
Mathematical Programming 33 (1985) 339-351 
North-Holland 

A N E W  A L G O R I T H M  FOR S O L V I N G  VARIATIONAL 
I N E Q U A L I T I E S  W I T H  A P P L I C A T I O N  TO THE 
TRAFFIC A S S I G N M E N T  P R O B L E M  

Patrice MARCOTTE 
Centre de Recherche sur les Transports, Universit£ de Montrdal, Canada 

Received 28 November 1983 
Revised manuscript received 5 March 1985 

The variational inequality problem in Euclidian space is formulated as a nonconvex, nondiffer- 
entiable optimization problem. We show that any stationary point is optimal, and we propose a 
solution algorithm that decreases the nondifferential objective monotonically. Application to the 
asymmetric traffic assignment problem is considered. 
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I. Introduction 

Recently, much attention has been focused on the variational inequality formula- 
tion of the generalized traffic assignment problem involving user-optimized behavior 
(Bertsekas and Gafni [2], Dafermos [4], Nguyen and Dupuis [17], Smith [21] for 
instance). Most solution methods have only been proposed in a transportation 
framework, although the algorithms are of more general application, and could be 
applied as well to solve N-person games or economic equilibrium problems. What 
singles out the multicommodity traffic assignment problem from the general vari- 
ational inequality problem is the computational ease with which the linear approxi- 
mation of the problem (replacing the cost mapping by a constant vector) can be 
solved, namely by performing shortest path computations. 

In this paper the variational inequality problem is formulated as a nondifferenti- 
able, nonconvex mathematical program. To evaluate the nondifferentiable objective, 
a linear approximation of the problem has to be solved; consequently this linear 
problem must possess some structure amenable to efficient solution procedures; the 
traffic assignment problem falls into such a class of problems. 

After formulating the problem, we present the algorithm and give a proof of 
global convergence. Finally, we show how the algorithm can be implemented in the 
realm of large-scale traffic equilibrium models. 

Research supported by C.R.S.H. (Canada) grant #410-81-0722-RL and F.C.A.C. (Qurbec) grant 
# 83-AS-0026. 
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2. Problem formulation. Basic definitions. Solution algorithms 

Consider a continuously differentiable mapping F:  @ ~ R", where qO is a non- 
empty, convex and compact subset of ~n. The variational inequality problem (VIP 
in short) associated with F and • consists in finding a vector x* in q~ such that: 

( x * - y ) T F ( x * ) < ~ O  for all y in q) (1) 

If we define a point-to-set mapping F as follows: 

F ( x )  ~= arg rain y T F ( x )  (2) 
y~qb 

then a vector x* solves VIP if and only if it is a fixed point of the uppersemicontinuous 
mapping F. Since q~ is compact, Kakutani's fixed point theorem [12] ensures the 

existence of at least one solution to VIP. 

Definition 1. A mapping F is: 

1. Monotone on q~ if: 

(x  - y ) X ( F ( x )  - F ( y ) )  >i 0 

[(x - y ) V F ' ( x ) ( x  - y )  >10]. 

2. Strictly monotone on ¢b if: 

(x  -- y ) T ( F ( x )  -- F ( y ) )  > 0 

3. Strongly monotone on ~b if: 

(x  - - y ) T ( F ( x )  -- F(y))  t> ~? Ilx -y[I  2 

[(x - y ) T F ' ( x ) ( x  - y )  >i wllx - y 112], 

where 71 is some positive constant. 

for all x, y in ~, 

for all x, y in ¢b(x -~ y). 

for all x, y in qb, 

The relations inside the square brackets apply whenever F is continuously differ- 
entiable on q~ with Jacobian F ' J  See Auslender [1] for further details. 

It is easily verified that the solution set of VIP is compact, convex if F is monotone, 
and a singleton if F is strictly monotone. 

In the remainder of the paper we will assume that F is monotone. In this particular 
case, many solution algorithms have parallels in (convex) optimization: projection 
with predetermined stepsize (Glowinski et al. [8]), Newton and quasi-Newton 
methods (Josephy [10, 11]), Pang and Chan [18]), penalty and proximal point 

1 All vectors are column vectors; a~ denotes transposition. Thus: 

F(x)= / i / and F'(x)=(VFt(x) . . . . .  VF~(x)). 
\F.(x)] 

If F ( x )  = Ax, then F'(x)  = A T. 
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( 'augmented Lagrangian') algorithms (Auslender [1], Rockafellar [20]), cutting- 
plane methods (Zuhovickii et al. [22], Nguyen and Dupuis [17]), etc. However, in 
contrast, with descent algorithms of convex optimization, the convergence of these 
algorithms is not related to the decrease of  an objective function. Furthermore, 
some methods require that F be strongly monotone, or at least invertible in a 
neighborhood of a solution, which may fail to hold in a variety of applications. 

We now introduce a merit function for VIP. An algorithm producing a sequence 
of iterates minimizing this merit function in a monotone fashion will be presented 

in Section 4. 

Definition 2. The GAP FUNCTION (see Hearn [9]) o f  a VIP is defined as: 

g(x) a=max (x-y)TF(x)= (x--)7)TF(x), for any )7 in F(x). (3) 

It is clear that g(x) = 0 if and only i fx  is a solution to VIP. In economic equilibrium 
theory, the gap function corresponds to the excess demand function, and is a better 
measure of  proximity to an equilibrium than the quasi-welfare function So F(t) dt 
(when the latter is unambiguously defined), since it is directly related to the 

perception of  the market structure by the economic agents. 
In a traffic equilibrium framework, the gap function measures the difference 

between actual (perceived) travel costs and minimal (shortest path) costs. 

3. Properties of  the gap function 

Let us first note that g is continuous but in general not differentiable (when F(x) 
is not single-valued) nor quasiconvex. 

Let 

t I )={(; i )~2 I XI+X2<~I, xI, X2>~O } 

F is monotone on q~ since 

F, = ( 2xl + gx2 4Xl 
\ 4X2 2X2 + 4X 1] 

is positive semidefinite on q). Also: 

g(x) = (x-o)r  F(x) 

implying that g is NOT quasiconvex. 
Useful differentiability properties of g are summarized in the next proposition. 

 x +4xlx2  
and F = \X22+4X1X2 ]. 
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Proposition 1. 1. g is Lipschitzian on q~. 
2. Og(x) = C O y ~ F ( x  ) [F (x )  -~- F t ( x ) ( x - y ) ]  
3. g is differentiable at x if F(x )  is a singleton. 

Proof. See Clarke [3] or Rockafellar [19]. [] 

Proposition 2. I f  g(x)  is positive and F ( x ) =  {y} then d a=y-x  is a feasible descent 
direction for g at x. 

Proof. We have, by Danskin's rule: 

g'(x; d ) =  sup ( y - x ) T ( F ( x ) - F ' ( x ) ( y - x ) )  
y c F ( x )  

<~-g(x)  by monotonicity of F 

<0.  [] 

We now show that every stationary point of g is a zero of g. 

Proposition 3. I f  g(x)  > 0 then there exists a point y* in F(x )  that satisfies: 

g'(x; y* - x )  <~ - g ( x ) .  (5) 

Proof. Let y* be solution to the linear VIP: 

(y*--y)TF'T(x)(y*--X)<-O for all y in F(x) .  

We have: 

g'(x; y * -  x) = max (y* - x)Th 
h~Og(x) 

= max ( y * - x ) T ( F ( x ) + F ' ( x ) ( x - y ) )  
y c F ( x )  

= - g ( x )  + ymraX ) (y* - x)TF' (x ) (x  -- y) 

<- - g ( x )  - (y* - x)T F ' (x ) (y  * -- x) 

<- --g(x) 

<0.  [] 

by construction of y* 

by monotonicity of F 

When • is a convex compact polyhedron, so is F(x) .  Denote by {u~,. . .  u m} the 
A m i extreme points of F(x) ,  and let z = ~=1 A~u. The directional derivative g'(x; z -  x) 

is given as before, by the expression: 

g'(x; z - x )  = - g ( x ) +  max ( z - - x )VF ' (x ) (x  - u) 
u~F(x)  

m 

= - g ( x ) +  max Y~ 2b(uJ--x)TF'(x) (x- -u  ~) 
i=l,...,m j =  1 
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since the m a x i m u m  of  the l inear  term (z -x)TF' (x) (x  -- u) must  be at ta ined at some 

extreme po in t  u ~ of  F(X).  Therefore:  

g'(x; z - x ) = - g ( x ) -  min (CA)~ 
i= l,...,m 

where C is a posi t ive semidefinite matr ix  with elements:  

c ~  = ( u '  - x ) T F ' T ( x ) ( u  j - x ) .  

The derivat ive g'(x; z -  x) will achieve its m i n i m u m  value at a poin t  z* which is 
solut ion to the ma themat i ca l  p rog ram 

m a x  g ' ( x ;  z - x )  
z~F(x) 

which is equivalent  to: 

max  min  ( C h i ) ,  
h>fO i=l,...,m 

o r  

m a x  y 
A,3' 

s.t. ~ h i = l ,  
i=1 

A i> 0, (6) 

CA>~y . 

Let (~**) be  opt imal  for  (6), 

Propos i t ion  3. Then  we have:  g'(x; z * - x )  = - g ( x ) -  y*~  g'(x; y * - x )  where y* is 

nonnegat ive  as a consequence  of  Proposi t ion 3. 2 Notwi ths tanding  direct ion norms,  

the descent  direct ion z* is therefore,  in some sense, preferable  to the descent  direction 
y * - x .  

As an i l lustration, consider  the VIP  with: 

c I ) = l ( X l ] i n R Z [  x 2 - 2 x 1 < ~ 2 ' 2 x ' q - x 2 < ~ 2 , x 1 ' x 2 > ~ O ) l  \ x2/ and F ( X : )  = ( xl)x2 

(see Figure 1). 

The equi l ibr ium poin t  is the origin, and the ext reme points  o f  @ are: u 1= (-ol), 
u2= (1) and  u 3= (o). At Xo = (o) we get: F(x )={u  1, u2}, g(x °) = 4 .  The  directions 

d 1 =  u I - x  ° and  d 2-- u Z - x  ° are descent  directions for  the gap  function.  Minimiz-  
at ion a long d ~ yields x 1-/-7/ lOb 31 - ~  6/~oJ, g(x ~) = and F ( x  1) = {u2}. At x ~, minimiza t ion  ~6 

z From the positive semidefiniteness of C, one can also directly deduce, using Tucker's theorem of 
the alternative (see [13]), that the system cr)t i> 0 (A ~ 0) has a nonnegative solution. 

Z * = ~ i m l  A*U i and y* as defined in the p r o o f  of  
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U 1 X U 2 

Fig. 1. 

in the direction u2-x  ~ yields X2=(6717), g(x2) =2~699 and /'(X2)={U 1, U2}. At this 

point neither u 1 -  x 2 or u 2 -  x 2 are descent directions for g. The solution to (6) gives 

~1/2J and the descent direction (o °) - x  2, which leads directly to the solution. 

4. A descent algorithm for the gap function 

In this section we propose a solution algorithm for the VIP, based on a descent 

direction obtained by solving LP programs of the form (6). The extremal directions 
u i - x  will play a role similar to the role of  subgradients in convex nondifferentiable 

optimization. Since F(x) cannot in general be known explicitly, the algorithm will 
progessively refine a polyhedral approximation if(x) to F(x), in a spirit very similar 

to the e-subgradient alorithm described in [14], until a suitable descent direction 
for the gap function is found by solving (5) with F(x) replaced by F(x) .  

Algorithm A. Let x ~ q~ and E a small positive constant. 

1. I f  g(x) < e STOP. 
m~- l .  

C*-O. 
Let y~ c F(x). 

2. C,,,,~(y'-x)TF"r(x)(y"-x), i = 1 , . . . ,  m. 

Cm,~(y'-x)'rF'T(x)(y~-x), i = 1 , . . . ,  m. 

C ~  

Clm 
C 

Cm--l,m 
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3. Solve: 

Max y 

(CA)i ~> % i = l , . . . , m ,  

~ h i  = 1 ,  

A/>0, 

whose solution is A, ~. 
- ~,~ 

L e t y =  i=lX~ vi. 
4. £ ~  x + o l g ( x ) ( f i - x ) .  

m~-rn+ l. 
Let ym ~ F(£) .  

5. If g ( £ ) >  ( 1 -  (o l /12)g(x))g(x)  then go to 2 

else let O* ~ argmino~ o~  g(x + O(y - x)). 

x ~ x + O * ( y -  x ) .  

go to 1. 

345 

Convergence of algorithm A depends on the existence of a positive constant o~, 

determined in such a way that the 'then' branch at step 5 cannot be taken infinitely 
often, at a given iteration. 

In the following, we will assume that F '  is Lipschitzian on @, with Lipschitz 
constant M. Also, let L be the Lipschitz constant of  F, and D be the diameter of 
• , i.e.: 

IIx-Yll<~D 

liE(x) - E(Y)II ~< tllx-Yll 

l i F T ( x ) -  E'T(Y)[I ~< Mllx-Yll 

We also define: 

Z'---a sup IIE(x)ll < ~ ,  
x E t/-9 

M '  ~ sup  II F'(x)II < ~,  
x ~ q b  

S--Asup g(x)  < oo. 
x ~ t ~ b  

for all x, y in qb, (7a) 

for all x, y in ~, (7b) 

for all x, y in ~. (7c) 

(8a) 

(8b) 

(8c) 

L e m m a  1. Let x, £ ~ cp, y ~ F ( x )  and ~ ~ F(£) .  Then there exists a positive constant 

el, such that: 

II£-xll<~elg(x) ~ ( f i - x ) V F ( x ) < ~ - l g ( x )  or g(~)<~2g(x). (9) 
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Proof. Set el = 1 / 6 ( D L + L ' ) .  We have 

( Y - x ) ' r F ( x )  ~ ( Y - g ) T F ( x )  + I I x - x l l "  IlE(x)l[ 

~< (Y--x)TE(x)  q- IlY--~II" l iE (x ) -E(X) l l  + II~-xll  " IIE(x)ll 

<~ - g (  g ) + D L e l g (  x ) + e , g ( x  ) L'. 

I f  g (£)  >~2g(x) then 

2 1 ( y -  x ) T F ( x )  ~ - g g ( x )  +gg(x )  = -½g(x) .  [] 

Lemma 2. There exists a positive constant E 2 such that, whenever a <~ e2, then ' then' 

branch at step 5 o f  algorithm A cannot be taken infinitely often, at a given iteration. 

Proof. Set 

e2 = Min . (10) 
, 12D2L , 3 D Z ( 2 M + M ' + D M )  ' 

Suppose the result does not  hold. Since • is bounded ,  there must  exist indices m 

and p ( p ~  m) such that: 

c~DMg(x) 
Ily m-y'll ~< M '  (11) 

~--~ m - -  1 ~(  i 
Let x, ~, ~ = x + a g (x )d ,  d = y - x  = L~:I y - x  be as in algori thm A (step 5), 

be any point  on the line segment f rom x to ~ (5 ~ x) and )7 be any point  in F(Y). 

We have: 

; = x + r a g ( x ) d  f o r s o m e r e ( 0 , 1 ] ,  

and 

-- :~ + (1 - r ) a g ( x ) d .  

We can write: 

0 ~  > ( y m _ ) 7 ) r F ( g )  by definition of  ym 

= (ym __ y)T[ E(:~) q_ F,T(:~ q. t(x -- :~))(x -- x)]  

for some t ~ [0, 1] by the mean  value theorem. 

This implies: 

0/> (ym _ )7)T[ F ( ; )  + F'T(X)(£ -- ; ) ]  -- [[ E ' T ( ;  + t ( ~  --  :~)) --  F'T(X)I1" II'Z - ;  II 

>>_ (ym _ 37)T[ F ( ; )  + F,T(X) (g _ ; ) ]  _ M ( I ] ;  - x][ + tl]£ - ;]D(1 - - t ) a g ( x ) D  

>_ (ym _)7)T[F(•) + F,T(X)(g _ £ ) ]  _ M(1  - z)(c~g(x))2D 2 
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implying 

(1 - r)D2M(o~g(x)) 2 >i (ym _ f i )T[F(5 ) + F,T(X)(2 _ 5)]  

>1 (ym _ f ) T F , T ( x ) ( . ~ .  _ X) 

since (ym _ y)TF(5)  i> 0 by definition of  )~. Thus 

and 

(1 - r)D2M(ag(x))2>~ (1 - ~')c~g(x)(y m - - f i ) T F ' T ( x ) d  

D2Mag(x) >1 (y,, _ f i ) T F t T ( x ) d  = [(ym _ yp) + (yp _ x) + (x - y )  ] T F ' T ( x ) d  

>- aDMg(X) M,D+(x_y)TF,T(x )d  
M' 

f rom (11) and the fact that (yP -x)TF'T(x)d >i 0 by construct ion of  the direction d. 
Therefore  

(x - y)TF'T(x)  d <- 2aD2Mg(x). (12) 

Now 

implying 

Also: 

Now,  

(5--y)TF'T(5)d = (X --y)TF'T(x)d + ( 5 -  x)TF'T(x)d 

+ ( 5 - f i ) T ( F ' T ( 5 )  - F ' T ( x ) ) d  

<~ 2aDZMg(x) + DEag(x)M'+ MDaag(x) by (12) 

= ( 2 D 2 M +  D2M'+ D3M)ag(x),  

(X--fi)TF'T(~c)d ~ g(x)/3 since o~ < 62 .3 

g'(5;  d ) =  max d T [ F ( 5 ) + F ' ( 5 ) ( 5 - y ) ]  
y~r(~) 

< g(x)+ 0 7 _ x ) T F ( 5 )  by (13) 
3 

< g(x) + (fi _ x)TF(x ) + olD2Lg(x ) 
3 

<-g(x)+(y--x)TF(x)+g(x)  by (10). 
3 12 

if g (2)  ~< 2g(x),  we get: 

~<: 1 - ½ .  a 12 ]gtx)  

3 This relation holds for any ~ in F(Y). 

(13) 
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which is the required contradiction. Otherwise, from Lemma 1, 

(y - x)TF(x)  ~ -~g(x)  

since [IX-x[[ = ag(x)[]d H < e~/ D .  D =  el. 
Therefore 

5g(x) g(x)  
g'(•; d) < - -½g(x) = 

12 12 

Thus 

o r :  

g ( X ) - g ( x ) =  ag(x)g'(Y; d) 

(g(x))  2 

12 

for some ; e [x, X], 
by the mean value theorem 

g(g)~<(1 ag(x)'~ , , 
- - - i - ~ } g [ x )  

which contradicts the assumption at the beginning of the proof. [] 

Proposition 4. Let {Xk}k be a sequence generated by algorithm A. Then 

lim g(x k) = O. 
k--~ oo 

Proof. From Lemma 2 we get 

g(xk+l) <~ (1- -~2g(xk) )g(xk) .  

Taking limits on both sides, we have 

gOO~o ~ 
g°°~l img(xk)~ 1--a-;~-~/g and g~=0.  [] 

k-*0 I Z /  

Remark. When q~ is polyhedral, and if the points y~ are always taken as extreme 
points of 4~,.then the maximal number of times step 5 has to be repeated at a given 
iteration of algorithm A can be uniformly bounded by the number of extreme points 
of q). 

5. Application to the traffic assignment problem 

It is well known [4, 21] that the traffic assignment problem (TAP in short) can 
be formulated as a VIP, with • representing the convex polyhedron of multicom- 
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mod i ty  l ink-f low vectors  

x (k), k = 1 , . . .  K 4 and  Fa(x) =- Fa x (k) 
1 

is the  uni t  cost  a long  l ink a, poss ib ly  d e p e n d e n t  on  l ink flows over  o ther  l inks of  

the  ne twork .  

In  Marco t t e  [15] it has  been  observed  tha t  it  occurs  f requent ly  than  any di rec t ion  

o f  the  form d = y - x wi th  y c F(x )  is a descent  d i rec t ion  for  g at x, and  the i te ra t ion  5 

x ~ x + A d  with A = 1 i f (y--x)TF(y)<~O, 

(x + Ad - y) 'rF(x + Ad) = 0 o therwise  

was gap  decreas ing ,  at least  in the first i tera t ions .  Such a scheme can be exp lo i t ed  

in the  first i tera t ions .  W h e n  one gets c loser  to a so lu t ion ,  it is l ikely that  many  

ex t reme po in t s  yi  gene ra t ed  prev ious ly  by  a lgor i thm A will sat isfy the  re la t ion  

( y ' -  x )TF(x)  <~ --~g(x) 

for  some pos i t ive  cons tan t  ft. This suggests tha t  these po in ts  shou ld  be  taken  into 

account  when  look ing  for  a descent  d i rec t ion ,  y ie ld ing  the fo l lowing  modi f ied  

a lgor i thm.  

Algorithm B. Let  x ~ ~ ,  B ~ 0. 

1. I f  g(x)  <~ e STOP. 

m ~ l .  
Let  y l  c F(x) .  

2. C im~(y i - -x )TF 'T(x ) (y  m - x ) ,  i= 1 , . . . ,  m. 

C,~i~(y"  --x)TF'T(x)(y ~ --X), i= 1 , . . . ,  m. 

3. Solve: 

C ÷  

C1 m 

C 

Cm--l,m 

C,.1 . . .  C , . .m- ,  C, . , .  

M a x  y 

( C h ) ~ > ~ y , i = l , . . . , m ,  

~ h~ = 1, 
i : 1  

A 1>0, 

whose  so lu t ion  is X, ~. 

Let )7 = ~ X~i. 
i = l  

4 @ can be assumed compact without loss of generality. Indeed if F~(x), a = 1, . . . ,  n, is positive for 
every positive x, it can be shown that only loopless paths need be considered (see Marcotte [15]). 

5 This scheme actually consists in solving the VIP restricted to be the line segment [x, y = x + d]. 
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4. ~x+o~'g(x) ( .p-x) .  
m ~ m + l .  
Let ym c F(~).  

5. If g()7) > (1 - (a'/c)g(x))g(x) then go to 2 

else let 0* e arg min0~t0,1] g(x+ O(~-x)). 
x* -x+O*(y -x ) .  
Let 3~ e F(x). 
If  g(x)<~ eSTOP. 

Let I = { l b . . . ,  lr} the set of indices such that: 

(y' - x)T F(x) <~ -fig(x) (14) 

Set 

Cij~-Ci~,, i = 1  . . . .  ,r, j = l , . . . , r .  

C ~ O ,  i ~ r + l ,  j>~r+l. 

m ~ r + l .  

Let ym =)3 and return to 2. [] 

Only at step 5 do algorithms A and B differ. In algorithm B, all extreme points 
previously generated that satisfy (14) are retained in order to compute a descent 
direction. Convergence can be established along the lines of lemmas 1 and 2 and 
proposition 3, possibly with constants a '  and c different, respectively from the 
constants a and 12 of algorithm A. 

A somewhat similar idea has been proposed by Fukushima [7] to solve the TAP 
with separable cost function. At each step of the algorithm, one computes the 
directions d 1 = yk _ X k with yk ~ [,(x k) and 

k 

d2= y~ t z~yi -x  k 
i = l  

where y~cF(xi), i = l , . . . , k  and {/zk}~ is an arbitrary set of positive weights 
summing to one, and satisfying the condition /xk~ > ' ' "  i>/Xl k. 

At iteration k, d 2 is chosen in preference to the Frank-Wolfe direction d 1 

whenever: 

daTGF(x  k) d lTF(xk  ) 

lid211 IId'll 
In algorithm B, we propose a systematic approach for choosing the weights {/k}i 
in an optimal rather than heuristic manner. 

Finally, we remark that when F is the gradient of  some function f which is convex 
on ~, then the directions obtained from algorithms A and B are descent direction 
for the gap function g as well as for the 'natural'  objective f. 
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