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1. INTRODUCTION

In the simplest version of the ‘cake-cutting game’, Bob cuts a

Sachertorte into two parts, knowing that Alice will select the

larger piece. If Bob knows Alice’s greedy behavior then, in

order to maximize the size of his portion, it is obvious that he

should cut the cake into two equal parts. This trivial game,

which can be extended to several sequential players, can be

modeled as a bilevel program, i.e., an optimization problem

where the leader (Bob) integrates within his decision program

the mental process of the follower (Alice). Depending on situ-

ations, it may or may not be advantageous to be the leader.

Indeed, in the cake-cutting game, one may safely argue that

Alice has the edge, if one assumes that it is impossible to

perform a ‘perfect’ cut.

Bilevel programs are pervasive. For instance, politicians must

anticipate the behavior of their constituents in order to get

elected, while private firms must predict the reaction of custo-

mers and competing firms in order to maximize their revenues.

Note that, in both these situations, the role of Alice is played

by a group of agents (more on this latter). We believe that it is

rather the exception that a decision problem can be solved in

vitro, with no outside agent in control of a subset of decision

variables. Then, why has so little attention been paid so far to

bilevel programming? Actually, bilevel programs arise in the

economics under various names, such as Stackelberg games,

envy-free pricing, product line design, etc. Only fairly recently

has the field found its niche within the mathematical program-

ming community. Conferences devoted entirely to this topic

might be few and far between, but one will encounter sessions

on bilevel programming in most operational research, optimiz-

ation and mathematical programming conferences, and even

theoretical computer science colloquia, where researchers have

analyzed the complexity of bilevel programs, whether they are

labeled as such or not. In short, Bilevel Programming is a

fairly recent branch of optimization that deals with programs

whose constraints embed an auxiliary mathematical program.

The objective of this paper is not to review the vast body of

literature devoted to bilevel programming and the related

MPECs (to be introduced in the next section). For this, the

reader is best referred to [7, 23, 44], a list that is not exhaustive.

Rather, it is to provide an overview of the research on this topic

conducted in the past thirty years by a team mainly based in

Montreal, and focusing on problems possessing a network
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The paper is organized as follows. Following a formal

description of the bilevel framework, we initially focus on

algorithms. Next, we consider applications in network design,

energy modeling and network pricing, the latter being at the

core of a real life model of revenue management for network-

based industries.

2. PROBLEM DEFINITION

A bilevel program is expressed mathematically as

BP : max
x;y

f ðx; yÞ

subject to ðx; yÞ [ X

y [ SðxÞ;

where S(x) denotes the set of global solutions of a mathematical

program parameterized in x, i.e.,

SðxÞ ¼ arg min
y0[YðxÞ

gðx; y0Þ; ð1Þ

and Y(x) is the lower level feasible set, which may be dependent

on the upper level vector x.

In this hierarchical setting, the upper level player selects first

its decision vector x, anticipating the reaction of the lower level

player. This framework subsumes convex, non-convex and

mixed integer programming, and allows for the natural model-

ing of situations involving agents that are not under the full

control of the optimizer. Obviously, addressing bilevel pro-

grams in their generality is tantamount to solving a global

optimization problem. For this reason, some structure needs

to be imposed to make them amenable to numerical algorithms.

The mildest condition might be that, for given x, the lower level

program is easy to solve, e.g., it involves a linear, quadratic,

convex or network structure. Indeed, much research has been

devoted to the linear case, where all functions involved are

affine, and which can be reformulated as a mixed integer

program. Another class of interest is that of bilevel programs

involving a convex lower level problem. If the latter satisfies

some constraint qualification condition, it can be characterized

by its Kuhn-Tucker conditions, thus yielding a ‘standard’

single-level program involving complementarity constraints,

and exemplifying the dual nature, continuous and combinato-

rial, of bilevel programs.

Bilevel programs are closely related to Stackelberg (leader-

follower) games [30], to the principal-agent paradigm [53] in

economics, as well as to equilibrium constrained mathematical

programs (MPECs), where the lower level problem characteri-

zes the equilibrium state of some physical or economical

system, and is frequently modeled as a variational inequality.

In this context, y [ Y(x) belongs to S(x) if and only if it

solves the parametric variational inequality

PVI : kFðx; yÞ; y� y0l � 0 8y0 [ YðxÞ: ð2Þ

If the mapping F is the gradient of a convex function, then an

MPEC reduces to a bilevel program. Actually, this result holds

even if F is not a potential, since a feasible vector y is a solution

of the variational inequality PVI if and only if it is a global

minimizer of the (usually non-convex) gap function defined as

gðx; yÞ ¼ max
y0[YðxÞ

kFðx; yÞ; y� y0l:

We next proceed to a description of numerical approaches

that apply to a sub-class of bilevel programs.

3. NUMERICAL APPROACHES FOR THE LINEAR,
QUADRATIC AND CONVEX CASES

Although few situations can be naturally modeled as linear

bilevel programs (LBPs), the latter has nevertheless been

investigated by several researchers. The term ‘bilevel

program’ has been coined by Candler and Norton [19] to

denote such problems, which are formulated as

LBP : min
x;y

c1xþ d1y

subject to A1xþ B1y ¼ b1

x � 0

min
y

c2xþ d2y

subject to A2xþ B2y ¼ b2

y � 0;

where, for the sake of notational clarity, the ‘arg min’ operator

has been left out of the lower level formulation. Note that,

without loss of generality, the term c2x can be ignored, as it

influences the value of the lower level objective, but not its

actual solution.

To characterize the solution of LBP the following defi-

nitions, that also apply in a wider context, will be useful.

The feasible set of LBP is defined as

V ¼ fðx; yÞ : x � 0; y � 0;A1xþ B1y ¼ b1;A2xþ B2y ¼ b2g:

For every x � 0, the feasible set of the lower level problem is

VyðxÞ ¼ fy : y � 0;B2y ¼ b2 � A2xg:

The trace of the lower level problem with respect to the

upper level variables is

V2
x ¼ fx : x � 0;VyðxÞ= Øg:

For a given vector x [ Vx
2, the set of optimal solutions of the

lower problem is

SðxÞ ¼ arg min
y[VyðxÞ

d2y:
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A point (x, y) is said to be rational if x [ Vx
2 and y [ S(x).

The optimal value function is defined over Vx
2 as

vðxÞ ¼ d2y; y [ SðxÞ;

where x [ Vx
2. The admissible set (also called induced region)

is

Y ¼ fðx; yÞ : x � 0;A1xþ B1y ¼ b1; y [ SðxÞg:

Finally, a point (x, y) is admissible if it is feasible and lies in

S(x).

Whenever the upper level constraints involve no lower level

variables, rational points are also admissible. Note that the con-

verse statement may fail to hold in the presence of joint upper

level constraints. Based on the above definitions, an admissible

point (x�, y�) is optimal for LBP if, for every other admissible

point (x,y), the condition c1x� þ d1y� � c1x þ d1y holds.

Despite their apparent simplicity, LBPs are computationally

challenging. After Jeroslow [38] initially showed that LBP is

NP-hard, Hansen et al. [34] refined this result and proved

LBP’s strong NP-hardness, using a reduction from KERNEL
(see [31]). Vicente et al. [54] strengthened these results and

proved that merely checking strict or local optimality is also

strongly NP-hard, using a reduction from 3-SAT. While com-

plexity results may be derived from the connection with

bilinear programs, it is instructive to perform reductions

directly from standard combinatorial problems. As a simple

example of the reduction technique, consider the 0-1 linear

program

min
x

cx

subject to Ax ¼ b

for all j xj [ f0; 1g:

Let us introduce an auxiliary vector u and form the LBP

min
x;u�0

cx

subject to Ax ¼ bP
j

uj ¼ 0

max
u

P
j

uj

subject to uj � xj

for all j uj � 1� xj

uj [ ½0; 1�:

In the above, the upper level constraint
P

j uj ¼ 0 can only

be satisfied by setting xj to either 0 or 1. Alternatively, to avoid

dealing with disconnected sets that arise when upper level con-

straints are present in the formulation, one might simply append

to the objective a term K
P

j uj. This penalty scheme is exact in

the sense that there exists a finite value K� such that the sol-

utions of the penalized and original problems coincide when-

ever K exceeds K�. For classical combinatorial problems

(knapsack, traveling salesman, maximal clique, kernel, etc.),

it can be shown that the size of K, i.e., its logarithm, can be

polynomially related to the size of the combinatorial problem

being considered.

Conversely, an LBP can be formulated as a mixed binary

problem. This is achieved by replacing the lower level

problem by its optimality conditions, and linearizing the com-

plementarity terms in the standard fashion (wlog, c2 is set to

zero). This yields:

min
x;y

c1xþ d1y

subject to A1xþ B1y ¼ b1

A2xþ B2y ¼ b2

x; y � 0

lB2 � d2

for all j yj � Muj

ðd2 � lB2Þj � Mð1� ujÞ
uj [ f0; 1g;

where the next-to-last inequalities force the complementarity

(lB2 2 d2)y ¼ 0 to be satisfied, and where the ‘big-M’ constant

M must be sufficiently large in order not to restrict the feasible

domain of LBP. Note that M is a generic constant used through-

out the paper, and does not always assume the same value.

The interest in these reformulations goes beyond the com-

plexity issue. Indeed, Audet et al. [5] have uncovered equival-

ences between algorithms for integer programs and LBP. More

precisely, they have shown that the HJS algorithm of Hansen

et al. [34] for LBP can be mapped onto a standard

branch-and-bound method for an equivalent mixed 0-1

program, provided that mutually consistent branching rules

are implemented. One may therefore claim that the mixed 0-1

algorithm is subsumed (the authors use the term embedded)

by the bilevel algorithm. This result shows that the structures

of both problems are virtually indistinguishable, and that any

algorithmic improvement for one problem can readily be

adapted to the other (Audet et al. [5]). Solution techniques

developed for mixed 0-1 programs may be tailored to the

LBP, and vice versa.

Over the past 15 years, the team has studied many such

reformulations and developed efficient approaches for related

combinatorial problems. Figure 1 (Audet [4]) illustrates the

interrelationships between combinatorial and bilevel problems.

For instance, it shows that the indefinite quadratic problem with

quadratic constraints QQP and the general bilinear problem

BIL both subsume the mixed integer bilevel program

MILBP0–1, and that LBP subsumes the disjoint bilinear

BILD, linear max-min LMM and quadratic concave problems

QPþ. Figure 1 also indicates that the generalized linear comple-

mentarity problem GLCP can be transformed into an LBP
without any use of a large finite constant, while the reformula-

tion of LBP as a mixed integer program MIP0–1 requires such

big-M number. Based on these equivalences, new algorithmic
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approaches have been devised for disjoint bilinear [1] and

max-min programs [3], as well as the traveling salesman

problem [49].

The difficulty in solving the bilevel problem is mainly due to

the non-convexity of the solution map that corresponds to the

solution set of the lower level problem. Although the global

optimization community has been very prolific over the past

twenty years (see e.g. [51]), non-convexity is still frequently

synonym of intractability, and the success in solving a non-

convex problem depends on our ability to exploit its specific

structure. For bilevel problems, the non-convexity arises

mainly from the complementarity constraints associated with

the optimality conditions of the lower level problem. In particu-

lar, we assume that regularity conditions are satisfied for the

lower level problem, and that the latter can be solved easily.

When the optimality conditions lead to linear complemen-

tarity constraints, as in linear or quadratic bilevel programs,

non-convexity comes solely from the disjunctive nature of

the constraints, and combinatorial approaches such as

branch-and-bound, branch-and-cut or branch-and-price tech-

niques are suitable in such cases. Efficient approaches to

linear and quadratic bilevel programming are, expectedly,

based on these techniques.

We now proceed to describe an exact branch-and-bound

algorithm for LBP proposed by Hansen et al. [34]. Given an

LBP, one can replace the lower level problem by its optimality

conditions. This yields the equivalent program

min
x;y

c1xþ d1y

subject to A1xþ B1y ¼ b1

A2xþ B2y ¼ b2

lB2 � d2

ðlB2 � d2Þy ¼ 0

x � 0

y � 0:

A direct approach to solve this single-level problem is to

relax the complementarity constraints and to branch with

respect to the disjunctive constraints, as proposed by Bard

and Moore [8]. Note that, were it not for complementarity con-

straints, the problem would separate into an optimization

problem in (x, y) and a feasibility problem in l. The HJS algor-

ithm takes advantage of this feature, working in parallel on both

problems. The (x, y)-subproblem, denoted LRLBP, is a relaxed

version of LBP. Next, instead of addressing head on the feasi-

bility problem in l, which is independent of x and provides

little relevant information, we consider the follower’s relax-

ation FRBLP(x), together with its dual. The latter corresponds,

for given x, to the lower level program. Clearly, the feasibility

problem in l is satisfied if FRBLP(x) is feasible and bounded.

Hence, at a given node of the branch-and-bound tree, a subset

of the complementarity constraints is fixed, that is, either the

corresponding variables y are fixed at 0 in LRLBP and

FRBLP(x), or the corresponding dual constraint of the dual

of FRBLP(x) are assumed to be tight.

Algorithm HJS makes also heavy use of a logical analysis

based on monotonicity relationships. Assume, without loss of

generality, that all constraints are inequalities. In this context,

we associate with the ith lower level constraint (including the

non-negativity ones) a Boolean variable ai, set to 1 if the con-

straint is tight, and to 0 otherwise. (These variables a are not

explicitly part of the optimization subproblems.) Next one con-

structs a system of constraints R that must be satisfied by all

rational solutions. A monotonicity relation, denoted by rk,

assumes the form
P

i[Ik
ai � 1. This system is updated at each

node of the enumeration tree, allowing to eventually infer the

activity status (0 or free) of other constraints or variables, or to

conclude that no rational solution exists for the incumbent sub-

problem. The relations can also be used to select a branching vari-

able y, based on criteria such as: minimum fill rate of the system,

maximum number of inferences, etc. Together with monotonicity

relations, HJS uses penalties, a concept widely adopted in the

field of mixed integer programming, and that provides infor-

mation about the deterioration of the optimal values when non-

integer binary variables are fixed to one of their bounds. The

algorithm is outlined below.

ALGORITHM HJS

(1) INITIALIZATION

Set zopt to 1. Set all variables ai free. Set R ¼ 1
(2) COMPUTING A LOWER BOUND

Let (x̄, ȳ) be an optimal solution of LRLBP and z̄ its cor-

responding value. If z̄ � zopt, go to 12.

(3) FEASIBILITY TEST

Solve the dual of FRBLP(x̄). If it is infeasible, go to 12.

(4) FIRST RESOLUTION TEST

Let ỹ be an optimal solution for FRBLP(x). If d2ỹ = d2ȳ

then go to 6 ( ỹ is not rational for the current subproblem).

Figure 1. Relationship between LBP and some hard problems
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(5) SECOND RESOLUTION TEST

Let ỹ be an optimal solution of the lower level problem,

for fixed x̄. If d2 ȳ = d2 ỹ then proceed to 6. Otherwise,

(x̄, ȳ) is rational. If z̄ , zopt, update zopt and (xopt, yopt).

Go to 12.

(6) FIRST OPTIMALITY TEST

If penalties pi make the bounds of all subproblems greater

or equal to the incumbent objective value, go to 12.

(7) FIRST CONDITIONAL OPTIMALITY TEST

If zopt � z̄ þ pi for each free variable ai, fix ai at 0 and

update R.

(8) SECOND OPTIMALITY TEST

If R contains a relation rk such that ai ¼ 0 for all i [ Ik,

go to 12.

(9) RELATIONAL OPTIMALITY TEST

For all remaining yj appearing in the current subproblem,

append to R the non-redundant logical relations related to

ai. Delete from R these redundant relations.

(10) SECOND CONDITIONAL OPTIMALITY TEST

If R contains a relation rk such that ai ¼ 0 for all i [ Ik,

with the exception of index i, set the corresponding ai

to 1 and return to 2.

(11) BRANCHING

Select a complementarity constraint ai according to some

branching rule. Fix ai at 1, thus creating a new subpro-

blem, and go to 2.

Once the subtree rooted at ai ¼ 1 has been exhausted, set

free any variable (or constraint) fixed within that subtree.

Fix ai at 0, thus creating a new subproblem.

Once the subtree rooted at ai ¼ 0 has been exhausted, set

free any variable fixed within that subtree.

(12) BACKTRACKING

Fathom the current node. If it is the root node, stop; (xopt,

yopt) is an optimal solution with optimal value zopt.

Otherwise, pursue branching and go to 11, at the parent

node in the enumeration tree.

The above algorithmic framework was initially developed for the

LBP. However, it can be generalized in various ways to other

classes of bilevel programs. For instance, without any modification,

it can address convex/linear problems to global optimality,

provided a non-linear solver is available at Step 2. The only require-

ments of the algorithm concerns the linearity of the complementar-

ity constraints and functions involved in the monotonicity analysis.

For quadratic lower level problems, the non-linearity of the objec-

tive function is not satisfied and the algorithm requires an adjust-

ment. In this setting, Jaumard et al. [37] generalized the

monotonicity analysis by considering within the separation pro-

cedure the signs of the partial derivatives. Based on this extension,

they showed that convex quadratic bilevel programs could be

solved to optimality in finite time. Moreover, the algorithm can

be improved to take into account specific structures. For instance,

the max-min and the disjoint bilinear problems can be reformulated

as two different but symmetric linear bilevel programs. This feature

results in improved branching rules and generalizes the concavity

cuts to the bilevel instances (see [1] and [3]). Further, the link

between mixed integer programming and linear bilevel program-

ming has been exploited to derive a class of new Gomory-like

cuts [6] that improve the performance of the algorithm.

To conclude this section, let us mention that the convex/convex

bilevel program does not have yet its ‘global algorithm’, as it is not

known how to deal efficiently with non-linear complementarity

constraints in the realm of branch-and-bound. In contrast, Colson

et al. [20] have proposed an efficient algorithm based on the

trust region paradigm, whereby the ‘model’, although non-convex,

can be solved to global optimality. In the convex/convex case, the

trust region model is a linear-quadratic bilevel program that par-

tially captures the non-convex features of the original model.

While it cannot be assured of converging to a global solution

from any starting point, it can nevertheless bypass local solutions,

whenever the objective functions of the leader and the follower are

mildly nonlinear and mildly non-quadratic, respectively.

4. EQUILIBRIUM NETWORK DESIGN

Consider the problem of designing an urban road network subject

to congestion, through the choice of its link capacities, the aim

being to strike the right balance between expansion costs and

travel delays. Due to congestion effects, one must carefully

select the capacities, in order to avoid perverse effects exempli-

fied by the Braess paradox [11], whereby increasing the capacity

of a link (or building a new link) may result in a delay increase for

every user of the network. Hence the natural formulation as an

MPEC involving a designer whose decisions impact the path

choices of the users and, in turn, the performance of the network.

We now depart from the generic notation introduced earlier,

and adopt one that keeps closer to the given application and cor-

responding literature. In the context of our network design

problem (NDP in short), z represents the vector of link

capacities, v the vector of link flows, S(v, z) the vector of flow-

dependent link delays, and f(z) the convex cost of implementing

the design z. We associate with each pair of nodes k a constant

demand dk and denote by x the vector of path flows. A demand-

feasible path flow vector x is in equilibrium (in the Wardrop

sense) if and only, for any node pair k and paths p and p0

linking the pair k, there holds, for a given design vector z,

xp . 0)
X
a[p

Saðv; zÞ �
X
a[p0

Saðv; zÞ; ð3Þ

where v is the arc flow vector compatible with x. Upon introduc-

tion of the set V of link flows for which there exists at least one

compatible feasible path flow vector x, one may rewrite (3) as the

variational inequality

v [ V

kSðv; zÞ; v� v0l � 0 8v0 [ V;
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which merely states that, at equilibrium, the current flow assign-

ment cannot be improved upon, i.e., all flow is directed to short-

est paths with respect to the currently observed delays S(v,z).

While the set of equilibrium path flow vectors is in general not

unique, it can be shown, under mild conditions, that equilibrium

link flows are uniquely determined. For further details and

related notions of equilibrium, the reader is referred to

Marcotte and Patriksson [47].

The framework we adopt for the NDP was initially proposed

by Abdulaal and Leblanc [2]. It involves continuous design

variables that do not correspond to a number of lanes, but

rather to the flow rate (number of vehicles per time unit) that

a given link can withstand. At the lower level, user behavior

is assumed to be consistent with Wardrop’s first principle,

according to which only shortest paths may carry positive

flow, as described in the preceding paragraph. This yields natu-

rally the MPEC

NDP : min
v[V ;z[Z

kv; Sðv; zÞlþ fðzÞ

subject to kSðv; zÞ; v� v0l � 0 8v0 [ V ;

where Z denotes the set of admissible designs. In the NDP lit-

erature, it is frequently assumed that S is a gradient mapping. In

particular, Marcotte [45] considered the link-separable func-

tional forms Sa(v,z) ¼ Sa(va/za) for delay, with Sa a strictly

increasing function of its argument, fa(z) ¼ fa(za) for invest-

ment, and Z ¼ Rn
þ. Under the first of these assumptions, the

variational inequality characterizing the equilibrium reduces

to a convex optimization problem, and the NDP can be rewrit-

ten as the bilevel program

min
v[V ;z�0

P
a

vaSaðva=zaÞ þ faðzaÞ

min
v[V

P
a

Ð va

0
Saðt=zaÞ dt:

Note that this framework does not take equity considerations

into account. Indeed, in order to improve the overall network

performance, the model might penalize users that were natu-

rally traveling on lightly congested routes, in order to re-route

users whose choices were detrimental to the system.

Even in this simplified form, the NDP is a non-convex

optimization problem for which no theoretically efficient

(‘polynomial’) algorithm has been devised yet. Nevertheless,

the fact that both players wish to minimize some sort of

delay (marginal delay for the leader, actual delay for the fol-

lower) suggests a number of heuristic procedures that perform

well in practice. Marcotte [45] considered four such schemes.

The simplest one consists in relaxing the equilibrium con-

straint. This yields the ‘system-optimal’ problem

H1 : min
v[V ;z�0

P
a

vaSaðva=zaÞ þ faðzaÞ ð4Þ

where the designer assigns flows according to its own desire.

Let (v̄, z̄) be its solution. A feasible solution to the NDP can

then be obtained by computing the equilibrium flow vector

v(z̄) corresponding to z̄. Note that, for fixed link flow va, one

can set to zero the derivative with respect to za. This yields

the system-optimal relationship

ðva=zaÞ2S0aðva=zaÞ ¼ f0aðzaÞ; ð5Þ

whose solution, unique if fa is strictly convex is denoted by

za(va). Substituting this value in H1 yields a standard convex

flow problem

min
v[V

P
a

vaSaðva=zaðvaÞÞ þ faðzaðvaÞÞ

that can be tackled by any suitable algorithm.

Another natural approach (H2) consists in iterating between

‘capacity optimization’ and ‘flow assignment’ (equilibrium

computation), hoping that this block Gauss-Seidel scheme

eventually converges to a local solution. This parallels the clas-

sical ‘cobweb’ procedure for fixed point problems. In our

context, it can be considered as an approximation of a

Stackelberg game by a Nash game. Alternatively, it can be

viewed as a procedure that looks for an equilibrium flow that

is consistent with the system-optimal relationship (5), and can

be implemented by solving the variational inequality

kSðv; zðvÞÞ; v� v0l � 0 8v0 [ V

which, under our functional assumptions, reduces again to a

convex flow problem.

A third approach pursues the analysis further, by introducing

a program whose solution yields automatically an equilibrium

flow vector, for instance

H3 : min
v[V ;z�0

P
a

Ð va

o
Saðt=zaÞ dt þ jafaðzaÞ;

for some choice of the positive constants ja. Unfortunately, the

choice of an optimal vector j is of the same theoretical com-

plexity as the solution of the NDP in the first place. For this

reason, it makes sense to set all ja’s to some constant, predeter-

mined value.

The particular case where the delay and investment func-

tions are both convex and increasing polynomials is worth

investigating. Indeed, the Bureau of Public Roads function

[18] assumes this form and, in certain practical situations, it

is natural to consider investment costs that are linear or

convex increasing. We therefore set Sa(u) ¼ aa þ baua
p and

fa(za) ¼ la za
m. Under these assumptions, the system-optimal

relationship can be solved in closed form, yielding

zaðvaÞ ¼
pba

mla

� �1=ð pþmÞ
vð pþ1Þ=ð pþmÞ

a :

Furthermore, it is interesting to note that, by setting j ¼ 1/( p +

1), one realizes that Heuristic H3 subsumes H2. Since H3 can
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easily be solved even for large scale networks, it makes sense to

do so for several values of the parameter j.

Our fourth and final heuristic H4 approach consists in deter-

mining a capacity vector that makes the system-optimal flow

derived from H1 an equilibrium flow. In the polynomial case,

this can be achieved by establishing a suitable, closed form

relationship between flows and capacities.

As is the case in several combinatorial optimization pro-

blems, a worst-case analysis of the various heuristics has

been conducted in Marcotte [45]. To this end, let us define

Rp
mðHÞ ¼ sup

a;b;d

cost solution provided by Heuristic H

cost of the ðunknownÞ optimal solution
:

In the polynomial case, the worst-case ratio has the following

properties:

. limp!1 R1
p(H1) � 2

. R1
p(H2) ¼ p þ 1

. Rm
p (H4) ¼ m ( p þ 1)( p þ m) þ p( p þ m)( p þ1)–m/p

. limm!0 Rm
p (H4) ¼ 1 and limm!1 Rm

p (H4) ¼ 2

. 1þ p=jðpþ 1Þ � R
p
1ðH3Þ � ½j

p
pþ1=ðpþ 1Þ

1
pþ1��½1þ p

jðpþ1Þ�
2

. 2 � limp !1 R1
p(H4) ¼ 4.

To our knowledge, this was the first time that such bounds were

derived for a bilevel problem.

Recently, much attention has been directed towards deriving

worst-case bound for the so-called ‘price of anarchy’, i.e., the

ratio between the delays associated with equilibrium and

system-optimal flow patterns, respectively. For polynomial

delay functions, this ratio tends to infinity as the exponent p

grows. In the light of these results, it is interesting to observe

that for our design problem this ratio stays bounded in certain

situations. Also, note that the above results hold even for

values of p less than 1, which corresponds to concave invest-

ment functions, i.e., cost functions that exhibit economies of

scale. In a certain way, this should not be surprising. Indeed,

if this is the case, the various heuristics solve concave flow pro-

blems whose optimal solutions are extremal. It follows that

capacities will be concentrated on a small number of links on

which both the equilibrium and system-optimal flows will

also be concentrated. For instance, if only one

origin-destination pair has positive demand, most heuristics

will assign the entire capacity to the links of a single path,

resulting in the coincidence of equilibrium and system-optimal

flow patterns.

To conclude this section we mention that a suitable defi-

nition of the investment cost function allows to model the situ-

ation where an actual network must be improved. In this case,

one has simply to replace fa(za) by maxf0, fa(za – ca)}, where

ca represents the initial capacity of arc a. In this formulation, we

do not enforce the constraint za � ca, since it might forbid the

reduction of certain links’ capacities. See Marcotte and

Marquis [46] for further details.

5. ENERGY MARKETS

The energy sector is a fertile ground for the analysis and com-

putation of economic equilibria involving suppliers and buyers.

At GERAD, a university research center based in Montreal, a

research team led by Alain Haurie and Richard Loulou has

made important contributions to this field. In particular, it has

maintained, enhanced and extended the techno-economic

model MARKAL (Fishbone and Abilock [28]). Initially devel-

oped by the International Energy Agency (IEA) and based on

Activity Analysis, MARKAL assesses the timely investment

in proven or novel technologies over a finite horizon.

Decision variables are related to each other by a large

number of equations that ensure the conservation of invest-

ments and energy flows, and account for a variety of con-

straints: resource limitations, demand satisfaction, limits on

rates of technological penetrations, etc. The model is driven

by the optimization of a user-supplied objective, which may

take different forms: total cost, emission of CO2, etc. Among

the various extensions implemented by the team, let us

mention: (i) the inclusion of non-linear dependencies, such as

demand elasticities, (ii) the consideration of environmental

factors, (iii) the partition of a ‘country’ into semi-autonomous

‘regions’, and (iv) the inclusion of discrete decision variables.

The team developed new models that could fit evolving and

deregulated environments. Based on game-theoretic concepts,

the resulting implementable algorithms where used to evaluate

a number of scenarios. One important area that led to the adop-

tion of the bilevel framework was the electric power sector,

which was experiencing various degrees of deregulation,

ranging from mild to complete. A first application aims at

describing the interaction between a typical (American)

power utility and ‘qualifying’ small power producers (QFs),

such as industrial co-generation units, which simultaneously

produce thermal and electric energy from a single primary

source (Haurie et al. [35]). This case study was motivated by

the Public Utility Regulatory Policies Act (PURPA), an

American legislation enforced during the deregulation period,

which forces the utilities to buy any excess electricity from

QFs at the ‘avoided’ cost, a concept related to the marginal

cost. Under PURPA, the QFs react to the average production

cost of utilities by acquiring co-generation units and selling

the excess electricity (at marginal value) to utilities, which

are legally bound to buy it. Note that the marginal vs.

average cost rationale does not, in general, yield a socially

optimal solution, i.e., a solution that maximizes the sum of con-

sumer surplus, utility profit, and profit of the QFs.

Consequently, when a utility invests in production capacity,

its strategy must take into account the quantities supplied

by the QFs, which will be endogenously defined as rational
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quantities put on the market by cost minimizing industrial pro-

ducers. Hence the bilevel structure of the model.

More specifically, let us consider a model involving two

players, the utility and the aggregated industrial QFs, each rep-

resented by its own large scale techno-economic model. Each

player has to satisfy inelastic demands for electricity and

steam, the latter demand begin null for a utility that does not

manage a district heat system. For each demand pattern

(summer, winter, day and night, peak period) and each time

period, electricity demand is described by a staircase load

curve. Demand for steam for various pressure or temperature

levels is assumed to be known over the time horizon of the

study. In order to satisfy demand, each player may increase

its generating capacity by investing in available technologies,

while maintaining a suitable reserve margin. Investment costs

are represented by the annuities corresponding to the life

cycle of the equipment, and may involve different interest

rates for the utility and the QFs. Players are concerned with

the minimization of their net total cost, i.e., investment þ
production þ electricity purchases – electricity sales.

The efficiency of the regulation can then be assessed by con-

trasting the efficient (cooperative) equilibrium resulting from a

joint optimization vs the non-cooperative equilibrium compati-

ble with PURPA. The latter was computed by solving a bilevel

program by a sensitivity-based algorithm. Various scenarios

were run, and it was found that co-generators would benefit

most from PURPA legislation, while end-users of the energy

provided by utilities would experience rate increases.

A second application was concerned with the integrated

electricity sector of the Province of Québec, mainly operated

by its single provider Hydro-Québec (Lavigne et al. [42]). Its

purpose was to develop a mathematical program for evaluating

three scenarios:

. marginal cost pricing, i.e., the optimization of the entire

system, notwithstanding environmental or other externalities;
. a regulated equilibrium, where prices are related to marginal

costs;
. monopolistic pricing, where prices are dictated by the single

supplier/provider, which acts as a price-setter. In this

context, all consumers are represented by a single large

scale model, where each consumer class sets the quantity it

purchases. Consumers may switch from electricity to substi-

tutable energy forms.

In the model, electricity is partitioned into several ‘commodi-

ties’ according to different periods of the year, and to ‘peak’

production. This results in a number of commodities equal to

63, corresponding to seven times the length of the horizon

(set to nine). An important feature of the model is that the

supply and demand curves are not assumed to be endogenously

described by simplified, aggregated, closed-form functions.

Quite the opposite, supplier and consumer choices are

modeled in fine detail, via highly disaggregated dynamic

process models which include technology and fuel choices as

explicit determinants. There follows a very realistic description

of the techno-economic structure of the market. The price to

pay for this level of realism is of course the complex, implicit

nature of the resulting supply and demand curves, together with

the difficulty of computing the associated equilibria.

We now proceed with the description of a model where each

agent’s behavior is explicitly described by a mathematical

program of its investment process, including peak load

reserve requirements. For the purpose of this section, and con-

sidering that the amounts of exchanged commodities are fixed,

each model takes the form of a large scale linear program. First,

we consider the production model, based on the following

notation:

x: decision variables of the producer (investments, activity

levels, etc);

c1: vector of unit costs;

s: vector of commodity exchanges between supplier and

consumers;

p: price vector;

A1: techno-economic matrix relating the utility’s decision

variables to production levels;

P1: polyhedron defined by any remaining constraints.

The producer model is then stated as the linear program

P : min
x;p

c1x� ps

subject to A1x� s ¼ b1

x [ P1

s � 0;

where the first constraint accounts for electricity production.

The production of a marginal unit induces a cost increase

equal to the shadow price l associated with this constraint.

For a given s, the vector of shadow prices l provides the

value of the (implicit) inverse supply curve at the current point.

The consumer sector is modeled as the linear program

C : min
y;s

c2yþ ps

subject to A2yþ s ¼ b2

y [ P2

s � 0;

where we have

y: consumer decision variables (investments, capacities, etc);

c2: costs associated to the consumer variables;

A2: techno-economic matrix relating consumer decision vari-

ables to consumption;

P2: polyhedron defined by any remaining constraints.

As before, shadow prices of the first constraint define the

implicit inverse demand function, with the vector s making

the connection between supply and demand. Both models
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being linear, the inverse supply and inverse demand curves are

step-functions.

An equilibrium ( p�, s�) is achieved when, for given s�, the

producer sets its activity vector to x� and the price vector to

p� while, for given p�, consumers set their activity and

exchange vectors to y� and s�, respectively. Clearly, this frame-

work encompasses a large class of equilibria. For instance, if

the vector p is constrained to belong to a given set S, we

derive a so-called S-equilibrium, which solves the bilevel

program

S� EQ : min
x;p

c1x� ps

subject to A1x� s ¼ b1

x [ P1

p [ S

min
y;s

c2yþ ps

subject to A2yþ s ¼ 0

y [ P2

s � 0:

Note that, if p is unrestricted, i.e., the constraint p [ S does

not appear, then we obtain a static Stackelberg solution that

maximizes the utility’s profit. For the above bilevel program,

an iterative algorithm based on sensitivity analysis was

implemented and applied to three situations:

. pure competition;

. regulated equilibrium;

. tempered monopoly equilibrium.

The algorithmic approach consists in performing, locally, a pie-

cewise linear approximation of the consumer sector’s reaction

curve, and feeding it to the producer model. While it is well

known that the net social surplus resulting from pure compe-

tition can easily be obtained through the minimization of a

convex program, we showed that the regulated one can also

be obtained via a standard convex program. However, the

modified producer model obtained for the third equilibrium

(producer surplus) leads to an integer mathematical program.

Indeed, the producer now optimizes his own objective function

(cost), and not the net social surplus as in the pure competition

case. Based on a piecewise linear three-step approximation of

each of the 63 inverse demand functions, it was shown that

the minimal supplier’s cost can be reached for each of them

only at three points, each located at a discontinuity either of

the current inverse demand or inverse supply functions. This

observation leads to a particularly simple formulation of the

supplier’s problem as an integer program.

The model was used to assess the relative benefits of partial

or total deregulation. For instance, one of its output showed

how the residential market reacted to various pricing mechan-

isms. Interestingly, it was observed that a tempered monopoly

equilibrium outperformed, from the social point of view, a

heavily regulated one. In this framework, the tempered mono-

poly may be interpreted as the limiting case of a deregulated

oligopolistic market.

6. NETWORK PRICING

The work of Marcotte and Savard on network pricing is based

on initial discussions with Martine Labbé that took place at the

Université Libre de Bruxelles in the early 1990s, and pursued

with Luce Brotcorne (Université de Valenciennes) and gradu-

ate students located either in Brussels or Montreal. The original

model of Labbé et al. [40] was concerned with the setting of

tolls on a subset of arcs of an uncongested transportation

network, with the aim of maximizing revenue, and taking

into account that users are assigned to shortest paths whose

respective costs (or lengths) are the sum of the original costs

and tolls. The basic model was then extended to consider con-

gestion, joint design and pricing, population segmentation with

respect to the perception of travel time, and recently the incor-

poration of discrete choice models. This approach led to a

model of revenue management which is currently applied in

the airline and rail industries, and will be discussed in the

next section of the paper. But, first things first, let us introduce

the basic toll setting problem.

6.1 Formulation and Properties

The toll setting problem TOLL is defined over a network whose

arcs are partitioned into two subsets, those of toll and toll-free

arcs respectively. The toll subset is endowed with a toll vector t,

a cost vector c and a flow vector x. The respective latter quan-

tities for the toll-free subset are d and y. The TOLL problem can

then be expressed as the bilinear bilevel program

TOLL : max
t;x;y

t
P

k

xk

min
x;y

P
k

ðcþ tÞxk þ dyk

subject to for all k Axk þ Byk ¼ bk

xk; yk � 0;

where [AjB] is the incidence matrix of the network, and bk the

demand vector associated with the origin-destination pair k. In

the remainder, we assume that there cannot exist a toll scheme

that generates revenues and creates negative cost cycles in the

network, and that there exists at least one path composed of toll-

free arcs for each origin-destination pair. These assumptions

imply that the lower level’s optimal flows are assigned to short-

est paths. The aim of the leader is then to set tolls as large as

possible, but not too high, as this could drive users onto alterna-

tive, toll-free routes.

As discussed by Labbé et al. [40] the leader’s revenue is

neither a continuous nor a convex function of t, although a

semi-continuity property ensures that the solution set is

non-empty. The above formulation implies that, whenever the
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solution set of the lower level is not a singleton, ties are broken

in the leader’s favor. Since a toll schedule that induces unique-

ness at the lower level and yields a revenue arbitrarily close to

the optimal value can be achieved through a suitable pertur-

bation scheme, this assumption makes sense.

As shown on the example of Figure 2, an optimal solution

may involve negative tolls. Let the demand be equal to one

on origin-destination pairs 1-2 and 3-4, and arcs (5,6) and

(6,4) be subject to tolls. In this case compensating interactions

between tolls play an active role and the optimal solution, cor-

responding to a revenue of 8 monetary units is reached for

T56 ¼ 5 and T64 ¼ 22. Such interactions may occur in

airline pricing problems, where arcs correspond to legs in the

network.

Let us now return to the formulation of TOLL. Replacing the

lower level linear program by its optimality conditions, one

obtains the equivalent single level formulation

SLP : max
t;x;y

t
X

k

xk ð6Þ

subject to; for all k Axk þ Byk ¼ bk

xk; yk � 0

lkA � cþ t

lkB � d

ðcþ t � lkAÞxk ¼ 0 ð7Þ

ðd � lkBÞyk ¼ 0: ð8Þ

The difficulty in solving SLP is entirely due to the complemen-

tarity constraints (7)–(8). In addition to being non-linear, these

constraints may fail to satisfy any constraint qualification, indi-

cating that the problem is numerically ill-posed.

There is a close relationship between TOLL and LBP.

Indeed, through LP duality arguments, it is possible to reformu-

late TOLL as an LBP for which an economic interpretation has

been provided by Labbé et al. [40], who also showed that there

always exist extremal solutions to TOLL, and the latter is

strongly NP-hard. Further complexity results have been

obtained by Bouhtou et al. [10, 32].

6.2 Inverse Optimization

The difficulty of the problem warrants the development of sol-

ution methods that exploit its network structure and the

relationship between tolls and flows. More precisely for fixed

t one may obtain the follower’s optimal flows by solving

minimum cost flow problems. Conversely, for fixed xk and

yk, tolls that maximize the leader’s revenue may be obtained

through the inverse optimization procedure described in this

section. For ease of presentation the technique will be illus-

trated on the single commodity problem, hence the absence

of the index k in the following rewriting of SLP:

max
t;x;y

tx

subject to Axþ By ¼ b

x; y � 0

lA � cþ t

lB � d

ðcþ t � lAÞx ¼ 0

ðd � lBÞy ¼ 0:

ð9Þ

It is clear that, without loss of generality, one may set

t ¼ lA 2 c. Actually the equality only needs to hold for the

components of the flow vector x that are strictly positive. For

those components whose values are zero, one is free to select

any value of t that satisfies (9). Some elementary algebra then

yields

max
t;x;y;l

lb� ðcxþ dyÞ

subject to Axþ By ¼ b

x; y � 0

lB � d

ðd � lBÞy ¼ 0:

Let us now consider an extremal flow solution (x, y) (this

corresponds to a path in the graph), and partition y as

y ¼ (y0, yþ), where y0 ¼ 0 and yþ . 0, component-wise.

This leads to the linear program:

max
x;y;l

lb� ðcxþ dþyþÞ

subject to Axþ Bþyþ ¼ b

x; yþ � 0; y0 ¼ 0

lB0 � d0

lBþ ¼ dþ

which decomposes into a ‘primal’ (in x, y) and a ‘dual’ (in l)

problem. Solving the dual problem is tantamount to solving an

inverse optimization program, whereby one looks for a revenue

maximizing toll vector t ¼ lA 2 c that is consistent with a

lower level solution. This development illustrates the ‘pure’

combinatorial nature of the problem, which is concentrated in

the knowledge of non-zero toll-free flows. This feature of the

problem has been exploited to design exact or heuristic

approaches to the problem by Brotcorne et al. [13, 14],

among others.Figure 2. Negative tolls
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The dual of the inverse optimization program takes the form

as:

min
u

d0u0 þ dþuþ

subject to B0u0 þ Bþuþ ¼ b

u0 � 0

uþ free:

This corresponds to a minimum cost flow problem where toll

arcs have been removed, and toll free arcs that carry positive

flow are bi-directional. In the multi-commodity case a similar

analysis yields a multi-commodity network flow problem

involving capacities on toll arcs.

6.3 Algorithmic Approaches

Algorithmic approaches proposed in the literature are mostly

based on reformulations of TOLL as the single level optimiz-

ation program SLP.

A mixed integer programming (MIP) formulation of the

problem may be obtained through the introduction of binary

variables zk to lift the non-linearities arising in constraint (7)

and (8) and the objective function. To this end, we set

tk ¼ txk/nk and replace (7) and (8) for all k [ K by the equiv-

alent constraints

�Mzk � tk � Mzk

�Mð1� zkÞ � tk � t � Mð1� zkÞ;

where M is a data-dependent, suitably large constant. The

resulting formulation can be solved by an off-the-shelf solver,

such as CPLEX [22]. Unfortunately, due to the large number

of binary variables (jKj � jAj) and the poor quality of the

linear programming relaxation, the resulting MIP does not

allow to solve instances of realistic sizes.

In the case where tolls must satisfy non-negativity con-

straints, Dewez et al. [25] have strengthened constraints (7)

and (8), by tailoring the constant M to each OD pair. They

also introduced two sets of cuts. The first set, derived from

the complementarity constraints, improves the linear relaxation

of the problem, while the second set (galley cuts) forces OD

pairs going through nodes s and t to use a common sub-path.

These cuts allow to reduce by half the integrality gap, and to

sharply improve the performance of the associated

branch-and-cut algorithm.

Another approach consists in penalizing the constraints (7)

and (8) to derive a separable bilinear program:

BILIN : max
t;x;y;l

t
P

k

xk�M
P

k

ððcþ t�lkAÞxkþðd�lkBÞykÞ

subject to; for all k AxkþByk¼bk

xk;yk�0

lkA�cþ t

lkB�d:

Labbé et al. [40] have shown that the penalty is exact, in the

sense that there exists a threshold value M such that, whenever

M exceeds M, the global solutions of TOLL and BILIN
coincide. It follows from known results in bilinear program-

ming that TOLL admits optima (x, y) that are extremal points

of the original primal polyhedron, as claimed earlier.

Brotcorne et al. [12, 13] proposed primal-dual heuristics for

solving TOLL. More precisely BILIN is sequentially solved

with respect to (t, lk) and (xk, yk). For fixed (t, lk) each

problem in (xk, yk) consists in computing shortest

origin-destination paths. For fixed xk and yk one obtains a

linear program in t and l which can be solved by the inverse

optimization procedure introduced in the previous subsection.

Note that alternatively the vector l could have been set to the

optimal multiplier associated with a lower level solution. If

there is only one OD pair, one can set the toll vector t to lA

- c although this is not possible in general. To deal with this

issue, Brotcorne et al. [13] assumed distinct tolls for every

OD pair, together with a constraint specifying the equality of

all OD-specific tolls. Next, they introduced a quadratic

penalty on this constraint. The resulting non-linear program

was solved using Frank and Wolfe linearization scheme. In

the course of the algorithm, lower level solutions are generated

and probed using the inverse optimization procedure. The aim

of the procedure is actually not so much that of uncovering a

local solution of the non-convex master problem, as to generate

a set of ‘quality’ lower level solutions, in the spirit of the strat-

egy underlying meta-heuristics. Corresponding tolls are then

recovered through inverse optimization using a generic LP

solver.

Recently, Brotcorne et al. [14] have developed a tabu search

heuristic based on the efficient exploration of the lower level

extremal solutions (trees). The optimal toll vector correspond-

ing to a tree solution is provided by the inverse optimization

procedure introduced earlier, which is solved by an adaptation

of Dantzig-Wolfe decomposition.

Within this framework, neighbors of a shortest path tree

associated with an OD pair k are obtained from the pivot oper-

ation that consists in replacing one link of the tree by an

out-of-tree link. The trees are updated through the above

pivot operation until an improved solution is obtained, in

which case the procedure is started anew by performing short-

est path computations. To the best of our knowledge, the result-

ing scheme is currently the most efficient procedure for

addressing large scale instances.

In contrast with the arc formulation of TOLL, one may

investigate formulations that integrate path variables, in

conjunction or not with arc variables. One such formulation,

analyzed in Didi-Biha et al. [26], is constructed around the

binary variables zp, set to one if and only if the demand nk cor-

responding to OD pair k is assigned to path p [ Pk, where Pk is

the set of loopless paths linking the origin and destination of k.

We also introduce Lk, the cost of the shortest path linking the

origin and destination nodes of k. TOLL can then be expressed
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as the mixed integer program:

max
t;t;z;L

P
k

nktk

subject to; for all k
P

p[Pk

zp ¼ 1

for all p [ Pk zp [ f0; 1g
for all k and for all p tk �

P
a[p>A1

ta þMð1� zpÞ

Lk ¼ tk þ
P

p[Pk

zp

� P
a[A1

ca þ
P

a[A2

da

�

Lk �
P

a[p>A1

ta þ
P

a[p>A1

ca þ
P

a[p>A2

da

�Mð1� zpÞ
Lk �

P
a[p>A1

ta þ
� P

a[A1

ca þ
P

a[A2

da

�
;

where M is an arbitrarily large (finite) number. In Didi-Biha

et al. [26] and Brotcorne et al. [14], it is shown how a path gene-

ration scheme, combined with the inverse optimization pro-

cedure, provides an efficient framework for solving TOLL.

More precisely, Didi-Biha et al. [26] proposed an algorithm

based on a clever enumeration of path sets (so-called

K-paths) whose elements are paths associated with the OD

pairs, corresponding to extremal optimal solutions of the

lower level problem. Given a K-path P, let us denote by v(P)

the revenue provided by the inverse optimization procedure.

Also, let UB(P) provides the difference between toll-free path

costs and path costs obtained by setting tolls to 0 on arcs of

P, and to 1 elsewhere. It is clear that for each K-path P, v(P)

(resp. UB(P)) defines a lower bound (resp. an upper bound)

on the optimal revenue. The algorithm then proceeds by

generating a sequence of K-paths in decreasing order of the

upper bounds, and stops at the first K-path P of the sequence

for which v(P�) � UB(P), where P� is to the best K-path

found so far. In practice, the size of the sequence is limited

by memory space or computing time considerations. Recently

Brotcorne et al. [14] have decreased the upper bound UB(P)

and devised a generation process that obviates redundancy in

the K-path enumeration process. This modification allowed

the solution of problems involving twice as many OD pairs

and twice as many toll arcs as before.

6.4 Variants

Some cases dealing with specific structures have been considered

by Dewez [24] and Heilporn et al. [36]. The Highway Pricing

Problem HPP, in which all toll arcs must be connected, can rep-

resent features specific to a real highway topology. In order to

allow for tolling flexibility, the authors consider a complete

toll subgraph so that every single feasible path from any origin

to any destination in the network contains exactly one toll arc.

For each OD pair k [ K and each toll arc a [ A1, let ca
k

denote the fixed cost of the unique path going from the origin

to destination through toll arc a. The fixed cost on the toll-free

path ok! dk is denoted by cod
k . As before, ta

k ¼ ta if OD pair k

uses arc a [ A1 and ta
k ¼ 0 otherwise. This yields

HPP : max
t;x;t

P
k

P
a

nktk
a

subject to for all k
P

a

xk
a � 1

for all a [ A1

P
b

ðtk
bþ ck

bxk
bÞ þ ck

od

�
1�

P
b

xk
b

�
� ck

aþ ta

ta�Mð1� xk
aÞ � tk

a �Mxk
a

tk
a � 0

xk
a [ f0;1g:

Heilporn et al. [36] provided, in the single OD pair case, a

complete description of the convex hull of the feasible set of

HPP. They also considered CHPP, a variant that includes tri-

angle and monotonicity constraints encountered in real life.

They proved that the problem was NP-hard and derived valid

inequalities. Dewez proposes several heuristics for the CHPP
as well as an exact resolution method. She also shows that,

whenever there is a single OD pair or a single toll arc, the

problem is polynomially solvable. Heilporn et al. proved the

NP-hardness of CHPP and proposed valid inequalities.

Recently, a link has been established between network pricing

problems and the problem that consists in designing and pricing

sets of products in a given economic market. More precisely, the

profit problem PP (Dobson and Kalish [27]) consists in deter-

mining which subsets of products should be introduced into the

market and at what price, with the aim of maximizing the

seller’s income. On the demand side, it is assumed that each pur-

chaser selects the product that maximizes its utility, provided it is

positive. In this setting, let I be denote the set of products and K

the set of purchaser segments, with respective demand nk. With

each product i [ I in the market is associated a price pi and a

fixed cost fi for the seller. With each product-segment couple

(i, k) is associated the value ri
k of product i to segment k. The

utility is then defined as the difference between the product

value ri
k and its price pi. The profit problem is defined as follows:

PP : max
p;x;y

P
k

P
i

nkpix
k
i �

P
i

fiyi

subject to
P

i

yi � Y

for all k
P

i

xk
i � 1

for all k and all i
P

j

ðrk
j � pjÞxk

i � ðrk
i � piÞyi

xk
i � yi

xk
i ; yi [ f0; 1g:

By setting Y ¼ 1, S ¼ I, and yi ¼ 1 for all i in I, one realizes that

HPP subsumes the price variant of PP where the set of products

is fixed a priori. In that context, products correspond to paths of

the network, and we believe that this equivalence may lead to

improved algorithms for the pricing problem PP, based on the

results obtained for HPP.
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6.5 Extensions

In order to better fit real applications, the basic framework may

be enhanced in several ways. We sketch some of them below.

Random utility. User behavior can be made more realistic by

incorporating randomness into the choice model of the users.

One popular approach leads to discrete choice models based

on random utility theory, as described in the classic book of

Ben-Akiva and Lerman [9].

Design and pricing. In the telecommunication industry, it

may be advantageous to determine jointly an investment and

pricing policy. This problem is addressed in Brotcorne et al.

[17] in the uncapacitated case and by Brotcorne et al. [15] in

the capacitated case. The resulting bilevel models involve

binary variables, and are solved using a Lagrangean approach,

each evaluation of the dual function being performed by one of

the methods described in Brotcorne et al. [13]. A close relation-

ship with the product line design problem with fix costs exists.

One major difference is that in the toll problems, the set of pro-

ducts (paths) is not available explicitly and that tolls are set on

arcs rather than paths (products).

Congestion pricing. In a congested environment, tolls can be

used both to alleviate congestion or to generate revenues. In the

former case, one looks for a toll vector t such that the traffic

equilibrium that corresponds to the modified delay function

S(v) þ t is as efficient as possible. If tolls can be imposed on

all arcs of the network, it can be shown that a delay-minimizing

flow pattern can be induced, and the associated toll vector can

be easily computed by solving a linear network flow problem.

This corresponds to the situation referred to as ‘first best’ in the

economics literature. On the other hand, if tolls can only be

imposed on a subset of arcs, one faces a true bilevel problem

(see Fortin et al. [29]).

If tolls are used to generate revenues, it is possible, as advo-

cated in [29], to reduce the problem to the standard pricing pro-

blems addressed in this section, by linearizing the delay

functions Sa. Note that this approach only applies when the

latter assumes the separable form Fa. Furthermore, the intro-

duction of breakpoints required in the linearization process

greatly reduces the size of problems that can be solved.

Value of time (VOT). In models involving autonomous

agents at the lower level, out-of-pocket cost is not the sole

determinant of disutility. For instance, users of a toll highway

might ponder both cost and time before selecting a path. In

VOT models, users are distributed into classes characterized

by a VOT parameter a that translates delays into time units.

A class-a user will then be associated with the generalized

cost (disutility)

Sað�vÞ þ a ta

where �v denotes the total flow traveling on arc a of the network.

If h(a) represents the proportion (in the discrete case) or density

(in the continuous case) of a-users we have that �v ¼
P

a vðaÞ
or �v ¼

Ð
a

vðaÞ, respectively (v(a) denotes the vector of flow

densities in the latter situation). For fixed toll vector t, the

equilibrium satisfies the variational inequality

kSð�vÞ þ at; vðaÞ � v0ðaÞl � 0 8n0 [ hðaÞV ; 8a;

where V is the set of feasible total link flows. Whenever S is

constant (uncongested case), the resulting revenue maximiza-

tion problem is akin to the basic problem and merely involves

a larger set of flow variables. When the parameter a is continu-

ously distributed according to some density function h (con-

tinuous case), the infinite-dimensional toll optimization

problem can be solved by first approximating h by a mass func-

tion, and then performing a local optimization procedure based

on sensitivity results that reflect the local behavior of equili-

brium flows with respect to the toll vector. It has been shown

by Marcotte et al. [48] that a very coarse approximation of h

was sufficient to initiate a search phase leading to optimal or

near-optimal solutions.

7. REVENUE MANAGEMENT

Revenue Management is the branch of operations research that

is concerned with the revenue optimization of firms character-

ized by high investment and low operating costs. It involves

issues such as capacity management and pricing, and should

ideally take into account demand forecast and competition

reaction. Initiated in the airline industry, it was traditionally

partitioned into four domains: pricing, seat allocation,

demand forecasting and overbooking. The synonym term

‘Yield Management’ is frequently used to refer to the setting

of dynamic rules that determine what ‘products’ (airline

tickets) should be offered at any given instant previous to

flight departure. In the recent years, the techniques of

Revenue Management have been extended to fields that share

with the airline industry features such as high investment and

low operating costs, mentioned earlier, as well as perishable

inventories, a deregulated environment, etc. One may think of

the rail, telecommunication or hospitality industry, for instance.

Revenue Management is, and will stay for some time, one of

the fast growing areas of management science.

Revenue management lends itself naturally to bilevel pro-

gramming. For example, Côté et al. [21] considered an airline

application where an airline sets fares and capacity allocation

policies, taking into account that travelers are assigned to

flights that maximize their individual utilities. For each

market, demand is segmented into groups, each group being

characterized by its valuation of different product attributes:

price, duration, class of service, etc. For instance, if three attri-

butes, say price, duration and QOS, are associated with a given

product p on flight g then the disutility of a customer of group g

is expressed as

ci
p;f ;gða;bÞ ¼ ti

p;f þ ag;k � Df þ bg;k � Q p;f
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where the fare tp,f
i serves as numéraire and the attributes Df and

Qp,f, with respective valuations ag,k and bg,k, correspond to

flight duration and quality of service, respectively.

It is worth having a closer look at the model. Let us first

introduce the notation.

i: i ¼ 1 refers to the leader airline and i ¼ 2 to the

aggregated competition;

k: market index;

f : flight index

s: leg index;

p: fare product index;

b: booking class index;

g: user group index;

K: set of all markets (origin-destination pairs);

F1: set of flights supplied by the leader;

F2: set of flights supplied by the competition;

Fi(k): set of flights supplied by agent i on market k:

Fi ¼ <kF
i(k);

S: set of flight legs operated by the leader airline;

S( f ),S: set of flight legs making flight f [ F1;

P( f ): set of fare products offered on flight f;

B( f ): set of booking classes open on flight f;

G: set of user groups;

b( p): booking class of the product p [ P( f ).

Fares and flight attributes are:

tp,f
1 : fare of the leader airline for product p on flight f (decision

variable);

tp,f
2 : fare of the competition for product p on flight f (exogen-

ous data);

ti: fare vector;

Df: duration of flight f;

Qp,f: quality of service associated with product p on flight f.

At the lower level, decision variables are passenger flows:

vp,f, g
i : number of passengers of group g [ G purchasing

product p [ P( f ) on flight f [ Fi.

The behavioral parameters a and b denote, respectively, the

valuation of one unit of duration and one unit of quality of

service. We set:

ag,k: monetary equivalent of one duration unit for pas-

sengers of group g on market k;

bg,k: monetary equivalent of one unit of disutility for

passengers of group g on market k;

cp,f,g
i (a,b): perceived travel disutility:

ci
p;f ;gða;bÞ ¼ ti

p;f þ ag;k � Df þ bg;k � Q p;f ;

sk: lower bound on targeted share of market k;

sk: upper bound on targeted share of market k;

rk: lower bound on targeted revenue share of market k;

rk: upper bound on targeted revenue share of market k.

Besides the parameters listed above, the model requires the

following input:

dk: total demand on market k over the planning horizon;

hg,k: fraction of demand dk belonging to group g;

lb,f: number of seats available in class b on leader flight f

(booking limit);

us: aircraft capacity of flight segment s.

The bilevel model then takes the form

max
T1;v1;v2

P
f [F1

P
p[Pð f Þ

P
g[G

t1
p;f v

1
p;f ;g

subject to for all k [ K
P

f [F1ðkÞ

P
p[Pð f Þ

P
g[G

v1
p;f ;g � sk

P
f [F1ðkÞ

P
p[Pð f Þ

P
g[G

v1
p;f ;g � sk

P
f [F1ðkÞ

P
p[Pð f Þ

P
g[G

v1
p;f ;gt1

p;f � rk

P
f [F1ðkÞ

P
p[Pð f Þ

P
g[G

v1
p;f ;gt1

p;f � r
k

max
v1;v2

P
f [F1

P
p[Pð f Þ

P
g[G

c1
p;f ;gða;bÞv1

p;f ;g

þ
P

f [F2

P
p[Pð f Þ

P
g[G

c2
p;f ;gða;bÞv2

p;f ;g

subject to for all

b [ Bð f Þ; f [ F1
P

p[Pð f ÞjbðpÞ¼b

P
g[G

v1
p;f ;g � lb;f

for all g [ G;k [ K
P

f [F1ðkÞ

P
p[Pð f Þ

v1
p;f ;g

þ
P

f [F2ðkÞ

P
p[Pð f Þ

v2
p;f ;g ¼ dkhg;k

for all s [ S
P

f js[Sð f Þ

P
p[Pð f Þ

P
g[G

v1
p;f ;g � us:

Note that the model can easily be adapted to behavioral par-

ameters that vary continuously by replacing discrete flow vari-

ables and summations by flow densities and integrals,

respectively.

It is clear that the above framework must be refined to take

into account the stochastics and dynamics associated with real-

life RM applications. This has been performed for a high-speed

European rail operator. In that framework, the bilevel approach

can be viewed as ‘top-down’, with its global view of the

network, in contrast with more traditional approaches that

focus on a detailed representation of subsystems, for instance

at the market level. Interestingly, as the latter are ‘globalized’,

the convergence and interface between both approaches

emerges (see Miranda-Bront et al. [50]).
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8. CONCLUSION

The aim of the present work was to provide a quick overview of a

stream of research on bilevel programming that was initiated in

Montreal, together with Belgian colleagues and students from

Montreal, Brussels and Valenciennes. Motivated by applications

involving an underlying network structure, it led to methodologi-

cal and algorithmic advances that showed that the bilevel pro-

gramming paradigm was not only a powerful tool for modeling

situations in economics, as well as a rich source of mathematical

and computational challenges, but also could lead to the under-

standing of situations of practical interest.
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Polytechnique de Montréal.
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[41] Labbé, M., Marcotte, P., and Savard, G. (1999), “On a class of

bilevel program”, In Di Pillo, G. and Giannessi, F. (eds.),

Nonlinear Optimization and Related Topics, Kluwer, Boston,

pp. 183–206.

[42] Lavigne, D., Loulou, R., and Savard, G. (2000), “Pure compe-

tition, regulated and Stackelberg equilibria: application to the

energy system of Quebec”, European Journal of Operational

Research, 125: 1–17.

[43] Lawler, E.L. (1972), “A procedure to compute the K best sol-

utions to discrete optimization problems and its application to

the shortest path problem”, Management Science, 18: 401–405.

[44] Luo, Z.-Q., Pang, J.-S., and Ralph, D. (1996), Mathematical pro-

grams with equilibrium constraints, Cambridge University Press,

Cambridge, UK.

[45] Marcotte, P. (1986), “Network design problem with congestion

effects: a case of bilevel programming”, Mathematical

Programming, 34: 142–162,

[46] Marcotte, P. and Marquis, G. (1992), “Efficient implementation

of heuristics for the continuous network design problem”,

Annals of Operations Research, 34: 163–176.

[47] Marcotte, P. and Patriksson, M. (2007), “Traffic equilibrium”, In

Barnhart, C. and Laporte, G. (eds.), Transportation. Handbooks

in Operations Research and Management Science

North-Holland, Amsterdam, pp. 623–714.

[48] Marcotte, P., Savard, G., and Schoeb, A. “A hybrid approach to

the solution of a pricing model with continuous demand segmen-

tation”, submitted for publication.

[49] Marcotte, P., Savard, G., and Semet, F. (2003), “A bilevel pro-

gramming approach to the travelling salesman problem”,

Operations Research Letters, 32: 240–248.

[50] Miranda Bront, J., Méndez-Dı́az, I., and Vulcano, G. (forthcom-

ing), “A column generation algorithm for choice-based network

revenue management”, Operations Research, forthcoming.

[51] Pintér, J. (2006) “Global optimization in practice: state-of-the-art and

perspectives”, In Sherali, H.D. and Gao, D. (eds.): Complementarity,

Duality, and Global Optimization, Springer, New York.

[52] Roch, S., Savard, G., and Marcotte, P. (2005), “Design and analy-

sis of an algorithm for Stackelberg network pricing”, Networks,

46: 57–67.

[53] Van Ackere, A. (1993), “The principal/agent paradigm: its rel-

evance to various functional fields”, European Journal of

Operational Research, 70: 83–103.

[54] Vicente, L.N., Savard, G., and Júdice, J.J. (1994), “Descent
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