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The variational inequality problem in Euclidian space is formulated as a nonconvex, nondiffer-
entiable optimization problem. We show that any stationary point is optimal, and we propose a
solution algorithm that decreases the nondifferential objective monotonically. Application to the
asymmetric traffic assignment problem is considered.
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1. Introduction

Recently, much attention has been focused on the variational inequality formula-
tion of the generalized traffic assignment problem involving user-optimized behavior
(Bertsekas and Gafni [2], Dafermos [4], Nguyen and Dupuis [17], Smith [21] for
instance). Most solution methods have only been proposed in a transportation
framework, although the algorithms are of more general application, and could be
applied as well to solve N-person games or economic equilibrium problems. What
singles out the multicommodity traffic assignment problem from the general vari-
ational inequality problem is the computational ease with which the linear approxi-
mation of the problem (replacing the cost mapping by a constant vector) can be
solved, namely by performing shortest path computations.

In this paper the variational inequality problem is formulated as a nondifferenti-
able, nonconvex mathematical program. To evaluate the nondifferentiable objective,
a linear approximation of the problem has to be solved; consequently this linear
problem must possess some structure amenable to efficient solution procedures; the
traffic assignment problem falls into such a class of problems.

After formulating the problem, we present the algorithm and give a proof of
global convergence. Finally, we show how the algorithm can be implemented in the
realm of large-scale traffic equilibrium models.

Research supported by C.R.S.H. (Canada) grant # 410-81-0722-RL and F.C.A.C. (Québec) grant
# 83-AS-0026.
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340 P. Marcotte / Solving variational inequalities

2. Problem formulation. Basic definitions. Solution algorithms

Consider a continuously differentiable mapping F: ® > R", where @ is a non-
empty, convex and compact subset of R". The variational inequality problem (VIP
in short) associated with F and & consists in finding a vector x* in & such that:

(x*~y)TF(x*)<0 forall yin ® (1)
If we define a point-tb—set mapping I' as follows:

I'(x)4 arg min y F(x) (2)

then a vector x* solves VIP if and only if it is a fixed point of the uppersemicontinuous
mapping I. Since @ is compact, Kakutani’s fixed point theorem [12] ensures the
existence of at least one solution to VIP.

Definition 1. A mapping F is:
1. Monotone on @ if:

(x—y)"(F(x)-F(y))=0 forallx,yin @,
[(x~y) F'(x)(x—y)=0].
2. Strictly monotone on @ if:
(x—y)"(F(x)—F(y))>0 forall x,y in ®(x# y).
3. Strongly monotone on @ if:
(x—y)(F(x)=F(y))=nlx-y|*> forall x,yin &,
[(x~p)"F(x)(x=y)=nlx—y|,

where 7 is some positive constant.

The relations inside the square brackets apply whenever F is continuously differ-
entiable on @ with Jacobian F".' See Auslender [1] for further details.

It is easily verified that the solution set of VIP is compact, convex if F is monotone,
and a singleton if F is strictly monotone.

In the remainder of the paper we will assume that F is monotone. In this particular
case, many solution algorithms have parallels in {convex) optimization: projection
with predetermined stepsize (Glowinski et al. [8]), Newton and quasi-Newton
methods (Josephy [10, 11]), Pang and Chan [18]), penalty and proximal point

U All vectors are column vectors; * denotes transposition. Thus:

Fy(x)
F(x)=| and F'(x)=(VF/(x),...,VF.{(x)).
F,(x)

If F(x)=Ax, then F'(x)=AT.
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(‘augmented Lagrangian’) algorithms (Auslender [1], Rockafellar [20]), cutting-
plane methods (Zuhovickii et al. [22], Nguyen and Dupuis [17]), etc. However, in
contrast, with descent algorithms of convex optimization, the convergence of these
algorithms is not related to the decrease of an objective function. Furthermore,
some methods require that F be strongly monotone, or at least invertible in a
neighborhood of a solution, which may fail to hold in a variety of applications.

We now introduce a merit function for VIP. An algorithm producing a sequence
of iterates minimizing this merit function in a monotone fashion will be presented
in Section 4.

Definition 2. The GAP FUNCTION (see Hearn [9]) of a VIP is defined as:

g(X)ér;leag (x=y)"F(x)=(x=5)"F(x), forany jin I'(x). 3)

Itis clear that g(x) = 0 if and only if x is a solution to VIP. In economic equilibrium
theory, the gap function corresponds to the excess demand function, and is a better
measure of proximity to an equilibrium than the quasi-welfare function _[; F(t)dt
(when the latter is unambiguously defined), since it is directly related to the
perception of the market structure by the economic agents.

In a traffic equilibrium framework, the gap function measures the difference
between actual (perceived) travel costs and minimal (shortest path) costs.

3. Properties of the gap function

Let us first note that g is continuous but in general not differentiable (when I"(x)
is not single-valued) nor quasiconvex.

Let
o-{(3) e
X

F is monotone on @ since

Fre (2x1 +4x, 4x, )
4x, 2x,+4x,

2
x7+4x,x
x1+x2s1,x1,x2>0} and F(x1>=(; 12). (4)
\x, x53+4x,x,

is positive semidefinite on &. Also:

B N

wor=to-0ece o)) <imaso(2).1)] 1.
implying that g is NOT quasiconvex.

Useful differentiability properties of ‘g are summarized in the next proposition.
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Proposition 1. 1. g is Lipschitzian on O.
2. 39g(x)=Coyerm [F(x)+ F'(x)(x—y)]
3. g is differentiable at x if I'(x) is a singleton.

Proof. See Clarke [3] or Rockafellar [19]. O

Proposition 2. If g(x) is positive and I'(x) ={y} then d 2y —x is a feasible descent
direction for g at x.
Proof. We have, by Danskin’s rule:

g'(x;d)= sup (y=x)"(F(x)=F(x)(y—x))

yel'(x)
<—g(x) by monotonicity of F
<9. |
We now show that every stationary point of g is a zero of g.
Proposition 3. If g(x)> 0 then there exists a point y* in I'(x) that satisfies:

g'(x; y*—x)<—g(x). (5)

Proof. Let y* be solution to the linear VIP:
(*~p)"FT(x)(y*-x)<0 forall y in I'(x).
We have:

g(x;y*—x)= ,max (y*-x)"h
<ag(x)

= max (y*=x)(F(x)+ F(x)(x—))

vel'(x

=—g(x)+ jmax (y*—x)"F'(x)(x—y)

<-—g(x)—(y*—x)"F'(x)(y*—x) by construction of y*
< —g(x) by monotonicity of F

<0. O

When @ is a convex compact polyhedron, so is I'(x). Denote by {u', ... u™} the
extreme points of I'(x), and let z2 Y[~ Au’. The directional derivative g'(x; z —x)
is given as before, by the expression:

g'(x;z—x)=—g(x)+ max (z - x)TF'(x)(x—u)

= —g(x)+ max 3 400 —x)TF () (x—u)
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since the maximum of the linear term (z — x)TF’(x)(x — u) must be attained at some
extreme point u’ of I'(X). Therefore:

gx;z-x)=g(x) - min (CN)

1,....m
where C is a positive semidefinite matrix with elements:
Cy=(u'—x)"FT(x)(w —x).

The derivative g'(x; z—x) will achieve its minimum value at a point z* which is
solution to the mathematical program

max g'(x;z—x
zeF(x)g( » 2 )

which is equivalent to:

max min (CA;),

A=0 i=1,.m

or
max y
Ay
st Y A=1,
i=1
A =0, (6)
1
Cr=qy| |
1

Let (}«) be optimal for (6), z*=Y" A*u' and y* as defined in the proof of
Proposition 3. Then we have: g'(x; z* —x) = —g(x) — y*=< g'(x; y*— x) where y* is
nonnegative as a consequence of Proposition 3.> Notwithstanding direction norms,
the descent direction z* is therefore, in some sense, preferable to the descent direction
y*—x.

As an illustration, consider the VIP with:

&= {(x1> inR?
X2

(see Figure 1).

The equilibrium point is the origin, and the extreme points of @ are: u'= (7)),
u*=(p) and u’=(3). At xo=(3) we get: I'(x)={u', u?}, g(x°) =4. The directions
d'=u'—x° and d*>=u*—x° are descent directions for the gap function. Minimiz-

ation along d' yields x'=("/17), g(x') =3} and I'(x') = {u?}. At x', minimization

x2_2x1$2,2x1+x2$2axl,x2>0} and F<x1>=<xl>
X, Xy

% From the positive semidefiniteness of C, one can also directly deduce, using Tucker’s theorem of
the alternative (see [13]), that the system CTA >0 (A # 0) has a nonnegative solution.
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yl

Fig. 1.

in the direction u”—x"' yields x*=(s)}7), g(x°)=3s and I'(x*)={u’, u’}. At this
point neither u'— x* or u”—x* are descent directions for g. The solution to (6) gives
A*=(}/3) and the descent direction () —x?, which leads directly to the solution.

4. A descent algorithm for the gap function

In this section we propose a solution algorithm for the VIP, based on a descent
direction obtained by solving LP programs of the form (6). The extremal directions
u’ —x will play a role similar to the role of subgradients in convex nondifferentiable
optimization. Since I'(x) cannot in general be known explicitly, the algorithm will
progessively refine a polyhedral approximation I"(x) to I'(x), in a spirit very similar
to the e-subgradient alorithm described in [14], until a suitable descent direction
for the gap function is found by solving (5) with I'(x) replaced by I'(x).

Algorithm A. Let xe @ and & a small positive constant.
1. If g(x)<e STOP.

me<1.

C<0.

Let y'e I'(x).
2. Cme (' —x)TFHU(x)(y"—x), i=1,...,m

Cric (" —x)"F (x)(y' —x), i=1,...,m.

Ce ¢

le et Cm,m—l Cmm
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3. Solve:
Max vy
(CA);=y, i=1,...,m,

Z /\i = 1’
i=1 .

A=0,

whose solution is A, 7.
Let 5=Y" X'
4. X< x+ag(x)(y—x).
mem+1.
Let y™ e I'(x).
5. g(%)>(1—-(a/12)g(x))g(x) then go to 2

else let * € argming< o<, g(x+0(7 —x)).
x<x+60%(F—x).

goto 1.

345

Convergence of algorithm A depends on the existence of a positive constant «,
determined in such a way that the ‘then’ branch at step 5 cannot be taken infinitely

often, at a given iteration.

In the following, we will assume that F’ is Lipschitzian on &, with Lipschitz
constant M. Also, let L be the Lipschitz constant of F, and D be the diameter of

D, ie.:
|x=yl<D for all x,yinﬂ@,
| F(x)—F(y)| <L|x=y| forallx, yin @,
|F™(x)— F(y)|<M|x-y| forallx,yin ®.
We also define:

L'2 sup | F(x) | <o,
xed
M'=sup || F'(x)|| <o,
xed

S<sup g(x) <.
xed

(7a)
(7b)
(7c)

(8a)
(8b)

(8¢c)

Lemma 1. Let x, X€ @, ye I'(x) and j € I'(X). Then there exists a positive constant

€, such that:

|2—x|<eg(x) = G-x)TF(x)<-3g(x) or g(x)<3e(x).

)
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Proof. Set &, =1/6(DL+ L'). We have
(F—x)"F(x)<(7-%)"F(x)+||x—x| - | F(x)|
<F-X)"F&E)+|7-%] - |Fx) = FD|+ %~ x| - |F(x)|
<—g(%)+DLe,g(x)+¢,8(x)L'.
If g(%)=3g(x) then

(F—x)"F(x)=-3g(x)+sg(x)=—3g(x). O

[}

Lemma 2. There exists a positive constant g, such that, whenever o < g,, then ‘then
branch at step 5 of algorithm A cannot be taken infinitely often, at a given iteration.

Proof. Set

(4 1 1 £,
= Min{— &l 10
& m{s’ 12D*’L’ 3D*(2M + M'+ DM)’ D} (10)

Suppose the result does not hold. Since @ is bounded, there must exist indices m
and p (p=<m) such that:

aDMg(x)
"ol 2
ly™ ="l VT (11)

Let x, 7, X =x+ag(x)d, d =7 —x=Y" ' A,y' — x be as in algorithm A (step 5), X
be any point on the line segment from x to X (X # x) and y be any point in I'(X).
We have:

x=x+7ag(x)d forsome 7¢(0,1],
and
x=X+(1-71)ag(x)d.
We can write:
0=(y"—75)TF(x) by definition of y™
= (" =7 TF(E)+ F (E+ (2 -%))(x - %))
for some t€[0, 1] by the mean value theorem.
This implies:
0= (™ = 7)[F() + FT(x)(x - )]~ | FT(&+1(x - %) - F(x)| - | £~ |
= (y" = F)TFE) + FH(x)(£— %)= M(|Z — x| + 1| £ - £)(1 - 7)ag(x) D
= (y" = F)F(&)+ FT(x)(x - %)] - M(1-7)(ag(x))*D?
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implying
(1-71)D*M(ag(x))*= (y™ - 5)[F(£)+ F(x)(x~%)]
» = (y" =) FT(x)(x—%)
since (y™ — 5)TF(X)=0 by definition of y. Thus
(1-7)D*M(ag(x))*= (1= 1)ag(x)(y" —5) F(x)d
and
D*Mag(x)=(y" = 7) FT(x)d =[(y" = y")+ (3" —x)+ (x = H)]"FT(x)d

_aDMg(x)

Vi M'D+(x—5)"FT(x)d

from (11) and the fact that (y* —x)"F'"(x)d =0 by construction of the direction d.
Therefore ‘

(x=7)"F"(x)d <2aD*Mg(x). | (12)
Now ’
(=5 F (%)d = (x - 5)TFT(x)d + (£ — x)TF (x)d
+(F =) (F(H) - F(x))d
<2aD*Mg(x)+ D*ag(x)M'+ MD?ag(x) by (12)
=(2D’M+ D*M’+ D*M)ag(x),
implying v
(F—P)TFT(X)d=<g(x)/3 since a<e,’ (13)
Also:
g'(%;d) = max d'[F(¥)+ F'(X)(Z-y)]
g( )

==+(7-x)TF(X) by(13)

s_(?,x_)+ (7—x)"F(x)+aD*Lg(x)

<94 (5 )R + 82

g(x)

12 by (10).

Now, if g(%)=<%g(x), we get:

£ =te(m = {1+ 7) 00 = (1-252) g

® This relation holds for any 7 in rx).
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which is the required contradiction. Otherwise, from Lemma 1,
(7 —x)"F(x)=< -3g(x)

since [|[x— x| = ag(x)||d||<e/D- D=c¢,.

Therefore
o 5g(x) g(x)
. = — —_— =L
g/(%; d)=>2 2 —lg(x)=~£7
Thus
g(x)—g(x)=ag(x)g'(x; d) for some Xe[x, %],
by the mean value theorem
(8(x))?
4
12
or:

_ ag(x)
g(®)= (1—g—)g(x>
12
which contradicts the assumption at the beginning of the proof. O

Proposition 4. Let {x*}, be a sequence generated by algorithm A. Then
iim g(x*)=0.
Proof. From Lemma 2 we get
k+1 a k k
glx )S(l—ﬁg(x ))g(x ).

Taking limits on both sides, we have

g("’élimg(x")<<1—oz—g—>g°O and g*=0. 0O
k-0 12

Remark. When @ is polyhedral, and if the points y* are always taken as extreme
points of @, then the maximal number of times step 5 has to be repeated at a given
iteration of algorithm A can be uniformly bounded by the number of extreme points
of &.

5. Application to the traffic assignment problem

It is well known [4, 21] that the traffic assignment problem‘(TAP in short) can
be formulated as a VIP, with @ representing the convex polyhedron of multicom-
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modity link-flow vectors

K
x® k=1,...K* and F,(x)= Fa< y x(k)>
. k=1

is the unit cost along link a, possibly dependent on link flows over other links of
the network.

In Marcotte [15] it has been observed that it occurs frequently than any direction
of the form d = y — x with y € I'(x) is a descent direction for g at x, and the iteration’

xex+Aad witha=1 if(y—x)"F(y)=<0,
(x+Ad—y)TF(x+Ad)=0 otherwise

was gap decreasing, at least in the first iterations. Such a scheme can be exploited
in the first iterations. When one gets closer to a solution, it is likely that many
extreme points y' generated previously by algorithm A will satisfy the relation

(y'=x)"F(x)<-Bg(x)
for some positive constant 8. This suggests that these points should be taken into

account when looking for a descent direction, yielding the following modified
algorithm.

Algorithm B. Let x€ @, B <.

1. If g(x)< e STOP.
m<1.
Let y'e I'(x).

2. Come (' —x)"F(x)(y"—x),i=1,...,m.
Cric (" =x)"FT(x)(y'~x), i=1,...,m.

Clm
C .
Ce< :
Cm—l,m
le T Cm,m—l Cmm
3. Solve: '
Max vy
(C/\)ia’)”izla""m,
m
A=l
i=1
A=0,
whose solution is A, 7.
m .
Let j= Y Ay’
i=1
* @ can be assumed compact without loss of generality. Indeed if F,(x), a=1, ..., n, is positive for

every positive x, it can be shown that only loopless paths need be considered (see Marcotte [15]).
* This scheme actually consists in solving the VIP restricted to be the line segment [x, y=x+d].
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4. Tex+a'g(x)(7—x).
me<m+1.
Let y" e I'(x).
5. If g(x)>(1—(a'/c)g(x))g(x) then go to 2
else let 6™ € arg mingcpg 1y g(x+ 6(5 —x)).
x<x+6*(F—x).
Let ¥ e I'(x).
If g(x)=< eSTOP.
Let I={l,,..., L} the set of indices such that:

(y'=x)TF(x)<-pg(x) (14)

Set
C;<C,

11 izla'--,r,jzl,...,r.
C;<0, i=r+1, j=r+l.
mer+1.

Let y™ =7 and return to 2. 0

Only at step 5 do algorithms A and B differ. In algorithm B, all extreme points
previously generated that satisfy (14) are retained in order to compute a descent
direction. Convergence can be established along the lines of lemmas 1 and 2 and
proposition 3, possibly with constants o' and ¢ different, respectively from the
constants « and 12 of algorithm A.

A somewhat similar idea has been proposed by Fukushima [7] to solve the TAP
with separable cost function. At each step of the algorithm, one computes the
directions d'= y*—x* with y*e I'(x*) and

k
=73 piy'—x"
=1

where y'eI'(x"), i=1,...,k and {u’}; is an arbitrary set of positive weights
summing to one, and satisfying the condition pj=---=puf.

At iteration k, d? is chosen in preference to the Frank-Wolfe direction d’
whenever:

d”'GF(x*) _d""F(x")
lla| ']

In algorithm B, we propose a systematic approach for choosing the weights { it
in an optimal rather than heuristic manner.

Finally, we remark that when F is the gradient of some function f which is convex
on @, then the directions obtained from algorithms A and B are descent direction
for the gap function g as well as for the ‘natural’ objective f.
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