. 100 100 100 100 98.8
%LP 78.3 83.6 83.9 87.6 92
tGSH 101.0 (9.9) 116.1 (11.4) 147.3 (9.6) 178.7 (13.8) 204.1 (13.8)
tCPLEX 1.5 (0.5) 2.4 (1.9) 40.9 (46.5) 62.6 (87.0) 1974.8 (4851.1)
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a rough implementation of the heuristic using MATLAB hardly compares to a state-of-the-art mathemat-
ical programming software like CPLEX.

The second series of tests aims at determining the impact of the number of toll arcs on the performance
of the algorithm. For this, we used networks of size 7 · 7 with 10 OD pairs and different values of p, the
average fraction of toll arcs. Results are reported in Table 2. Again, the accuracy is roughly 95% and does
not depend much on the value of p. High and low values are roughly the same. What is interesting here is
the computation time. For the heuristic algorithm, tGSH grows sublinearly in p while the growth of the com-
puting time of the exact method, tCPLEX, is clearly exponential in p, because of the presence of one binary
variable for each toll arc. Actually, we were not able to obtain results for values of p larger than 50%, due to
running time limits set to 60 min.

The third series of tests focuses on the impact of the number of OD pairs. We used networks of size 7 · 7
with p = 50% and increasing values of K. The results are given in Table 3. Here the accuracy of GSH im-
proves significantly. In particular, for the case of a single OD pair, the algorithm almost reaches a perfect
score, with the optimal value obtained in all but one instance. The computation time tGSH is roughly linear
in K as expected10 and tCPLEX grows exponentially in K due to the fact that the number of binary variables
in (MIP) is proportional to the number of OD pairs.

4.4. Hard instances

Next, we consider a set of instances for which the exact algorithm was unable to guarantee an optimal
solution within a reasonable time frame. Since the optimal value was unavailable, we used the linear relax-
ation as a bound on the accuracy of GSH. However, extrapolating the results of the preceding section, we
still expect the accuracy of GSH to be of the order of 95%.

As computation time tCPLEX of the algorithm is exponential in p and K, we constructed moderately large
instances with high values of these two parameters. More precisely, we designed networks of size 10 · 10
with p = 50% and K = 16. The results of the tests are detailed in Table 4. The linear programming upper
bound indicates that the average accuracy of GSH is at least 90%. In all cases the exact algorithm was un-
able to find an optimal solution after tGSH seconds (after what it was stopped). In all but one case, GSH
found a better solution than the best integer solution found by CPLEX. In two cases, CPLEX found no
10 The computation time reported in the table is not exactly linear in m Æ K. This is particularly obvious for the last columns, due to the
post-processing stage which uses MATLAB�s linear programming algorithm. If we had used CPLEX instead for that last stage of the
heuristic, we would have gained as much as 75% in computation time and tGSH would have been linear in m Æ K.



Table 3
Accuracy and computation time for problems with varying numbers of OD pairs

Instance

7 · 7 K = 1 7 · 7 K = 2 7 · 7 K = 4 7 · 7 K = 6 7 · 7 K = 8 7 · 7 K = 10

n 49 49 49 49 49 49
m 178 178 178 178 178 178
K 1 2 4 6 8 10
p 50% 50% 50% 50% 50% 50%
%OPT 99.3 (2.1) 98.0 (1.7) 97.1 (2.4) 95.1 (4.5) 97.2 (1.8) 95.5 (2.8)
Min. 92.9 95.0 91.0 85.2 94.1 89.9
Max. 100 100 100 99.4 100 98.8
%LP 99.3 95.3 95.3 91.2 94.0 92.2
tGSH 11.3 (0.7) 25.4 (1.4) 55.4 (3.1) 90.0 (3.0) 138.9 (6.7) 204.1 (13.8)
tCPLEX 0.6 (0.03) 0.8 (0.2) 1.8 (0.9) 36.6 (64.0) 61.0 (77.2) 1974.8 (4851.1)

Table 4
Results on ‘‘hard’’ instances with n = 100, m = 376, K = 16 and p = 50%

Instance %LP tGSH t�GSH

GSH CPLEX

1 89.3 0 4095.0 511.3
2 89.9 88.3 4195.8 487.2
3 91.8 89.6 4912.4 514.6
4 90.8 89.7 4675.2 510.1
5 96.4 94.3 2648.3 511.05
6 93.6 92.3 4139.9 518.53
7 93.5 93.4 4325.8 530.33
8 86.1 97.9 4258.5 495.27
9 71.4 0 3833.3 479.97
10 93.0 89.0 3885.0 531.81

Average 89.9 (7.0) 73.5 (38.8) 4096.9 (605.8) 509.0 (16.2)

In all cases, the exact algorithm was stopped after tGSH seconds and the optimal solution was unknown. In the CPLEX column, we
used the best integer solution found after tGSH seconds. t�GSH is the computation time without post-processing.
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integer solution before reaching the preset time limit. Although the values of tGSH are quite high, more than
75% of the computing time is taken up by the post-processing step. As noted previously, the LP solver of
CPLEX would have solved this structured LP, actually a transportation problem, almost instantaneously.
A better estimate of the ‘‘optimal’’ computation time of the algorithm is obtained by subtracting this value
(see last column of Table 4).
5. Concluding remarks

In this paper, we designed an algorithm for solving a class of structured bilevel programs that arises nat-
urally in pricing applications. While the smoothing approach has been proposed previously in the MPEC
literature, our implementation is mainly concerned with semi-global optimality. The performance of the
algorithm was tested on network pricing problems of significant sizes, and its performance proved very
good to excellent, given the difficulty of the problem instances. More significant, the running time grows
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linearly with problem size. This resulted in an algorithm consistently outperforming a MIP solver on
‘‘hard’’ instances, despite our cursory implementation.

One advantage of our approach is that it can be applied to a class of problems much larger than the one
considered in this paper. Our choice of network pricing problems was mainly motivated by the availability
of a software for finding a globally optimal solution, which was instrumental in assessing the quality of the
method. However, Algorithm GSH applies to more general models, including network-free ones. Our com-
putational results show that the smoothing technique underlying the algorithm is a powerful tool that could
extend to other bilevel environments.
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