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Abstract

Consider the problem of maximizing the toll revenue collected on a multi-commodity transportation network. This fits a bilevel framework where
a leader sets tolls, while users respond by selecting cheapest paths to their destination. We propose novel formulations of the problem, together
with valid inequalities yielding improved algorithms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In traditional pricing models, market response is characterized by an exogenous demand curve. Alternatively, one may integrate
the user optimization process directly into the model. In the context of network tolling, this interaction fits the bilevel framework
analyzed in [7], where a highway authority anticipates the reaction of users to its toll policy. In this setting, the leader selects the
right balance of prices, large enough to generate revenue, but small enough not to deter users to access the toll network. The resulting
mathematical program, closely related to the topics of envy-free pricing [5] or optimal product line design [6], involves bilinear
functions at both levels of decision making. Even in the single-commodity instance, it subsumes classical NP-hard problems such as
the traveling salesman problem (see [8]) or MAX-3-SAT (see [4,9]). The aim of the present paper is to construct improved algorithms
based on tight formulations and new valid inequalities.

2. Arc formulations of the toll setting problem

Let us consider a multi-commodity network G = {K, N, A ∪ B} defined by a set K of origin–destination pairs, a node set N
and two arc sets A and B representing, respectively, the sets of toll and toll-free arcs. There is a travel time cij associated with
arc (i, j) ∈ A ∪ B and a toll tij associated with arc (i, j) ∈ A. We assume that travel time and cost are expressed in a common
unit. Throughout the paper, the terms ‘cost’ and ‘length’ are synonymous, so that the expression ‘shortest path’ make sense. For
each commodity k ∈ K , the demand for travel between the origin node o(k) and the destination d(k) is nk . We let xk

ij (resp. yk
ij )

denote the proportions of flow from commodity k assigned to toll (resp. toll-free) arc (i, j), and assume that users are assigned

∗ Corresponding author. Tel.: +1 514 343 5941; fax: +1 514 343 7121.
E-mail address: marcotte@iro.umontreal.ca (P. Marcotte).

0167-6377/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2007.03.005

http://www.elsevier.com/locate/orl
mailto:marcotte@iro.umontreal.ca


142 S. Dewez et al. / Operations Research Letters 36 (2008) 141–149

to shortest paths with respect to the cost vector c + t . The toll optimization problem is then formulated as the bilinear bilevel
program

TOP : max
t,x,y �0

∑
k∈K

∑
(i,j)∈A

tij n
kxk

ij

∀k ∈ K

⎧⎪⎨
⎪⎩

(xk, yk) ∈ arg min
x̄,ȳ �0

∑
(i,j)∈A

(cij + tij )x̄
k
ij + ∑

(i,j)∈B

cij ȳ
k
ij

s.t.
∑

j :(j,i)∈A

x̄k
ji + ∑

j :(j,i)∈B

ȳk
ji − ∑

j :(i,j)∈A

x̄k
ij − ∑

j :(i,j)∈B

ȳk
ij = bk

i ∀i ∈ N,

where the node demand bk
i is equal to −1 if i = o(k), to +1 if i = d(k), and to 0 otherwise. To avoid trivial solutions leading to

infinite revenue, we assume that there always exists a path composed solely of toll-free arcs for every k ∈ K . Since the maximization
involves the lower level vectors x and y, the above formulation implicitly assumes that, whenever shortest paths are not unique, the
one yielding the highest revenue for the leader is adopted. This assumption is not unrealistic since, given two equivalent paths, the
one generating the highest revenue could be made the most attractive through an arbitrarily small reduction of one of its tolls. Now,
replacing each lower level optimization problem by its optimality conditions (primal-dual feasibility, equality of the primal and dual
objectives), the toll optimization problem can be reformulated as the single-level program (see [7]).

max
t,x,y �0,�

∑
k∈K

∑
(i,j)∈A

tij n
kxk

ij (1)

s.t.
∑

j :(j,i)∈A

xk
ji +

∑
j :(j,i)∈B

yk
ji −

∑
j :(i,j)∈A

xk
ij −

∑
j :(i,j)∈B

yk
ij = bk

i ∀k ∈ K, i ∈ N ,

�k
j − �k

i �cij + tij ∀k ∈ K, (i, j) ∈ A,

�k
j − �k

i �cij ∀k ∈ K, (i, j) ∈ B,∑
(i,j)∈A

(cij + tij )x
k
ij +

∑
(i,j)∈B

cij y
k
ij = �k

d(k) − �k
o(k) ∀k ∈ K . (2)

The bilinear terms in (1) and (2) that impose equality between the primal and dual objectives lead to a nonlinear and nonconvex
problem. As shown in [7], it is optimal to send each commodity flow along a single path and to restrict the flow proportions xk

ij to

binary numbers. Now, let �k
ij = tij x

k
ij . From this definition, xk

ij = 0 implies that �k
ij = 0 even when tij is positive. On the other hand,

�k
ij = tij when xk

ij = 1. The constraints below capture these implications mathematically:

�k
ij �Mk

ij x
k
ij ∀k ∈ K, (i, j) ∈ A, (3)

tij − �k
ij �Nij (1 − xk

ij ) ∀k ∈ K, (i, j) ∈ A, (4)

�k
ij � tij ∀k ∈ K, (i, j) ∈ A, (5)

where the constants Mk
ij and Nij must satisfy �k

ij �Mk
ij and tij �Nij for some optimal �k

ij and tij . This linearization yields the mixed
0-1 linear program:

TOP-ARCS : max
t,�,x,y �0,�

∑
k∈K

∑
(i,j)∈A

nk�k
ij

s.t.
∑

j :(j,i)∈A

xk
ji +

∑
j :(j,i)∈B

yk
ji −

∑
j :(i,j)∈A

xk
ij −

∑
j :(i,j)∈B

yk
ij = bk

i ∀k ∈ K, i ∈ N ,

�k
j − �k

i �cij + tij ∀k ∈ K, (i, j) ∈ A,

�k
j − �k

i �cij ∀k ∈ K, (i, j) ∈ B,∑
(i,j)∈A

(cij x
k
ij + �k

ij ) +
∑

(i,j)∈B

cij y
k
ij = �k

d(k) − �k
o(k) ∀k ∈ K ,

�k
ij �Mk

ij x
k
ij ∀k ∈ K, (i, j) ∈ A,

tij − �k
ij �Nij (1 − xk

ij ) ∀k ∈ K, (i, j) ∈ A,

�k
ij � tij ∀k ∈ K, (i, j) ∈ A,

xk
ij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A.
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Note that the proportions xk
ij on the toll arcs are required to be Boolean in order to enforce the compatibility between �k

ij and

tij , while this is not the case for the toll-free proportions yk
ij .

2.1. Bounds on the ‘Big-M’ constants

In order that the linear relaxation of TOP-ARCS be as tight as possible, the constants Mk
ij and Nij should be set to the smallest

values that yet ensure the validity of the formulation. Before addressing this issue, we introduce some key quantities:

pij= the cost of a shortest path from i to j using only arcs in B, i.e., a toll-free path
�k
j= the cost of a shortest path from origin o(k) to j using only arcs in B

�k
j= the cost of a shortest path from origin o(k) to j using arcs in A ∪ B, for t = 0

sk
j= the cost of a shortest path from j to destination d(k) using only arcs in B

sk
j= the cost of a shortest path from j to destination d(k) using arcs in A ∪ B, for t = 0.

We set the above quantities to ∞ if the corresponding path does not exist, and set ∞ − ∞ = ∞.

Proposition 1. For every toll arc (i, j) ∈ A and commodity k,

max{0, min{pij − cij , �
k
j − �k

i − cij , �
k
d(k) − (�k

i + cij + sk
j ), s

k
i − sk

j − cij }}

is a valid constant Mk
ij for TOP-ARCS.

Proof. The fifth constraint of TOP-ARCS specifies that �k
ij �Mk

ij whenever xk
ij = 1, i.e., any upper bound on �k

ij that translates into

a valid Mk
ij must be an upper bound on �k

ij . Now, for fixed toll vector t, a toll arc (i, j) may lie on a shortest path associated with
commodity k only if the following inequalities hold:

1. The length of arc (i, j) does not exceed the shortest toll-free distance from i to j, that is, cij + �k
ij �pij . A first valid upper bound

on �k
ij is thus pij − cij .

2. The shortest distance from o(k) to node j is larger than the shortest distance of a path going through toll arc (i, j), that is,
�k
i + cij + �k

ij ��k
j . This yields the valid bound �k

j − �k
i − cij .

3. The length of the shortest toll-free path from o(k) to d(k) must exceed the shortest distance from o(k) to d(k) going through toll
arc (i, j), that is, �k

i + cij + �k
ij + sj ��k

d(k). This yields the bound �k
d(k) − (�k

i + cij + sk
j ).

4. The cost of the toll-free path from node i to the destination d(k) exceeds the shortest distance from i to d(k) going through arc
(i, j), that is, sk

j + cij + �k
ij �sk

i . This yields the bound sk
i − sk

j − cij .

Now, the fact that 0 is a lower bound and that the minimum of valid bounds is also valid concludes the proof. In her Ph.D. thesis,
Dewez [2] showed that none of the bounds dominates any other. �

Proposition 2. maxk∈K {Mk
ij } is a valid bound for Nij .

Proof. If xk
ij = 1 for some k, then �k

ij = tij and the bounds derived for the former also apply to the latter. Otherwise, the toll tij
should be such that arc (i, j) does not belong to the shortest path used by any commodity. If there is a tie, the flow is assigned to a
path that does not contain arc (i, j). This is exactly what is expressed mathematically by the inequality �k

j − �k
i �cij + tij . Now, the

inequality

tij � min{pij − cij , �
k
j − �k

i − cij , �
k
d(k) − (�k

i + cij + sk
j ), s

k
i − sk

j − cij },

obtained by comparing paths including or not arc (i, j), implies that there must exist, for each origin–destination pair, a shortest path
that does not go through arc (i, j), and it follows that the above minimum is a valid upper bound for the ‘big-M’ constant Nij . �

2.2. Valid inequalities

In this section, we derive valid inequalities for TOP-ARCS from the complementarity conditions. Order k inequalities refer to
inequalities that involve k commodities simultaneously.
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2.2.1. Order 1 inequalities
In the MIP formulation TOP-ARCS, the constraint that forces the equality of the primal and dual objectives is equivalent to the

pair of complementarity constraints

(cij − �k
j + �k

i )y
k
ij = 0, (6)

(cij + tkij − �k
j + �k

i )x
k
ij = 0. (7)

Proposition 3 (Toll-free inequalities). For every (i, j) ∈ B and k ∈ K , we have

�k
j ��k

j ,

�k
j ��k

j ,

(cij + �k
i − �k

j )y
k
ij + �k

i − �k
j ��k

i − �k
j .

Proof. The first two inequalities follow trivially from the definition of �k
j and �k

j . From (6), together with dual feasibility (second
constraint of TOP-ARCS), we infer that

−Lk
ij (1 − yk

ij )��k
j − �k

i − cij �0

whenever Lk
ij satisfies −Lk

ij ��k
j − �k

i − cij . For yk
ij = 0, this inequality holds if Lk

ij is set to cij + �k
i − �k

j . Setting Lk
ij to this bound

yields the result. �

Proposition 4 (Toll inequalities). For every (i, j) ∈ A and k ∈ K , we have

�k
j ��k

j ,

�k
j ��k

j ,

(cij + �k
i − �k

j )x
k
ij + �k

ij + �k
i − �k

j ��k
i − �k

j .

Proof. The proof makes use of the second complementary condition (7). As either xk
ij = 0 or �k

j − �k
i − cij − tij = 0, the constraint

−Rk
ij (1 − xk

ij )��k
j − �k

i − cij − tij �0

is valid for TOP-ARCS whenever the constant Rk
ij satisfies −Rij ��k

j − �k
i − cij − tij for xk

ij = 0. Setting Rk
ij = cij + tij + �k

i − �k
j

yields the result. �

2.2.2. Order k inequalities

Proposition 5. Let s and t be two distinct nodes such that there is no path from t to s. Then, for every k1 �= k2, a �= a′, b �= b′, the
inequalities

x
k1
sa′ + xk2

sa + x
k1
b′t + x

k2
bt �3 (8)

are valid for TOP-ARCS.

Proof. We may restrict our attention to solutions where, between two given nodes s and t, at most one subpath, actually the
shortest one, is used. If the left-hand side of (8) is larger than 3 then, given flow integrality, two distinct subpaths must be used.
Now the assumption implies that nodes s and t must be visited in that order by both commodities, which contradicts the previous
sentence. �

Whenever two commodities share the same destination (resp. origin) and both go through a given node, there must exist a solution
where they go through the same exiting arc (resp. entering arc). This can be exploited in the following fashion. Let Kd (resp. Ko) be
the set of commodities having the same destination d (resp. origin o). For a given node i, let Kd(i) (resp. Ko(i)) be a disjoint subset
of Kd (resp. Ko) with cardinality equal to the number of exiting arcs from node i (resp. entering arcs into i). Each element of Kd(i)

(resp. Ko(j)) is mapped to an exiting (resp. entering) arc (i, j) and noted k(j) (resp. k(i)).
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Proposition 6. Let i+ (resp. i−) denote the forward star (resp. backward star) at node i. For any i and subsets Kd(i) and
Ko(i), we have

∑
j∈i+∩A

x
k(j)
ij +

∑
j∈i+∩B

y
k(j)
ij �1,

∑
j∈i−∩A

x
k(i)
j i +

∑
j∈i−∩B

y
k(i)
j i �1.

3. Path formulation

Path-based formulations have been proposed in [3,10]. The approach is advantageous when the number of potential paths is small.
Also, many paths can typically be excluded a priori because they would never become shortest in an optimal solution. This remarks
lies behind the reduction proposed in [10], yielding a network with a specific structure, the shortest paths graph model (SPGM). In
this section, we propose two new arc elimination conditions, as well as bounds and valid inequalities for the formulation of Didi
et al. [3].

3.1. The shortest paths graph model

The graph corresponding to a toll problem can be simplified by replacing the toll-free paths between toll arcs by a single arc
endowed with the shortest length between those arcs. Similar reductions apply to origin and destination nodes (see [10] for details).

The SPGM has been further streamlined by van Hoesel et al. To this end, let uij (resp. lij ) denote the cost of a toll-free shortest
path from node i to node j in the SPGM (resp. with null tolls). If the arc (i, j) does not exist in the SPGM, its cost uij is set to ∞.
The number uij (resp. lij ) constitutes an upper bound (resp. lower bound) on the length of a path from i to j.

1. If ljd(k) = ujd(k), then every arc leaving node j can be removed from Gk , the sub-network specific to commodity k with the
exception of (j, d(k)).

2. If lo(k)i = uo(k)i , then every arc entering node i can be removed Gk , with the exception of (o(k), i).
3. Let (i1, j1) be a toll arc and i2 be the head node of a toll arc. If uj1d(k) �uj1i2 + li2d(k) and i2 �= d(k), then (j1, i2) can be removed

from Gk .
4. Let (i1, j1) be a toll arc and j2 the tail node of a toll arc. If uo(k)i1 � lo(k)j2 +uj2i1 and j2 �= o(k), then arc (j2, i1) can be removed

from Gk .
5. If uo(k)d(k) � lo(k)i + lij + ljd(k), then (i, j) can be deleted from Gk .
6. Let (i1, j1) be a toll arc and i2 the head node of a toll arc. If uo(k)d(k) � lo(k)j1 + uj1i2 + li2d(k), j1 �= o(k) and i2 �= d(k), then

(j1, i2) can be deleted from Gk .
The next two results are new.

Proposition 7. Let i be the head node of a toll arc and i �= d(k). If (o(k), i) is a toll-free arc and

uo(k)d(k) �uo(k)i + lid(k),

then the arc (o(k), i) can be deleted from Gk .

Proof. A lower bound on the cost of a path from o(k) to d(k) using the arc (o(k), i) is uo(k)i + lid(k). Hence there is no room for a
positive toll, and the arc (o(k), i) will never be used in a shortest path. �

A similar reasoning yields the following dual result:

Proposition 8. Let j be the tail node of a toll arc and j �= o(k). If (j, d(k)) is a toll-free arc and

uo(k)d(k) � lo(k)j + ujd(k),

then the arc (o(k), i) can be deleted from Gk .

Fig. 1, where the graph on the left corresponds to the ‘standard’ SPGM, illustrates the reduction process. Arc (2, 3) can be
eliminated since the shortest path from node 2 to node d(k) is the arc (2, d(k)). Rule 2 eliminates arcs (6,3) and (4,5), while rules 4
and 5 eliminate arcs (4,1) and (3,4), respectively. Finally, Proposition 7 allows the deletion of arc (o(k), 1).
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Fig. 1. SPGM reduction.

3.2. A path formulation: bounds and inequalities

Consider the path-based formulation in [3] in which the decision variable XP is binary and indicates whether path P is used. Let
Lk be the total cost of the path assigned to commodity k and T k denote the portion of Lk consisting of tolls charged along the path.
For the path P0

k ∈ Pk actually used by commodity k, we have

T k =
∑

a∈P0
k∩A

ta ,

Lk =
∑

a∈P0
k

ca +
∑

a∈P0
k∩A

ta

and, since exactly one XP takes the value 1:

Lk = T k +
∑
P∈Pk

XP

∑
a∈P

ca .

This leads to the MIP formulation

PATH : max
T k,X,Lk

∑
k∈K

nkT k

s.t.
∑

a∈P∩A

ta +
∑
a∈P

ca − MP
k (1 − XP)�Lk �

∑
a∈P∩A

ta +
∑
a∈P

ca ∀P ∈ Pk, ∀k ∈ K ,

T k �
∑

a∈P∩A

ta + Mk(1 − XP) ∀P ∈ Pk, ∀k ∈ K ,

Lk = T k +
∑
P∈Pk

XP

∑
a∈P

ca ∀k ∈ K ,

∑
P∈Pk

XP = 1 ∀k ∈ K ,

XP ∈ {0, 1} ∀P ∈ Pk, ∀k ∈ K ,

where the first constraint ensures that Lk is indeed the length of the shortest path travelled by commodity k, and the next two force
T k to match the actual unit revenue for commodity k.

Proposition 9. In the PATH formulation, �k − �k is a valid bound for Mk .

Proof. If, for some path P1, XP1 = 0, the first inequality of PATH reduces to

T k �
∑

a∈P1∩A

ta + Mk .
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By definition of P0
k , we have that

∑

a∈P0
k∩A

ta = T k .

Combining these two formulas yields

Mk �
∑

a∈P0
k∩A

ta −
∑

a∈P1∩A

ta .

The latter condition will obviously hold if

Mk �
∑

a∈P0
k∩A

ta

and the result follows from the fact that �k − �k is an upper bound on the revenue raised from commodity k on path P0
k . �

Proposition 10. Let Na be any upper bound for the toll on arc a. Then
∑

a∈P∩A Na + ∑
a∈P ca − �k is a valid bound for

MP
k in the formulation PATH.

Proof. If XP1 = 0, the second constraint of PATH yields
∑

a∈P1∩A

ta +
∑

a∈P1

ca − MP1

k �Lk ,

implying that
∑

a∈P1∩A

ta +
∑

a∈P1

ca − Lk

is a valid bound for MP1

k . Since Na is an upper bound on ta and Lk is larger than �k , we reach the desired conclusion. �

Note that the upper bounds on arc tolls computed in Section 2.1 are still valid for the PATH formulation.

Proposition 11. The following inequalities are valid for PATH:

T k �
∑

a∈P∩A

ta −
∑

a∈P∩A

Na(1 − XP) ∀P ∈ Pk, ∀k ∈ K .

Proof. If XP = 1, T k is exactly
∑

a∈P∩A ta and the inequality is tight. If XP = 0, the right-hand side of the inequality is negative
and the inequality holds trivially. �

Proposition 12. The following inequalities are valid for PATH:

T k �
∑
P∈Pk

∑
a∈P∩A

ta −
∑
P∈Pk

∑
a∈P∩A

Na(1 − XP) ∀k ∈ K .

Proof. Let P1 be the shortest path associated with commodity k. It follows that XP = 1 if and only if P = P1, and the inequality
reduces to

T k �
∑
P∈Pk

∑
a∈P∩A

ta −
∑

P∈Pk\P1

∑
a∈P∩A

Na

which leads to

T k �
∑

a∈P1∩A

ta +
∑

P∈Pk\P1

∑
a∈P∩A

ta −
∑

P∈Pk\P 1

∑
a∈P∩A1

Na .

Now, since Na is an upper bound on ta and T k = ∑
a∈P 1∩Ata by definition of P1, the latter inequality is valid. �

Proposition 13. The following inequalities are valid for PATH:

T k �(1 − XP)(�k − �k) + XP

∑
a∈P∩A

Na ∀P ∈ Pk, ∀k ∈ K .
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Proof. IfXP=1, the inequality reduces to T k �
∑

a∈P∩A Na, which trivially holds. IfXP=0, the inequality becomes T k ��k −�k.

The validity of the latter was established in Proposition 9. �

4. Numerical experiments

Formulations and inequalities have been tested on random grid networks involving 60 nodes and 208 arcs, designed to promote
interactions between commodities, and make for problems that are combinatorially challenging (see [1]). In the experiments, cij

is a random number in the interval [2,20], the number of commodities belongs to the set {20, 30, 40}, and the percentage of toll

Table 1
Path formulation: 30 commodities; toll arc densities of 15% and 20%

Big M Sharp M cut1 cut2 cut3 cut12 cut123 # paths cpu

15% gap � 20.0 16.2 15.7 16.0 16.2 15.5 15.5
� 4.5 4.5 4.6 4.4 4.5 4.5 4.5

cpu � 11.1 4.2 4.5 4.9 4.4 4.5 4.9 � = 213.0 � = 3.5
� 21.0 5.9 4.6 8.0 6.1 4.9 5.7 � = 71.3 � = 4.6

nodes � 3047.7 779.1 680.3 935.7 779.1 557.7 557.7
� 5794.1 1302.3 882.2 1804.2 1302.3 644.4 644.4

20% gap � 22.0 19.3 18.9 19.1 19.3 18.8 18.8
� 5.6 5.2 5.2 5.2 5.2 5.2 5.2

cpu � 577.6 64.9 108.1 82.8 67.5 112.5 112.5 � = 612.3 � = 117.9
� 598.7 70.0 140.3 83.6 69.8 164.3 164.3 � = 393.7 � = 189.4

nodes � 58 688.3 5363.6 5663.5 7361.0 5363.6 5142.6 5142.6
� 62 403.3 6504.9 5579.1 8994.7 6504.9 5136.5 5136.5

Table 2
Networks with 20, 30 and 40 commodities; toll arc densities of 10%, 15% and 20%

20 OD pairs (commodities) 30 OD pairs (commodities) 40 OD pairs (commodities)

10% 15% 20% 10% 15% 20% 5% 10% 15%

Arc (G) gap 22.8% 16.5% 16.8% 26.2% 20.2% 22.4% 23% 24.5% 23.6%
BM cpu 23 349 99 4182 23 158

nodes 140 5943 447 47 522 48 1053

Arc (G) gap 10.2% 9.5% 10.4% 12% 11% 13.1% 7.6% 11.1% 13.2%
SM cpu 13 34 221 59 180 720 13 43 1341

nodes 33 161 2119 173 839 4391 10 61 8235

Arc (G) gap 10.1% 9.3% 10% 11.9% 10.7% 12.8% 7.6% 11% 13%
SM + C cpu 11 39 133 38 171 788 9 40 1491

nodes 26 135 687 77 511 3179 12 53 6257

Arc (SPGM) gap 22.8% 16.5% 16.8% 26.2% 20.2% 22.4% 23% 24.5% 23.6%
BM cpu < 1 12 621 2 106 < 1 3

nodes 60 1264 20 193 314 6550 27 305

Arc (SPGM) gap 10.2% 9.5% 10.3% 12% 11% 12.9% 7.6% 11.1% 13.2%
SM cpu < 1 4 66 1 18 226 < 1 1 73

nodes 19 199 1818 75 535 2493 7 39 2590

Arc (SPGM) gap 10.2% 9.4% 10.2% 12% 10.7% 12.8% 7.6% 11% 13.1%
SM + C cpu < 1 6 101 2 26 231 < 1 2 156

nodes 21 110 1613 58 405 2563 7 55 3621

Path (SPGM) gap 22.8% 16.5% 16.8% 26.2% 20.2% 22% 23% 24.5% 23.6%
BM cpu < 1 3 91 + 83 1 16 < 1 1 194

nodes 77 936 11 266 301 3049 30 185 38 017

Path (SPGM) gap 16% 13.8% 15% 19.2% 18.6% 19.3% 12.9% 16.8% 19.4%
SM cpu < 1 1 21 + 83 < 1 6 223 < 1 < 1 47

nodes 56 250 1693 172 779 5364 13 55 4001

Path(SPGM) gap 14.3% 12% 12.9% 16.6% 18.4% 18.8% 10.3% 15.2% 18.1%
SM + C cpu < 1 2 27 + 83 < 1 6 257 < 1 < 1 51

nodes 43 274 1303 155 558 5143 12 56 3151
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arcs belongs to the set {5%, 10%, 15%, 20%}. We ensured that there exists at least one toll-free path for each commodity. All MIP
formulations were solved using CPLEX 8.1 set at its default values, and run on a Pentium III (500 MHZ) under Linux.

Table 1 compares the three classes of valid inequalities developed in Section 3.2, based on the path formulation. The results are
averaged (mean � and standard deviation �) over a set of 10 problems. The first column header ‘Big M’ refers to a value of M set
arbitrarily high, while ‘Sharp M’ refers to the values of M defined in Section 3.2. The next five column headers refer to the ‘Sharp
M’ formulation, tightened by valid inequalities. The last two columns provide the average number of paths generated, together with
the generation time. The gap is a measure of the distance between the optimal solution Zopt and the linear relaxation Zlp, defined as
gap = (Zlp − Zopt)/Zopt. Cpu times are expressed in seconds, and ‘nodes’ represents the number of branch-and-bound nodes. One
observes that the choice of tight bounds has a significant impact on both the gap and the resolution time. This is particularly true
when the number of commodities is small. Cuts reduce the gap slightly, with the first cut yielding the largest individual improvement.
In the remaining experiments, all three cuts were introduced, whenever they were introduced at all.

Table 2 shows results for the arc formulation of Section 2, either for the original network (G) or the reduced network (SPGM),
and the path formulation. For each formulation, we consider three cases: Big M (BM), Sharp M (SM) and Sharp M + cuts (SM+C).
This yields nine sets of experiments for each network size, each set being averaged over 10 randomly generated instances.

Comparing the arc formulation on the original network and the SPGM, we observe that the gaps are roughly equivalent, which
supports the intuition that the combinatorial complexity remains similar. However, both the number of nodes in the branch-and-bound
tree and the running time are smaller if we apply the arc formulation to an SPGM network incorporating the new reduction method.
In contrast, the ‘Big M’ results are clearly dominated. Indeed, the optimal solution was not found after three hours in 5 out of 6
cases for networks with 20% of toll arcs. The cuts allow to reduce the number of nodes explored, but have almost no impact on the
integrality gap.

For ‘Big M’, the gaps achieved in TOP-ARCS and PATH are identical. For ‘Sharp M’, the gap is larger for the path formulation,
and is reduced once valid inequalities are incorporated. With or without additional cuts, the PATH formulation could easily be tackled
by CPLEX.

5. Conclusion

The bilevel model considered in this paper, apart from being theoretically and computationally challenging, provides a rich
framework for the analysis of pricing situations in network-based industries. While the analysis of the basic model is by itself relevant,
it would be of interest to consider models that integrate real-life features such as congestion, competition, market segmentation,
dynamics and randomness. The success of the bilevel approach will be measured by its tackling efficiently some, if not all, of these
aspects.
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