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We consider a bilevel model where the leader wants to maximize revenues from a taxation
scheme, while the follower rationally reacts to those tax levels. We focus our attention
on the special case of a toll-setting problem defined on a multicommodity transportation net-
work. We show that the general problem is NP-complete, while particular instances are poly-

nomially solvable. Numerical examples are given.

(Pricing: Networks; Bilevel}

1. Introduction

We consider a general taxation modei involving two
levels of decision-making. The upper level (leader) im-
poses taxes on a specified set of goods or services while
the lower level (follower} optimizes its own objective,
taking into account the taxation scheme devised by the
leader. Since we do not force nonnegativity constraints
on taxes, our model can implicitly deal with subsidies,
which can be viewed as negative taxes. In the field of
economics, this fits the principal/agent paradigm (see
van Ackere 1993} where the principal, fully aware of the
agent’s rational behaviour, induces cooperation from
the agent through an incentive scheme. In the field of
mathematical programming, this problem belongs to
the class of bilevel optimization problems where both
objective functions are bilinear. Surprisingly, this class
has never been studied from a theoretical point of view.
The present paper is devoted to the theoretical and algo-
rithmical properties of this taxation model. In particular
we address the issues of computational complexity of both
the general model and important subclasses of it.

In the first part of the paper, we introduce the general
model and reformulate it as a standard linear-linear (or
simply linear) bilevel program. Based on this reduction
process, we derive an economic interpretation for an op-
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timal taxation strategy. Linear bilevel programs have been
studied quite extensively. They constitute the simplest in-
stance of bilevel programs, where the two objective func-
tions and the constraints are linear. Efficient implicit enu-
meration algorithms for their solution have been proposed
by Bard and Moore (1990}, Faustino and Jadice {1988),
and Hansen et al. (1992}, while exact penalty approaches
have been investigated by Anandalingam and White
(1990, 1993). Nonlinear bilevel models have previously
been applied to network problems such as the network
design problem (see Marcotte 1986) and to the manage-
ment of electric utility demand (Hobbs and Neison 1992}
A bileve! price control problem with linear upper level
objective and bilinear lower level objective has been pro-
posed, but not solved, by Bialas and Karwan (1984}

The linear bilevel programming problem has been
shown to be NP-complete by Jerosiow (1985). Penalty
schemes have been investigated, dating back to Ai-
yoshi arnd Shimizu (1984) in the nonlinear case. Re-
cently, Marcotte and Zhu (1996} have generalized this
result to bilevel problems where the lower level is de-
scribed by a variational inequality. An annotated bib-
liography containing more than one hundred refer-
ences on bilevel programming has been: compiled by
Vicente and Calamai (1994}, while the books by Shi-
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mizu et al. {1997) and Luo et al. (1996} are devoted,
i full or in part, to this subject.

In the second part of the paper, we focus our atten-
tion on the problem of setting tolls on a specified sub-
set of arcs of a multicommodity transportation net-
work. In this context the leader corresponds to the
profit-maximizing owner of the network, and the
follower to users travelling between nodes of the net-
work. The users are assigned to shortest paths with
respect to a generalized cost equal to the sum of the
actual cost of travel plus a money equivalent of travel
time. This model is formulated as a bileve! program
with bilinear objectives at both levels of decision and
network constraints at the lower level. This problem
is shown to be strongly NP-hard. However its lower
level network structure makes for very interesting al-
gorithmic considerations. In particular, special cases
of the problem can be solved in polynoemia: time, us-
ing shortest path and transshipment algorithms ap-
plied to a modified network. Furthermore, the general
problem can be efficiently reformulated as a mixed
integer program with a small number of integer (in-
deed binary) variables, large instances of which can
be solved within reasonable time.

The outline of the paper is as follows. In §2, we
introduce a very general nonlinear model and study
in detail its specialization to bilinear objectives. Sec-
tion 3 is devoted to the theoretical and algorithmical
analysis of the Toll Optimization Problem (TOP). We
prove that the general optimization problem is NP-
hard, and that important special cases can be solved
in polynomial time. In §4, we illustrate the features of
the TOP model by means of medium-sized example.
In 83, we propose a muiticlass extension of the basic
model and conclude the paper.

2. A General Taxation Problem

Let x and y be real vectors that specify the levels of taxed
and untaxed activities (goods, services), and T be a tax
vector attached to the activity vector x. For a given tax
fevel vector T, in control of the leader, the foliower
strives to minimize its operating costs, while the leader
seeks to maximize its revenues from taxes. Let F and f
denote the leader’s and follower’s objective functions,
respectively. This situation can be expressed as the bi-
level mathematical program
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max F{x, v, T)
T,xy
subjectto T € 8,
x.yyell

{(x,y)€earg min fx',y.T) (1)
(x',y")ell

where @ represents a set of constraints on taxes, and [T
a set of constraints on the activities of the follower. If
the lower level problem admits a unique solution de-
noted by (x(T), ¥(T)). implicitly defined by the inner
optimization problem in (1), it is possible to rewrite the
above program in the form

max F(x(T), (T), T). 2)

Te@

Whenever the lower problem admits muitiple solutions,
ties are broken in favour of the leader. Alternative sit-
uations, where the leader expects the worse behaviour
from the follower, have been analyzed by Loridan and
Morgan (1989). According to usual bilevel program-
ming practice (see Ben Ayed 1993), we record the pro-
grams {1) or (2) as:

max

TeO,xy

F(x, 4, T),

min f(x.y T}

Xy

subject to  (x, y) € IL

This simple model can cover a wide variety of situa-
tions. For instance, the vector T may embody subsi-
dies as well as taxes. while the vectors x and y may
represent either consumption or production levels.
Furthermore, the lower level can be used to represent
the group behavior of individuals competing among
themselves. For instance, the lower level can involve
several or infinitely many economic agents, corre-
sponding to oligopolistic or perfect competition situ-
ations, respectively. The equilibrium state of the
lower level is then characterized as a solution to a
variationa! inequality parameterized in the leader’s
decision variables. This yields the generalized bilevel
program of Marcotte and Zhu (1996), or the equiva-
lent MPEC (Mathematical Program with Equilibrium
Constraints) of Luo et al. (1996}
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Figure 1 A Two-Dimensional Example
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where G is the mapping associated with the lower level
variational inequality.

This program can be formulated as a standard bileve!
program, if one substitutes for the lower level varia-
tional inequality the gap function defined as:

flx,y, Ty = max (G(x, u, T){x, y)— &5y

(yait : ‘
The above formulation is valid only if the set [T is com-
pact. If [T is not compact, one may alternatively use the
regularized gap function (see Fukushima (1992))
flx,y, Ty = max (Glx, y, T), (x, ¥} — («", ¥'D
woyen

L4

=l v~ 0 lF
as the lower level objective function.

In this paper, we restrict our attention to the situation
where the leader maximizes its revenues from taxes re-
stricted to the polyhedron @ = {T : TC = ¢} defined by
a matrix C and a right-hand side vector e while, for
given taxation levels, the lower level’s reaction is ob-
tained by solving a linear program over the polyhedral
set I1 = {{x, y): Ax + By = b}. This vields the bilinear-
bilinear bilevel program’

* In order to avoid the use of the transpose operator, we adopt the con-
vention that left (right) vectors are row {column} vectors, respectively.

max

TA,7
subject to TC = e.

min (¢ + T)x + dy,

E2%

subject to  Ax + By = b. (TAX)

The vector ¢ corresponds to the “‘before tax” cost of the
activity x. In order to gain some insight into the above
probiem, we discuss the exampile depicted in Figure 1. For
a given tax level T in R’, the optimal solution of the lower
level problem is achieved at a vertex of the two-
dimensional polyhedron IL For instance, i T = 0, we
have:
Ty ==x° w(T)y=y"

;

The vertex (x° y°) remains optimal as long as T does
not exceed some threshold value T°. For T less than or
equal to 7Y, the leader’s objective is & linear function of
T, with slope 2", As T increases bevond T, the vertex
(XQ, y"") is no onger optimal for the lower level’s pro-
gram. Let (x, ¥%) be the new optimal vertex; {x!, y'}
remains optimal for T-values belonging to the intervai
(T°, T'}. Within this range, the slope of the leader’s ob-
jective function is now x', with x’ < x% obviously. The
remainder of the process is self-explanatory. I T ex-
ceeds a sufficiently large value (T° in our example), the
optimal vertex is (x7, ¥}, with x” = €. and the leader’s

Figure 2
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profit is driven to zero. The optimal solution is achieved
at T = T2 The upper envelope of the leader’s objective,
taking into account the optimal reaction: of the follower,
is iliustrated in Figure 2.

Notice that the leader’s objective F(x(T}, y(T'), T} is nei-
ther a continuous nor a convex function of T (see Figure
2). However, it is not difficult to prove that it is upper
semicontinuous. Hence there exists at least one optimal
solution to the general problem, and to TAX in particular.

Throughout the paper we make the foliowing as-
sumptions, to avoid trivial situations:

ASSUMPTION 1. Theset YT = {{x, y): Ax + By = b} is
bounded.

ASSUMPTION 2. The set {y : By = b} is nonempty.

Assumptions 1 and 2 imply that, for any given 7,
strong duality holds for the lower level program.
According to Assumption 2, the lower level has a fea-
sible solution that consists solely of untaxed activities.
Consequently, the leader’s profit is bounded from
above. Our first results state that one can reduce TAX
to either a single-level bilinear program with disjoint
constraints, or to & linear bilevel program, two classes
of problems for which reasonably efficient algorithms
have been proposed. Our line of proof uses an exact
penalty scheme similar to that introduced in Anandal-
ingam and White (1990).

ProrosITION 1. Under Assumptions 1 and 2, TAX can
be reformulated as a single-level bilinear program.

PrROOF. Let us replace the Jower level linear program
in TAX by its primal-dual optimality constraints to yield
the equivalent single-level problem

o T
subjectto TC = e,
Ax + By = b {primal feasibility},
NA=c~+T,
AB = d (dual feasibility),
x =G,

NMAY + By —b)=0

(complementarity slackness).

Let us penalize the complementarity slackness con-
straint X(Ax + By — b) = 0, which is nonnegative
whenever (x, i) and \ are feasible for the primal and
the dual problems respectively. This yields the bilin-
ear program:

max
FETZN

Tx — Kh(Ax + By — b)

subjectto TC =,

Ax + By = b,

NA=c+ T,
\B =d,
r =0, (BILINT)
or, after substituting NA — c for T:
maz( (M — c)x — K\N(Ax + By — b)
subjecttc Ax + By = b,

(AA —c)C =g,

AB =4,

A= (BILINZ2}

Since strong duality holds for the lower level prob-
lem, a dual optimal solution of the lower level prob-
lem is achieved af an extreme point of the polyhedren
{A: AB = d, A\ = 0}. Therefore the polyhedron I’ = {\
:AB =d, (M - ¢)C = ¢, h = 0} may be assumed
bounded. Denote by {\', i € [} its extreme points and
by {{x', y), i € ]} the set of extreme points of the pri-
mal polyhedron [1. According to Assumption i, we
may also assume, without loss of generality, that T
= conv,o;{(x’, ¥'}}. The maximum of the disjoint bilin-
ear program BILIN2 must be achieved at an extreme
point (x/, ¥/, N'} of I X T (see Vaish and Shetty
(1976)). Let

(NA -
N(Ax' + By — b))

KZK*:maX{

€1;€]

N{Ax + By — b) > ol (3)

)

According to this choice of K, a triple (x/, ¥/, N’} qualifies
for optimality if

MANAGEMENT SCIENCE / Vol. 44, No. 12, Part 1 of 2, December 1998 1611
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N{Ax' + By — b} = 0,

Indeed, at any other extreme point, the leader’s objec-
tive is negative, and therefore clearly non optimal. It
follows that the term A{Ax + By — b) constitutes an exact
penalty function for the mathematical program BILIN1,
thus showing that TAX and BILIN1 are equivalent,
whenever K is larger than K¥. [0

ProOPOSITION 2. Under Assumptions 1 and 2, TAX can
be reformulated as a linear bilevel program.

PROOF. Let us rewrite BILIN2 as:

min A((K — 1}Ax — Kb} + cx + Kdy

Ay
subject to Ax + By = b,

(M —c)C =c¢,

AB =4,

A= 0. (BILIN3}

For fixed x and y, BILIN3 is a linear program in the
variable \. If one substitutes its dual objective function
dz + (e + cC)u for its primal objective M{K — 1)Ax
— Kb}, we obtain the linear-linear bilevel program

min dz + (e + cCYu + cx + Kdy,
xYy

max dz + (e + cClu,

subjecttc Ax + By = b,
(K —1)Ax — Bz — ACu = Kb,
u=0 5 (4}

Note that the constraint Ax ~ By = b in the above
program is independent of z and can therefore be arbi-
trarily located before or after the jower level’s objective.
The optimal tax vector T is related to the optimal dual
variable X associated with the constraint

{K—~1)Ax — Bz — ACu = Kb

through the equation NA = ¢ + T, and can be easily
recovered.

This latter program can be given an interesting eco-
nomic interpretation. Consider, for the sake of simplic-
ity, that the taxation vector T is unrestricted, i.e., C and

¢ are zero. Let us also assume, without loss of generality,
that ¢ is equal to zero; indeed, upon the introduction of
an untaxed activity vector ', TAX is clearly equivalent
to the mathematical program

max Tx,
Ty’

. ™ s s
min Tx +dy + oy,

2y
subjectto Ax + By =1,
x—y =0,
-x+y =0,

where the taxable vector x has now zero “before tax’” cost.
With C and e set to zero, the next-to-last constraint of
{(4) can be rewritten as:

We now make the change of variables z* = —z/ K and set
¢ = 1/K. This yields the equivalent linear bileve! program

max dz' - dy

2y,
subjectto Ax 4+ By = b,

min dz’,

Ax + Bz' = b + €Ax. (5)

The leader positions himself by selecting an (x, y)-vector
such that any marginal deviation from this proposed so-
lution by the follower will result in a large deterioration
for the follower. This gap between the leader’s proposal
and the foillower’s second best alternative provides room
for taxation. It is in the interest of the leader to maintain
this gap as wide as possible.

This is exactly what the above program (5) achieves.
Indeed, the lower level in (5) strives to satisfy a mar-
ginal increase in demand eAx at the least possible cost,
while setting x at the level prescribed by the leader.

If € is set to zero, a value of dz' that is less or equal to
that of dy can clearly be achieved by the follower, since
the value dy corresponds to the feasible lower level pro-
gram z' = y. This means that, at best, the leader’s ob-
jective is zero. The leader may achieve this optimal
value zero by setting y to z’, where z’ is an optimal
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response to any feasible vector x selected by the leader.
I ¢ is positive, the follower optimally adjusts himself to
the increased demand e¢Ax by adopting a recourse in-
volving the sole vector z'. In the bilevel formulation (5),
the leader wants to maximize the added cost of this re-
course to the foiiower.

If the last inequality of (8} is equivalently expressed as

A[(1 — ex} + Bz = b,

the aim of the lower level is simply to substitute z'-
variables for a marginal decrease ¢ in the upper level
vector x, while meeting the demand vector b. This al-
ternative constitutes the follower’s marginal best re-
course. Since the penalty scheme is exact, there exists a
value €* such that the above marginal analysis is exact,
i.e., there exists an optimal recourse that corresponds to
an extremal solution of the constraint polyhedron and
this extremal solution remains optimal when ¢ stays
within the range (0, €*]. As stated earlier, the optimal
tax vector T can easily be recovered from the duai vector
associated with the constraint of the lower level pro-
gram through the equation

T = )\A.

For fixed x, the optimal solution of the mathematical
program (5} is easily obtained by solving two linear pro-
grams parameterized in x. It follows that the objective
of (5} is continuous, as the difference of two convex,
continuous functions of the vector x. This is to be con-

rasted with the situation illustrated in Figure 2, where
the profit function is a piecewise linear but discontinu-
ous function of the decision variable T.

3. A Road Pricing Model

In this section we focus on an application of the preceding

users from taking toll arcs rather than alternative routes,
simultaneously generating high revenues. The route choice
model that we adopt ir: this section is simplistic: we assume
that the users travel on shortest origin-destination routes,
and that congestion is not an influential factor.

In this section we first introduce the model and the
notation, together with an integer programming for-
mulation and a proof of NP-completeness; next we
show that, under additional assumptions, the problem
becomes polynomially solvabie.

3.1. The Model: Formulatiens and Computational
Complexity

Consider a multicommodity transportation network
characterized by an underlying graph, a cost structure
and demand for travel between vertices, given by an
origin-destination matrix. The leader is allowed to set
taxes on a subset of the arcs of the network, while the
remaining arcs bear only fixed costs. For given tax lev-
els, the network users minimize their generalized travel
costs, which include two components, the first being the
tolls and the second the travel costs, exclusive of tolls.
The cost of a route is defined as the sum of the gener-
alized costs of its arcs. The only constraints on tolls are
lower bound constraints. Most of our results would ex-
tend easily to upper bounded tolls.

If one adopts the notation of Table 1, the toll setting
problem can be expressed as a bilevel program with
bilinear objectives and linear constraints:

Table 1 Notation for the Toli Setting Problem

N Set of nodes of the network

Q. Set of origin nodes of the network

A Set of destinatior nodes of the network
A Set of arcs of the network

a Ar eiement of A

model where an authority sets tolls on a specified subset 4 Set of toll arcs

of arcs of a transportation network, and the users of the Ay Set of untolled {free) arcs, A = A — A

network travel on shortest routes between their relative /- Backward star associated withi node - = = i(k /) € A k€ N}
origins and destinations. While the aim pursued by the : Eorwa!rc' s‘;ar assomatedAwnh ;’°‘_’f’ ¢ ;‘t |= Hhkedkem
authority could be to improve the network performance UT:: -,{:;\/ZDC:; gnea: 7€ A ereiise oL TR

through its toll policy, we assume that it simply seeks to Lower hound on 7,

maximize revenues. Such a model corresponds for in-  ¢* Proportion of flow demand between origin node  an¢
stance to the setting of profit maximizing tolis on a pri- destination node /

vately owned highway system. An optimal toll policy is X FIOfW from origin k to destination /on arc &

such that toll levels are sufficiently low not to deter the % Total flow on arc
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max 9, T.x.
Tx A€ A,
min Y (Gt Tx.+ 3 X,
x ac Ay acAy
Vik IENXOXA Y 28— 3 x¥
gt aci™
1 ifi=k,
=41 ifi=1,

¢  otherwise,

Vae A: x,= . d%,
ki
Va,k,1EAXQXA: x=0,
Va€ A T,=I,. {TOP)

In this formulation, the vector {x,},c 4, plays the role of
x and {x,}.eq, plays the role of y in TAX.

In the remainder of the paper we assume that there
cannot exist a toll setting scheme that generates profits
and creates a negative cost cycle in the network, and
that there exists at least one path composed solely of
untolled ares for each origin-destination pair. These as-
sumptions imply that the lower level optimal solution
corresponds to a set of shortest paths and that the upper
level profit is bounded from above.

Using the ideas of §2, TOP can be reduced to a lin-
ear bilevel program. Furthermore, the characteriza-
tion of lower level solutions as origin-destination
paths carrying either no flow or the total origin-
destination flow allows us to obtain an integer pro-
gramming formulation of TOP that involves a small
number of binary variables, namely

max 9 3, d'TF,
T

kJ a€ Ay
Ve=(j}€ALkI€QXA NW-N=c+T,
Va=(i,j) €Ak 1EQXA N -\ =g,

S (el + TH)

€A}

vk, 1€ X A:

£ ¥ aal =N - N

1 ifi=k,

P

=¢—1 iti=1]

0  otherwise,
Va, ki€ A X QXA —Mx¥ =TV < Mx¥,
Va, k1€ Ay X QX A ~M(1—xy=TV—T,

= M(1 —x&),

Vo, kicA XOxXA xPeld i),
Va, k1€ AXOxX A x¥=0
Vag A: T, =1, (TOP-MIP)

This reformulation is obtained by first replacing the
lower level problem by its optimality conditions. The
only nonlinear constraint of the resuiting program is

VkIeQx A Y (cx®+ T,x%)

a€A;

+ X cxg =N =N
2€ Ay

and states that the primal and dual objective values
must be equal. We linearize this constraint replacing
T.x¥ by T¥ and adding the constraints

Va, k, 1€ AX O X A —Mx¥ =TV < Mx¥,
Va, k1 €EAXOXA —-M1I-—x2)=TV-T,

= M(1 — x4y,

Va k1€ A X Ox A xHel0 1.

Note that M can be polynomially related to the problem
data, using the same approach as the one described for
the constant K in equation (3).

Even in this very restrictive setting of a single origin
and a singie destination, the next proposition shows
that the toll setting problem is NP complete.

THEOREM 1. TOP is strongly NP-complete.

PROOEF. Let us consider the decision problem defined
by the oracle:

Given a TOP instance and a rational profit

3€A2 level 7, does there exist a toll vector T such that
Vik JENXQOXA: 3 xF— F x¥ Tx exceeds T and {x, y} is an ortimal lower-
pert aci— Jevel reaction to T?
1614 MANAGEMENT SCIENCE/ Vol. 44, No. 12, Part 1 of 2, December 1958
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First note that TOP can be formulated as the penalized
bilinear program BILINT with constraints disjoint in {x,
y} and . One of its optimal solution must occur at a
vertex of the primal-dual polyhedron. Since there is a
representation of vertices which is polynomially related
to the problem data, and K is polynomially related to
the extremal solutions (see (3}), we have that TOP is
in NP.

We show that TOP is NP-complete by a reduction
from the Directed Hamiitonian Path problem (DHP, see
Garey and Johnson (1979} to TOP. Let G = (N, A) be a
directed graph. We seek an Hamiltoniar: path between
two distinguished vertices s and t of N and show that
this can be achieved by finding a polynomially related
toll setting problem. Consider the toll problem defined
on the graph G = (N, A) where A = A U {(s, i)}, all arcs
of A are toli arcs and arc (s, i} {or its parallel copy} is
an untolled arc. We set the initial costs to —1 on toll arcs
and to iNi - 1 on the untolled arc {s, f}. The lower
bounds or tolls are set to 2. Demand from node s to
node 1 is set to 1. We show that the existence of a toll
strategy with revenue at least 7 = 2(|N}| — 1} implies
the existence of an s-f Hamiltonian path in G. Let I de-
note the length of any s-t path. Since the maximum
achievable profit compatible with this path is INj — 1
+ 1, it is clearly optimal to set tolls onto the longest path
of the network (with respect to the number of arcs), i.e,
a Hamiltonian path, if such a path exists. The toll values
on toll arcs that do not lie on the selected longest path
are set to |Ni — 1, assuring that any alternative path
has a cost higher than that of the selected longest path,
and hence that users do not have cheaper alterna-

tives. [}

REMARK. If there exists an s-+ Hamiltonian path P
< A, then an optimal solution of the toll setting problem
is obtained by setting T, = 2if {7, j}isin Pand T,, = |N|
+ 1 otherwise. The associated profit is equal to 2|{N]|
— 2. Any policy that does not set tolis on the arcs of a
Hamiltonian path results in a lower profit. Hence, the
solution of TOP on the modified graph yields a Ham-
iitonian path on the original graph, if such a path exists.

As an example, the graph of Figure 3 possesses two
Hamiltonian paths from 1 to 4: 1-2-3-4 and 1-3-2-4. An
optimal solution, corresponding to the path 1-2-3-4,
consists in setting T, Toa, Tag to 2 and Ty3, Tsp T24to0
4. The maximum profit for this example is equal to 6.

Figure 3

The Graph Transformation

3.2. The Case of a Single Toll Arc

An easily solvable instance occurs when there is but a
single taxable arc, say 4, by tailoring the parametric lin-
ear programming technique to this situation. We define
vu(T,) as the cost of a shortest path for the origin-
destination couple (k. I), for a given value of T,, and we
set Ty = Yi(®) — yu{0). Assume that the quantities 7's
are sorted n nonincreasing order:

Tl = Mol = 77 = Wiy
and let
i* € arg max J_wk”,‘ Sakm, =1,
R

An optimal toll is then directly obtained as

Ta:'ﬂ'kl.

thithd

If 7, is less than I, for all origin-destination couples (k, [),
the profit will be zero for all values of T, larger than /.
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3.3. The Lower Level Path is Known

The current and the next subsections are devoted to the
single origin, single destination case. Without loss of
generality, we assume that demand is equal to one. We
denote by p, a shortest path from the origin s to the
destination  obtained by setting all tolls to zero, and by
p.. the shortest s-t path obtained by setting all tolls to
+oc, Furthermore, let 7 denote the difference between
the cost of p.. and the cost of p,. Clearly, 7 is an upper
bound on the leader’s profit, and one might expect that,
corresponding to an optimal toll vector, the flow be as-
signed to path p,. However, this need not be the case,
as can be readily verified on the network of Figure 4,
where an optimal solution is given by Ty = Tys = Tys
= 7 and where flows are assigned to the path 1-5 rather
than to the optimal path with respect te null tolls, i.e.,
po = 1-2-3-4-5. Moreover, the upper bound = = 12 — 4
= 8 is not reached.

In this subsection, we develop an algorithm that de-
termines optimal toll levels, given that the shortest path
taken by the users is known a priori. In this case, opti-
mal tolls can be obtained by solving for a shortest path
in some modified graph G’, which is defined in the
statement of the next proposition.

Let p* denote the selected shortest path. Without loss
of generality, one may delete the toll arcs that are not
part of path p*; this is equivalent to setting their toll to
an arbitrary large value, thus ensuring that the flow on
these arcs is zero. A common value 7. suitable for all
toll arcs not on p* is given by

Tu = yu(®) = ¥o(0) + [N max{0, —min ¢,}. (6)

L)eA

If all costs ¢, are nonnegative, T. can be simply set to
the difference y.(>) — v(0) of the shortest path costs
with infinite and zero costs, respectively.

PROPOSITION 3. Let G = (N, A) be a graph without
negative cycles with respect to the cost vector ¢ and p* be a
simple s-t path. Define G' = (N, A’ as the graph where a
={i, iy isin A" if either (i, [} is in A, or (], 1) lies on p*. Set
Cp = ¢, if (i, jyisin Ay cf = —c, if (j, i) is in A, N p* and
¢y = —¢. — L if (j, i} is in Ay 0 p*. Then optimal tax levels
are given by Ty = = if (i, j) is in Ay — p* and Ty = N, —

Figure 4

The Upper Bound is not Reached

shortest s-t path is detected, then the probiem is infeasible
with respect to the lower bound vector I.

PrROOF. The single origin-destination problem is foz-
mulated as

max 3, T,x,

r
F=lx (L)EA;

min Y, (¢, + T v, + %,
€T e (1)E Ay

where &, the polyhedron of feasible flows, is defined by
the flow conservation and nonnegativity constraints

> ox,— Y ox,=14+1,
a€r”

actt

0, else,
x, =0 V(i,j)€NXN.

As before, one replaces the lower level program by
its optimality conditions. This yields the single-level
mathematical program

max
x,T,x

> Tx,

eh

subjecttc N, -\ =c,+T,, (i, [} € Ay,

)\] - )\1 = Cz]/ (l/ _,1) S AZI
e, +T, - N+N)=0 (/)€ A,
xy(cy =N +N)=0, (i,j)E A,

cere v X . . =1, i, 1} € Ay,
— ¢, if (i, Y is in A; N p*, where N\ is the length of a shortest T, =1, (L j) €A
path from the origin node s to node k in the graph G'. If no xed. (73
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Since the lower level shortest path p* is a priori deter-
mined, there exists an. optimal solution x that satisfies

1T oHE e,
X, =
0 else.

This aliows us to substitute \, = X\, — ¢, for T}, in the
objective function and to get rid of the complementarity
stackness terms in (7). These simplifications lead to the
more compact form

max Z (N — X —¢)
~ (1,712 A;0p*
subjectto X, — X, =g, (i,7) € A, —p*,
)\i e\ Cyir (l,]) <) AQ M P*,

AN =g (i,jye Ainvp*. (8)

s
The objective function of the above program can be ex-
pressed as

Z ()‘/ - C,])

{3 4.0p7
= Z ()\;_)\1)_ Z Cz,?_ Z ()\]_)\7)
LnEp” ,pea;np* (..])CAMP*
= K! - )\.~ - z Cy — Z Cl]
(4,1 E At (3,73 A N p?
=h-A— X G
wi=pT

and we can thus rewrite our optimization problem as

max
A

Ae - N

subjectto N — N, =¢,, (LN eA -p*

)\: - }": = Cyr (’r}) € AA:‘ N ?*/
>\] - )\z =~y Ul l) € Az " p*’

hi_)\:s—c:—lru (7,1)5/411017*
U i

This program is nothing but the dual of a shortest s-t
path problem defined on the graph G'. lts optimal so-
lution yields optimal tolf values T} = A, = \, — ¢,

if no shortest path exists, i.e., there exists a negative
cycle in G', then this implies that the program (6) is
infeasible and we conclude that no vector of tolls can
both satisfy the lower bound constraints and be com-
patible with p* being a shortest s-t path. T

We iilustrate the solution procedure on the exampie
of Figure 5a, where s = 1, t = 5 and all lower bounds
1, are set to —o. Return arcs of toll arcs are assigned
an infinite cost and can therefore be ignored. The
numbers next to the arcs correspond to the (initial}
arc costs ¢,,. An upper bound on the profit is given by
7= y(®) — y(0) = 22 — 6 = 16. The path p* is selected
as {(1, 2). (2, 3}, (3, 4), (4, 5)} and corresponds to py.
The resulting graph G’ is shown in Figure 5b. The
shortest path from node 1 to node 5 in G’ is {(1, 2),
(2, 4), (4, 3), (3, 5)i. The node labeis are: y = 0, Ay =
2, % =9, Ay = 11, Xz = 21, and the associated optimal
solution is

Notice that the upper bound = defined earlier is not
reached, although the current path and associated profit
are optimal.

It is instructive to interpret the solution of this ex-
ample within the framework of the linear bilevel pro-
gram (5). In order to conform with the requirement that
the initial cost of the toll arcs be zerc, we first replace
the toll arc (2, 3) by an untolled arc (2, 2"} with cost 2
and a toll arc (2', 3) with zero cost (see Figure 5). Next
we reduce the flow on toll arcs by e. Since flow conser-
vation is no longer satisfied, we must reroute this flow

Figure 5

The Input Graph G and the Modified Graph 6’

a) b} ¢)
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along untolled arcs, at lowest cost. This is achieved by
solving the trans-shipment problem illustrated in Fig-
ure 5¢, where a supply of ¢, indicated by +e is issued at
nodes 2" and 4, and a demand of ¢, indicated by —e¢, is
issued at nodes 3 and 5. An optimal solution to this
problem is obtained by sending a flow of ¢ along paths
2'-2-4-3 and 4-3-5, respectively. The added cost of this
rerouting is equal to e times (=2 + 9 — 2) {cost of first
path) plus (—2 + 12 (cost of second path), i.e., 15¢, and
the optimal profit 15 is obtained by dividing by e. The
dual variables, or node potentials, corresponding to this
solution are

)\1:0,)\2:2,)\:':4,)@:9,)\4:11,)\5:21,

where the dual variable of node 1 has been arbitrarily
set to zero. Using the notation of the TAX problem (see
Proposition 2 for instance), the optimal tax levels are
given by the expression

T=XA—c= XA,
since ¢ = 0, i.e,
Tu=Trs=N—h=9—4=5
Tes=hs— A =21 -11=10.

This matches the total profit 15¢/ € obtained previously.

Of course, the above solution of the trans-shipment
problem is only valid insofar as flows remain nonneg-
ative. In the above example, this requirement is satisfied
if and only if e is less than or equal to §, which is con-
sistant with our marginal analysis. Therefore, for this
problem, the exact penalty factor K in BILIN1 can be set
to 1/e = 2. We conjecture that this upper bound holds
for all toll-setting problems involving a single origin-
destination pair.

Some remarks are in order:

1. The complexity of the solution procedure is
O({N]?), if one implements Ford-Bellman-Moore’s al-
gorithm for finding the shortest path from s to t. If there
are no lower bound consiraints, and p* is composed
soiely of toll arcs, then there are no reverse arcs, and
Dijkstra’s algorithm can be implemented, to yield an
O(nr*) worst-case procedure.

2. Ttis easy to construct examples where the solution,
contrary to this example, is not unique and (or) requires
negative toll values. This is illustrated in Figure 6 where

Figure 6

An Optimal Solution with a Negative Toll Value

the lower bound values are set to —o. An optimal so-
lution is given by

T12:4'%’a:T23: m2_a1T31:4+a
is optimal for all nonnegative values of a.

34. The Toll Arcs with Positive Flows are Knewn
We now solve a variant of the problem where the set of
taxable arcs carrying positive flow is known a priori.
Specifically, we show how to determine a path passing
through the selected toll arcs that is used by the lower
level, i.e., a shortest path with respect to total arc costs.
Once this path is identified, the problem reduces to the
one resoived in subsection 3.3.
To this aim, let us partition the set of toll arcs as

Ay =ATU AY,

where A] denotes the set of toll arcs carrying positive flow.
A Jower level path is obtained by solving for the shortest

s-t path going through the imposed arcs. This problem is

equivalent to the minimum cost flow problem

min Y %,
xCe sEA

subjectto x,=1,a € A},

x, =0 a¢€ Al
The validity of this construction is based on the fact
that the ranking of the paths (with respect to their

lengths) going through the imposed toll arcs is not in-
fluenced by the actual values of the tolls. Hence the
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Network Used for the Mumerical Tests

Figure 7

7 »}9
]

7

shortest such path can be determined without reference
to the toll values, to be determined subsequently. Going
back to the example illustrated in Figure 5a, we find that
the shortest path (actually the unique path} going
through the toll arcs (2, 3) and (4, 5) is p* = 1-2-3-4-5.
In ths case, the above minimum cost flow problem has
a trivial solution. This need not be always the case.

4. A Numerical Example
In this section we illustrate our model by means of the
instance of a network toll setting problem shown in Fig-
ure 7. The problem involves four origin-destination
pairs, 11 nodes and 25 arcs, seven of the latter being toll
arcs (boldfaced arcs on the figure}.

Two sotution techniques have been tested. The first is
based on the reformulation of TOP as a linear bilevel
program, along the lines of §2. The resulting bilevel pro-

gram has 44 upper level flow conservation constraints,
44 lower level flow conservation constraints, 100, i.e., 4
X 25, upper level variables, 72(4 X (25 — 7}) lower level
variables, and opposite objectives. By today’s standards
this is a hard, medium-sized bilevel program, which we
solved using a state-of-the-art algorithm of Hansen et
al. (1992). The difficulty of the problem is reflected in
the large number of nodes of the implicit enumeration
tree that had to be explored before reaching an optimal
solution and getting a certificate of optimality. We ob-
served that the algorithm was somewhat insensitive to
the value of the penalty parameter K. Indeed, feasible
solutions were reported for quite small values of K, and
we could report no numerical instability problems.
Whatever the foreseeabie improvements in bilevel al-
gorithms, we do not believe that this approach could
address much larger instances of TOP.

The mixed integer reformulation, on the other hand,
efficiently exploits the combinatorial structure of the
problem, ie., the fact that the lower Jevel’s extremal so-
lution are paths and can be represented by binary vari-
ables. Using this approach, problems based on the net-
work of Figure 7 could be solved in less than 1 second
on a Sun Sparc 10, using GAMS-CPLEX 2.1. This leads
us to believe that much larger instances could be rou-
tinely sclved using this formulation.

Three scenarios were considered. The first is the base
scenario. In the second scenario, demand is increased
on origin-destination pair 1-3. In the third scenario, non-
negativity constraints on the tolls are incorporated into
the model. The opumal solutions are shown in Tabies
2, 3, and 4. For Scenario [, no profits arc achieved for
travellers going from origin 1 to destination 3. As the
demand on that pair is increased from 12 tc 20 in

Table 2 Scenarie i The Optimal Solution

ob Demang Path Patn Toll Path Fixed Cost Total Cost Profit
1-3 12 1-4-3 ¢ 20 240 C
1.2 8 $-10-2 11 i2 184 88
2-4 i8 2-6-5-8-4 6 14 328 96
2-3 H4] 2-11-3 14 160 300 140

Total Profit. 324

arc: (1, *0) (5. 8} 6 9 7,3 9.7 (i1¢ 9 (11, 3}
ol 11 6 4 15 0 0 i4
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Table 3 Scenaric il: The Optimat Sclution

a3} Demand Patn Path Taolt Path Fixed Cost Total Cost Profit
1-3 20 1-10-9-7-3 7 13 400 146
1-2 8 1-10-2 -4 12 54 -3z
2-4 16 2-6-5-8-4 6 14 320 96
2-3 10 2-6-9-7-3 15 15 300 150

Tota: Profit 354

are: {1, 10) (5, 8) (6, 9) {7,.3) (9, 7} (10, 9) 1, 3
toii: -4 6 4 13 -2 0 14

Scenario II, tolis, even negative ones, are introduced
(see Table 3). When nonnegativity constraints on tolls
are imposed (Scenario III}, a new sokution, with lower
overall profit, is obtained (see Table 4). It is interesting
to notice that flows are not always assigned to the short-
est path with respect to nuil tolls. For instance, in Sce-
nario I, the final path for the origin-destination pair 1-3
is 1-4-3 (with initial and final cost 20) while the initial
shortest path is 1-10-9-11-3 (with initial cost 12).

Table 5 analyzes the effect of varying the parameter
M. The fastest execution times were obtained for small
values of M, as expected. The execution time is highly
correlated to the value of the initial upper bound, which
stabilizes very early, as M increases. Within the Branch-
and-Bound scheme of CPLEX, the “‘Best First” searched
strategy performed much better than the “"Depth First”
strategy. When M is too small, the solution becomes
suboptimal, although the algorithm still yields a solu-
tion that is feasible with respect to lower level optimal-
ity. This need not be the case for the linear bilevel re-
formulation, where small values of the penalty param-
eter K might result in solutions that are “overoptimal”

and nonoptimal for the lower level. If tolls are bounded
from below, a valid estimate for M is the difference
between the shortest path with infinite tolls and the
shortest path with tolls set at their respective lower
bounds.

Finally. in order to assess the potertial of the mixed
integer reformulation, we applied it to 12 larger in-
stances of TOP. Specifically, the second test network
consists in a 5 X 12 grid of bidirectional arcs (60 nodes,
206 arcs). Costs were generated according to indepen-
dent uniform random variables over the interval {2,20].
The probability « that an arc be tollabie was set to .05,
0.10, 0.15, and 0.20. Three instances were generated for
each value of . The number of origin-destination pairs
was fixed to 20. All problems with « less than or equal
to 0.10 were solved to optimality with CPU times rang-
ing from 155 to 3969 seconds. The number of explored
nodes in the branch-and-bound tree varied from 106 to
2114. For o = .15 0r 0.20, an optimal solution was not
reached for two out of six instances within 24 CPU
hours. This shows the limitations of the approach: it
solves medium-sized instances.

1620

Table 4 Scenario lli: The Optimal Sofution

813 Demand Path Path Toll Path Fixed Cost Total Cost Profit
1-3 20 1-10-9-11-3 g 12 400 169
1-2 8 1-10-2 ¢ i2 96 ¢
2-4 16 2-6-5-8-4 6 14 320 96
2-3 10 2-11-3 8 16 240 80

Total Profit: 336

arc: {1, 10 (5, 8 (6, 9) {7.3) {87 (10, 9) (11, 3)
toil 8] 8 4 7 ] 0 §
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Table 5 Scenarie I: Yarying Parameter 4§

Strategy M Nodes CPL Pwots Unper Bound
BFS 5 21 90 240 416.6
DFS 24 g7 264

BFS 28 77 288 671 437.0
DFS 124 418§ 580

BFS 3 5% 189 443 4378
OFS 180 5.7¢ 758

BFS 45 74 2.31 471 4383
DFS 260 779 9%

BFS 55 85 266 532 438.6
DFS 242 7900 923

BFS 95 83 2.72 553 4392
DFS 454 12.92 1277

BFS 500 89 2.7¢ 481 439.9
LFS 262 776 741

5. Conclusion and Extensions

The model introduced in this paper constitutes a first
attempt at understanding, both from the theoretical and
algorithmical points of view, an important class of de-
cision problems. At this step, it is clear that we had no
intention of incorporating into our model all the fea-
tures of a real-life application. In particular, our repre-
sentation of user behaviour is overly simplistic in that
it assumes no dispersion of traffic along the routes of
the network. A dispersion effect could be achieved sim-
plv by incorporating volume-delay curves. A more irk-
some assumption of our toll model is that the value-of-
time parameter s uniform throughout the user popu-
fation, and that, given the choice between two paths of
equal costs, the users always select the one with the
highest toil. Both these drawbacks could be eliminated
by introducing a range of value-of-time parameters
across users. For instance (see Leurent 1993}, let o de-
note the value-of-time parameter associated with a
cross-section a of the user population, and assume that
o is distributed according to a function H{a) whose de-
rivative h{a) is the associated density function, i.e.,

H'{a) = hla), hia)=0, f h{a)do = 1.
a

The lower level assignment now takes the form of the
control problem

min 3 X, + 2 doX,

¥} A€ A, aEAn

+ Y Taf ax(a)

aeAs 0

Y xile) - X xi(e)

subject to

acs e
ha)d¥  ifi =k,
=3 —hla)d" ifi=]
0 else,
Va € A: xfa) =Y xa),
ki
Vo€ A x, = f: x{e)de,

Va, k, 1€ AX QXA 2a)=0.

While this infinite-dimensional linear program is more
complex than the shortest path problem it replaces, not
everything is gloomy. Indeed, as indicated in Marcotte
and Zhu (1997), an efficient solution tc this problem can
be obtained by solving a parametric shortest path problem
with respect to the parameter o. The general taxation
problem TAX could be enhanced in a similar fashion. The
introduction of infinitely many nonatomic customer
classes has a smoothing effect on the model, in the sense
that the lower level problem is likely to have, for a given
tax vector 7, a unique and continuously differentiable so-
lution x{T}. This opens up the possibility of addressing
the toll setting problem as a smooth program, allowing
the implementation of nonlinear programming algo-
rithms, as proposed in Luo et al. (1996). Note that this
does not make the probiem convex, i.e, we stay in the
realm of global optimization. However, this could facili-
tate the search for “good” local solutions.
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