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1. Introduction
This paper is devoted to a model that captures the inter-
action between system design, price setting, and consumer
choice over a transportation network, without assuming the
a priori knowledge of demand functions. The problem
involves two decision makers acting noncooperatively and
in a sequential way. The upper level (leader) strives to max-
imize its revenue raised from tariffs imposed on a set of
goods or services in its control, whereas the lower level
(follower) optimizes its own objective, taking into account
the tariff schedule set by the leader. The leader explicitly
incorporates the reaction of the follower in his optimiza-
tion process. In the field of economics, this fits the princi-
pal/agent paradigm (Van Ackere 1993) where the principal,
fully aware of the agent’s rational behaviour, induces coop-
eration from the agent through an incentive scheme. In the
field of mathematical programming, this problem belongs
to the class of bilevel optimization problems with bilinear
objectives at both levels of decision.
In the current context of deregulation, pricing decisions

have become crucial for airline, trucking, telecommuni-
cation, and service industries where intense price compe-
tition and network modifications have occurred. Clearly,

a profit-maximizing firm must consider the trade-off be-
tween the cost of service and the revenue generated when
designing its system and prices.
In the passenger or freight airline industry, a carrier (the

leader) selects routing patterns, flight schedules, and fares.
For instance, Budenbender et al. (2000) describe a system
where freight providers such as express shipment compa-
nies operate or rent an aircraft fleet that must provide a
high level of service. For consolidation purposes, the freight
is first shipped to an airport. Next, it is flown nonstop to
another airport, finally to be loaded on trucks and shipped
to its final destination. The problem then consists of deter-
mining the terminal to operate, the take-off time, how to
transport the freight to an airport, and the rate to charge.
In passenger transportation, the introduction of new flights
(direct or through a hub-and-spoke network) must take into
account the supply over the entire network of flights, both
from the leader airline and its competitors. The decisions
are then taken with respect to the incurred costs, the quality
of service, the possible influence on demand to other des-
tinations and, most important, the revenues generated by
the new services (Lederer 1993, Lederer and Nambimadon
1998).
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In the surface freight transportation industry, important
structural changes occur as shippers optimize the end-
to-end supply through the implementation of Web-based
portals. In that context, the costs incurred by a carrier
is made up of two components: a fixed cost (including
trade compliance, trade settlement with country-specific
international trading portals, multimodal aspects, operating
resources costs, global handling costs, etc.) and a unit trans-
portation cost (Kerr 2001). Upon reception, a service carrier
(the leader) has to decide whether or not to accept a request
and, if accepted, to set a price. In reaction to those prices,
the shippers (the follower) want their goods to be trans-
shipped at minimal cost, hence the bilevel structure of the
problem.
In the telecommunication area, a service provider (the

leader) has to make network deployment decisions and to
set prices for bandwidth usage. The response of users (the
follower) to prices induces traffic on the network. In the
current deregulated markets, pricing is a fundamental issue
for communications carriers. Indeed, as new systems of
ever-larger capacities are introduced, the marginal cost of
data transmission is rapidly decreasing. Exploiting those
cost savings and handling increased demand involves the
optimization of technology acquisition and pricing pro-
cesses (Lanning et al. 2000, Başar and Srikant 2002).
A recent paper by Bienstock et al. (2006) addresses this
issue within a dynamic framework, assuming a demand
model involving constant elasticities and null cross elastic-
ities. Several references to network design problems can be
found therein, and also in the classic book by Ahuja et al.
(1993).
Design and pricing are also challenging issues for

business information service providers (Bashyam 2000).
Information agencies such as Reuters and Bloomberg (for-
eign currency markets) and Aspect Development (com-
ponent information services) are essentially intermediaries
between firms that generate, and firms that use, content.
Because information service providers (the leader) incur
large fixed costs (data entry and updates, software develop-
ment, database management systems, connections to com-
mercial networks), their problem consists of specifying the
size of the database they provide to subscribers (followers)
as well as the price they will charge for subscriptions.
At the lower level, the subscribers adapt their usage vol-
ume according to the level of service and tariffs of the
service providers, or may select the self-service option
whereby they collect and collate information directly from
the sources.
Until now, design and pricing issues have mostly been

treated separately. However, they are intrinsically linked
and have to be addressed jointly. To our knowledge, the
only papers addressing the joint design and pricing prob-
lem are those of Lederer (1993), Başar and Srikant (2002),
and Bashyam (2000). Lederer (1993) proposes a Nash equi-
librium model of air transport competition where firms
select routes and prices. Competition is studied under two

different assumptions about consumer choice: Either con-
sumers can spread their choice route using links belong-
ing to different firms (“bundling” in the sense of Lederer),
or they cannot. If bundling is forbidden, the author proves
the existence of unique equilibrium prices. Otherwise,
a price equilibrium may fail to be unique, or even to exist.
At first glance, our work might seem to fit the frame-
work analyzed by Lederer. However it differs in two main
respects: bundling is an essential part of our model, and we
look for a Stackelberg (leader-follower) equilibrium rather
than a Nash equilibrium. Consequently, the focus of this
paper is on algorithmic development rather than on eco-
nomic considerations.
Başar and Srikant (2002) study the economics of pro-

viding large capacity from a telecommunication provider’s
point of view. Design choices are not modelled using binary
decisions, but through continuous-capacity variables. Each
user is charged a fixed price per unit of bandwidth used, and
this price is independent from congestion. The transmission
rate of each user is assumed to be a function of network
congestion and price per unit of bandwidth. The aim of the
service provider is to maximize its revenue. The authors
show that, as the number of users increases, the optimal
price per unit of bandwidth charged by the service provider
may increase or decrease depending upon the bandwidth
of the link. However, for all values of the link capacity,
the overall performance of each user improves and the ser-
vice provider’s revenue per unit of bandwidth increases,
thus providing an incentive for the service provider to
increase the available bandwidth in proportion to traffic.
Although this work provides some theoretical insight into
the problem, no computational procedure is described for
its solution.
Bashyam (2000) analyzes service design and pricing of

business information services in a competitive environment,
using game-theoretic concepts. The problem consists of
determining the optimal size of the database, as well as
the subscription price they will fix for subscriptions, taking
into account the reaction of subscribers who want to min-
imize their cost. They consider two types of interactions:
monopoly or duopoly, and two types of information deliv-
ery technologies: online service that allows subscribers to
access information over online networks, and package ser-
vice that delivers information using physical media such
as CD-ROMs. Their analytical approach investigates the
differences in price structure associated with the type of
provided services. In the case of duopoly, they also analyze
the class of consumers (high- or low-volume consumers)
served depending on the size of the database and on prices.
In this paper, we focus on a joint design and pric-

ing problem motivated by a telecommunication application.
The problem involves two decision levels interacting non-
cooperatively and in a sequential way: The upper level is
concerned with maximizing profits raised from tariffs set on
a subset of arcs, while users react by sending flow on short-
est paths joining their respective origins and destinations.
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The specificity of the problem lies in the simultaneous de-
terminination of the connections to be opened and the tar-
iff schedule to be applied. In this respect, it differs from
previous works (Brotcorne et al. 2000, 2001; Grigoriev
et al. 2005; van Hoesel et al. 2003), where only the tariff
issue was considered.
The outline of this paper is as follows. In §2, we intro-

duce a mixed-integer bilinear formulation for the joint
design and pricing problem and discuss its properties.
In §3, we prove a result that allows for the reduction of the
size of the problem. In §4, we describe a solution approach
based on the novel application of Lagrangean relaxation
within the bilevel programming framework. Section 5 is
concerned with numerical experiments on both randomly
generated and real instances. Section 6 contains concluding
remarks.

2. A Joint Design and Pricing Model
Let us consider a network defined over the underlying
graph G= �� ���, with node set � and arc set �. A node
represents either a supply site, a demand site, or the end-
points of an arc on which goods are carried. The set of arcs
is partitioned into two subsets �1 and �2, where �1 denotes
the set of links operated by the leader and �2 the set of
links operated by its competitors. With each arc a ∈�1, we
associate a tariff Ta, to be determined by the leader, a fixed
opening cost fa, and an operating cost ca charged to the
leader. Arcs in A2 are tariff-free and bear only a unit cost
da, which is outside the control of the leader. Demand is
modelled by a set � of commodities. These may represent
distinct physical goods or identical physical goods associ-
ated with different points of origin and destination. Each
commodity is associated with an origin-destination (OD)
pair (p�k�� q�k�). The demand vector bk corresponding to
commodity k is specified by

bk
i =




nk if i= p�k��

−nk if i= q�k��

0 otherwise�

where nk represents the amount of flow of commodity k
to be shipped from p�k� to q�k�. The variable xk

a (respec-
tively, yk

a) denotes the flow of commodity k on arc a ∈�1

(respectively, a ∈ A2). The binary variable va, associated
with each arc a ∈ �1, indicates whether (va = 1) or not
(va = 0) arc a is part of the network design.
The leader’s variables are either discrete (design vari-

ables) or real valued (tariffs). Lower-level variables,
i.e., flows, are real valued. In this nonatomic context,
“bundling” occurs, and users maximize their utility on indi-
vidual terms. Based on the above notation, the joint design
and pricing problem can then be formulated as a mixed-
integer bilevel program with bilinear objectives and linear
constraints. The vector �x� y� of all link-commodity flows

corresponds to an optimal solution of the lower-level lin-
ear program parameterized by the upper-level tariffs T ,
which is solved on the subnetwork resulting from the binary
variables v. Letting �A�B� denote the node-arc incidence
matrix of the network, this leads to the bilevel programming
formulation

(JDP) max
T �v�x�y

∑
k∈�

∑
a∈�1

Tax
k
a−

∑
a∈�1

fava−
∑
k∈�

∑
a∈�1

cax
k
a (1)

s.t. va∈�0�1� ∀a∈�1� (2)

where �x� y� is an optimal solution of

min
x� y

∑
k∈�

( ∑
a∈�1

Tax
k
a +

∑
a∈�2

day
k
a

)
(3)

s.t. Axk +Byk = bk ∀k ∈�� (4)

xk
a � nkva ∀k ∈� ∀a ∈�1� (5)

xk� yk
� 0 ∀k ∈��

The upper-level objective (1) is to maximize total net rev-
enue and is expressed as the difference between the sum
of revenues arising from tariffs Ta and the sum of fixed
opening costs and operating costs. The objective of the
lower-level problem (7) is to minimize the total cost of the
paths selected by network users. Constraints (8) represent
the flow balance equations. Constraints (9) state that arcs
can only be used if they are open.
For a given design vector v, let us perform the change

of variable T ′ = T − c, which is tantamount to setting the
usage cost of every tariff link a ∈ �1 to ca at the lower
level. The resulting model coincides with that of Labbé
et al. (1998), i.e.,

(LMS) max
T ′� x� y

∑
k∈�

∑
a∈�1

T ′
ax

k
a� (6)

where �x� y� is an optimal solution of

min
x� y

∑
k∈�

( ∑
a∈�1

�ca + T ′
a�x

k
a +

∑
a∈�2

day
k
a

)
(7)

s.t. Axk +Byk = bk ∀k ∈�� (8)

xk
a � nkva ∀k ∈� ∀a ∈�1� (9)

xk� yk
� 0 ∀k ∈��

As in Labbé et al. (1998), we also assume that
• there do not exist tariffs that generate positive revenues

and simultaneously create a negative cost cycle in the net-
work (no “free lunch”),
• there exists at least one path composed of tariff-free

arcs for each origin-destination pair (customers have tariff-
free alternatives).
These assumptions imply that in the lower-level prob-

lem, flow is assigned to shortest (acyclic) paths linking
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the customers’ respective origins and destinations, on the
subnetwork composed of tariff-free and tariff arcs that are
available. Whenever ties occur among shortest paths, the
paths selected are the ones yielding the highest profit for
the leader. Note that a tariff schedule that induces unique
paths and yields a revenue arbitrarily close to the optimal
value can be achieved through a perturbation scheme. The
next proposition provides an upper bound on the objective
value of JDP, which can be evaluated by solving, re-
spectively, shortest-path problems and a classical network
design problem.

Proposition 1. A valid upper bound on the leader’s profit
is given by the difference between the follower’s optimal
objective corresponding to infinite tariffs (i.e., tariff arcs
are unavailable to the follower) and the optimum value
of the network design problem obtained by setting every
tariff Ta at ca.

Proof. For LMS, Labbé et al. (1998) derived the valid
upper bound U	 − U0, where U	 denotes the cost of a
lower-level solution when access to tariff arcs is denied
(infinite tariffs) and U0 is the cost of a shortest-path solution
under null tariffs, i.e., T ′ = 0 or, equivalently, for fixed-
design vector v, T = c in JDP. It follows that a valid bound
for the value of an optimal solution to JDP is given by

max
v

{
U	 −U0−

∑
a∈�1

fava

}
=U	 −min

v

{
U0+

∑
a∈�1

fava

}
�

(10)

where the term subtracted from U	 on the right-hand side
of Equation (10) is precisely the optimal value of the net-
work design problem obtained by setting the tariff vector T ′

at zero, i.e., T = c, as claimed. �

An Example

Note that the upper bound provided above need not be
achieved. Indeed, consider the example of Figure 1, where

Figure 1. Upper bound on the profit not reached at the
optimal solution.

1 2

1

6

8

3 1

2

3 4

5 6
T56

demand is set to 2 on origin-destination pair 1-2 and to 4 on
pair 3-4, whereas �5�6� is the sole tariff link. If the opening
and operating costs for the leader are set, respectively, to 1
and 0, the optimal solution is obtained by setting T5�6 to 2.
This yields a profit of 11 units, whereas the upper bound
provided is equal to 40− 23= 17.
Now, taking into account that the entire demand asso-

ciated with a given OD pair can be assigned to a single
shortest path, we may, without loss of generality, reformu-
late JDP as

max
T � v� x� y

∑
a∈�1

∑
k∈�

nkTax
k
a −

∑
a∈�1

fava −
∑
a∈�1

∑
k∈�

nkcax
k
a

s.t. va ∈ �0�1� ∀a ∈�1�

where �x� y� is an optimal solution of

min
x� y

∑
k∈�

nk

( ∑
a∈�1

Tax
k
a +

∑
a∈�2

day
k
a

)

s.t Axk +Byk = ek ∀k ∈��

xk
a � va ∀a ∈�1 ∀k ∈��

xk� yk � 0 ∀k ∈��

(11)

and

ek
i =



1 if i= p�k��

−1 if i= q�k��

0 otherwise�

For fixed-design vector v, the resulting problem reduces
to a multicommodity toll optimization problem that can
be reformulated as a mixed-integer program (see Labbé
et al. 1998). This formulation readily extends to an MIP
formulation for JDP through incorporation of the design
variables va. It also allows us to solve small instances by
commercial software, and may serve as a testbed to judge
the performance, in terms of speed and quality of solution,
of specialized algorithms.
We close this section by mentioning that in the case

where there is only one OD pair, JDP reduces to the
toll optimization problem analyzed by Brotcorne et al.
(2000, 2001). Indeed, the binary flow variables xa can then
replace the design variables va, and the problem formula-
tion becomes

max
T �x� y

∑
a∈�1

nTaxa −
∑
a∈�1

faxa −
∑
a∈�1

ncaxa

s.t. xa ∈ �0�1� ∀a ∈�1�

where �x� y� is an optimal solution of

min
x�y

n

( ∑
a∈�1

Taxa +
∑
a∈�2

daya

)

s.t. Ax+By = e�

x� y � 0�
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After performing the change of variables T̃a = Ta −
�1/n�fa − ca, the toll optimization problem becomes

max
T̃ � x� y

∑
a∈�1

nT̃axa�

where �x� y� is an optimal solution of

min
x� y

∑
a∈�1

�T̃a + ca + fa/n�xa +
∑
a∈�2

daya

s.t. Ax+By = e�

x� y � 0�

The dropping of the flow integrality constraints at the upper
level is then justified by the fact that the lower-level con-
straints are totally unimodular, and that it is not in the
leader’s interest to induce fractional flows.

3. Moving Constraints to the Upper Level
For general bilevel programs, constraints involving both
upper- and lower-level variables cannot be moved freely
from one level to the other without altering both the fea-
sible set and the optimal solution of the bilevel program.
For one, upper-level constraints are transparent to the fol-
lower, and can only be induced through a proper choice
of the leader’s tariffs. On the other hand, lower-level con-
straints must be satisfied by the follower. Actually, even in
the simple case of linear bilevel programming, the feasi-
ble set corresponding to joint upper-level constraints may
be disconnected. This explains why the presence of such
constraints is perceived as a nuisance from the algorithmic
point of view. However, in the case of JPD, the opposite
might be true. Indeed, if the capacity constraints are moved
upwards, the resulting restricted problem assumes the sim-
ple structure of a many-to-many shortest-path problem. It is
a remarkable feature of JDP, and the wider class of bilinear
bilevel programs to which it belongs as well, that one can
perform this operation without affecting the optimal solu-
tion. This property will be central to the development of an
efficient solution algorithm.

Proposition 2. Assume that P1 admits an optimal solution
and that the matrix G has nonnegative entries. Then the
sets of optimal solutions of the mathematical programs P1
and P2, displayed below, are nonempty and coincide:

(P1) max
T �x� y

Tx− cx

where �x� y� solves

min
x� y

Tx+dy

s.t. Ex+ Fy = b1�

Gx� b2�

x� y � 0�

(P2) max
T �x� y

Tx− cx

Gx� b2�

where �x� y� solves

min
x� y

Tx+dy

s.t. Ex+ Fy = b1�

x� y � 0�

Proof. Under the assumptions, P1 is feasible and its objec-
tive function is bounded from above. It follows that one
may replace the lower-level problem of P1 by its primal-
dual optimality conditions. Because P2 is a restriction of
P1 (the constraint Gx � b2 must be induced by the leader
without being binding for the follower), the optimality con-
ditions must also hold for P2. This allows the introduc-
tion of problems P1′ and P2′, respectively, equivalent to P1
and P2:

(P1′) max
T �x� y����

Tx− cx

s.t. Ex+ Fy = b1�

Gx� b2�

�E+ �G� T − c�

�F � d�

�d−�F �y = 0�

�T − c−�E− �G�x= 0�

��b2−Gx�= 0�

x� y � 0�

�� 0�

(P2′) max
T �x� y��

Tx− cx

s.t. Ex+ Fy = b�

Gx� b2�

�E � T − c�

�F � d�

�d−�F �y = 0�

�T − c−�E�x= 0�

x� y � 0�

Let �T �� x�� y�� be an optimal solution of P2 and �� the dual
vector associated with its lower-level equality constraint.
By setting �� = 0, one obtains a solution �T �� x�� y�����0�
of P1′ with the same objective value, so that the optimal
value of P1 (or P1′) is at least as large as that of P2. This
is in agreement with our earlier observation about P2 being
a restriction of P1. Therefore, it is sufficient to show that
any optimal solution of P1 can be matched with a solution
of P2 with the same objective value.
Indeed, let s� = �T �� x�� y����� ��� be an optimal solu-

tion of P1′, and consider the alternate solution s′ = �T � −
��G�x�� y�����0�� By construction, s′ is feasible both for
P1′ and P2′. For the latter, we discard the last (or zero)
component of s′ because � is not part of P2′. The value of
the objective function with s′ is �T �−��G�x� not less than
T �x�. Because P1′ is a relaxation of P2′, �T �−��G�x� can-
not exceed T �x�. Therefore, we have that both objectives
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are equal, ��Gx� = 0, s is optimal for P2′, and �T �� x�� y��
is optimal for P1, as required. �

Proposition 1 has an interesting economic interpretation.
It states that certain constraints imposed on the users can
actually be enforced through a suitable and finite tariff
schedule, and that this can be achieved without negatively
affecting the leader’s revenue. From the algorithmic point
of view, this facilitates the development of efficient proce-
dures that fully exploit the fact that the lower-level problem
reduces to a set of independent shortest-path problems.

Corollary 1. Constraints (9) of JDP can be moved to
the upper level.

Proof. To prove the result, we will show that for fixed-
design vector v, the resulting pricing problem can be cast
in the format P1. To this aim, we introduce total arc flow
variables

xa =
∑
k∈�

xk
a

and replace the individual commodity constraints xk
a � nkva

by the equivalent global constraint

xa �

(∑
k∈�

nk

)
va�

The resulting bilevel program is

max
T �x� y

Tx− cx�

where �x� y� is an optimal solution of

min
x� y

∑
k∈�

Txk + ∑
k∈�

dyk

s.t. Axk +Byk = bk ∀k ∈��

x�

(∑
k∈�

nk

)
v�

x= ∑
k∈K

xk�

y = ∑
k∈K

yk�

xk� yk
� 0 ∀k ∈��

Now, by making the correspondences

x≡ x�

y ≡ �y� �xk�k∈�� �yk�k∈���

G≡ I�

b2 ≡
(∑

k∈�
nk

)
v�

and

Ex+ Fy = b1 ≡




I 0 −I · · · −I 0 · · · 0

0 I 0 · · · 0 −I · · · −I

0 0 A · · · 0 B · · · 0

0 0 0
� � � 0 0

� � � 0

0 0 0 · · · A 0 · · · B




·




x

y

�xk�k∈�

�yk�k∈�


=




0

0

�b1�

���

�b����




�

one recovers the generic form of P1, and the result
follows. �

Finally, we note that the assumptions underlying Corol-
lary 1 could be slightly relaxed to care for situations where
P1 and P2 are allowed to be infeasible or unbounded.
To avoid technicalities, the proofs have been omitted.

4. A Solution Procedure for JDP
Most bilevel programs that have been proposed in the lit-
erature are “intractable,” due mainly to the complementar-
ity constraints that arise when one replaces the lower-level
problem by its optimality conditions to achieve a stan-
dard mathematical program. Actually, the JDP subsumes
the model of Labbé et al. (1998), which has been shown
by Roch et al. (2005) to be strongly NP-hard, even when
restricted to a single origin-destination pair. JDP also gen-
eralizes the network design problem, another notoriously
difficult combinatorial problem. It follows that the JDP
compounds the difficulties of two NP-hard problems, and
thus some interesting algorithmic challenge.
In this section, we propose an iterative algorithm that

adapts the Lagrangean relaxation framework to bilevel pro-
grams. In this framework, we treat constraints (11) as the
“complicating” ones, and append them to the objective to
form a Lagrangean function. As in classical Lagrangean
procedures, the algorithm alternates between an outer
phase, where Lagrange multipliers are updated, and an
inner phase, where the concave dual function (Lagrangean)
is evaluated.
To evaluate the dual function, one needs to solve the

Lagrangean subproblem, itself an NP-hard toll optimiza-
tion problem. This latter problem is solved using a vari-
ant of the primal-dual algorithm proposed in Brotcorne
et al. (2000), where the subproblem is reformulated as a
single-level problem through the use of an exact penalty
function applied to the lower-level complementarity term.
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The resulting bilinear program is solved iteratively, à la
Gauss-Seidel, by optimizing sequentially with respect to
the upper-level (tariffs) and lower-level (flows) variables.
Once a local optimum has been reached, the penalty factor
is increased and the process repeated until no progress is
achieved. The baton is then passed to the outer phase.
Let us now turn our attention to a formal description of

the procedure. After having moved the capacity constraints
from the lower to the upper level in accordance with Corol-
lary 1, we construct the dual function L�u�:

(LSP(u))

L�u�= max
T � v� x� y

∑
a∈�1

∑
k∈�

nkTax
k
a −

∑
a∈�1

fava

− ∑
a∈�1

∑
k∈�

nkcax
k
a +

∑
a∈�1

∑
k∈�

uk
a�va − xk

a�

s.t. va ∈ �0�1� ∀a ∈�1�

where �x� y� is an optimal solution of

min
x� y

∑
k∈�

nk

( ∑
a∈�1

Tax
k
a +

∑
a∈�2

day
k
a

)

s.t Axk +Byk = ek ∀k ∈��

xk� yk
� 0 ∀k ∈��

whose evaluation requires the solution of a bilevel program.
Because, for each u � 0 LSP(u) is a relaxation of JDP,
the solution L�u� to LSP(u) provides an upper bound on
the optimal value of JDP; the best Lagrangean bound is
obtained by solving the dual problem:

(DL) min�L�u�% u� 0�� (12)

In our implementation, the dual problem is maximized
by an algorithm inspired from subgradient optimization.
At a given iteration, a predetermined step is taken along a
direction specified by an approximate solution of LSP(u)
rather than based on the true subgradient v�u�− x�u� that
would correspond to any optimal �v�u�� x�u�� solution of
LSP�u�. In the resulting algorithm (outer phase) outlined
below, �K� denotes the number of commodities, &j the
step size at iteration j , and Z∗ the best upper-level value
achieved so far.

Algorithm JDP (Outer Phase)

Step 0 (initialization)
—u0a ← fa/�K� + ); Z∗ ←−	; T 0 ← 0
— �x0, y0� ← an optimal lower-level solution consis-
tent with T 0

— j ← 1
Step j
—�T j� vj� xj� yj� ← an approximate solution of

LSP�uj−1�
—if solution improved then update Z∗

—uj ←max�0� uj−1−&j�vj − xj��
—if stopping criterion is met then halt

else j ← j + 1 and repeat Step j

The efficiency of the above algorithm rests on a proce-
dure able to provide a near-subgradient within a reasonable
amount of time. To this aim, we adapted the primal-dual
scheme initially proposed by Brotcorne et al. (2000, 2001),
which addresses by a penalty method the single-level refor-
mulation of JDP, where the lower-level problem is replaced
by its Kuhn-Tucker optimality conditions, i.e.,

Z�u�= max
T � v� x� y��

∑
a∈�1

∑
k∈�

nkTax
k
a −

∑
a∈�1

fava

− ∑
a∈�1

∑
k∈�

nkcax
k
a+

∑
a∈�1

∑
k∈�

uk
a�va−xk

a�

s.t. va ∈ �0�1� ∀a ∈�1�

Axk +Byk = ek ∀k ∈��

xk� yk � 0 ∀k ∈��

�kA� T ∀k ∈��

�kB � d ∀k ∈��∑
k∈�

nk�Txk +dyk −�kek�= 0�

(13)

where the last constraint, always nonnegative for feasible
triple �xk� yk��k�, specifies the equality of the primal and
dual lower-level objectives. Penalizing this constraint yields
the disjoint1 bilinear program:

(PEN) max
T � v� x� y��

∑
a∈�1

∑
k∈�

nkTax
k
a−

∑
a∈�1

fava−
∑
a∈�1

∑
k∈�

nkcax
k
a

+ ∑
a∈�1

∑
k∈�
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a�

−M1

∑
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k
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∑
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k
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)

s.t. va ∈ �0�1� ∀a ∈�1�

Axk +Byk = ek ∀k ∈��

xk� yk
� 0 ∀k ∈��

�kA� T ∀k ∈��

�kB � d ∀k ∈��

where M1 is some positive number, and whose objective
can be rewritten as∑
a∈�1

∑
k∈�

��1−M1�n
kTa − uk

a − nkca�x
k
a

−M1

∑
k∈�
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a∈�2
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a −�kek

)
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(
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∑
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a

)
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This latter problem is separable in v and T �x� y��; the
binary variables va (a ∈ �1) are set to one whenever the
corresponding term∑
k∈�

uk
a − fa

is positive, and to zero otherwise. The procedure for solving
PEN then iterates between the leader’s tariff vector and the
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follower’s commodity flows xk and yk. For fixed penalty
factor M1, it consists of three main steps:• Given a fixed �x� y� flow vector, solve PEN for T .
• Given a fixed T vector, solve PEN for �x� y�.
• For fixed �x� y� flow vector, find a compatible revenue-

maximizing T .
The grand strategy underlying algorithm PEN is to

induce modifications (basis changes) in the lower-level
solution. In this process, extremal flow assignments corre-
sponding to distinct values of the tariff vector T are gen-
erated, and we expect one of these combinations to be of
high quality for JDP.
At a given iteration, the tariff vector T solves the penal-

ized problem PEN for fixed-flow vectors xk, yk (Step 1).
Next, one solves for an optimal assignment with respect to
T (Step 2); this is achieved by computing shortest paths for
all OD pairs. The revenue-maximizing tariff vector consis-
tent with �x� y� is then the solution of the linear program
(Step 3). The main components of the primal-dual algo-
rithm are made explicit below. At Step 0, arc flows are ini-
tialized to values that achieved the best leader profit at one
of the previous main iterations, whereas the design vector v
is set to the optimal solution of the problem:

(PEN1(v)) max
v

∑
a∈�1

∑
k∈�

�uk
a − fa�va

s.t. va ∈ �0�1� ∀a ∈�1�

At Step 1 of the algorithm, and for fixed-commodity flows
xk, let T and � be optimal solutions of the problem:

(PEN2(T ��)) max
T ��

�1−M1�
∑
a∈�1

∑
k∈�

nkxk
aTa+M1

∑
k∈�

nk�kek

s.t. �kA�T ∀k∈��

�kB�d ∀k∈��

whose dual is a multicommodity flow problem. At Step 2,
the commodity flows xk and yk solve, for fixed-tariff vec-
tor T , the linear program

(PEN3(x� y)) max
x� y

∑
a∈�1

∑
k∈�

��1−M1�n
kTa − uk

a − nkca�x
k
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−M1

∑
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∑
k∈�

nkday
k
a

s.t. Axk +Byk = ek ∀k ∈��

xk� yk
� 0 ∀k ∈��

At Step 3, the algorithm computes a common tariff vector
that maximizes the total profit of the leader while main-
taining the lower-level optimality of the current commodity
flows. The structure of this “inverse” problem is that of the
uncapacitated multicommodity network flow problem

(T-OPT) max
T ��

∑
a∈�1

∑
k∈�

nkTax
k
a −

∑
a∈�1

∑
k∈K

nkcax
k
a

s.t. �kA� T ∀k ∈��

�kB � d ∀k ∈��

nk�Txk +dyk −�kek�= 0 ∀k ∈K�

Figure 2. The algorithmic framework.

x, y

T

T, λ

PEN2(x, y)

PEN3(x, λ)

T-OPT

The structure of the algorithm is illustrated in Figure 2 and
summarized below, where + ∈ �0�1� denotes a relaxation
factor and Z∗ represents the current best objective value.

Primal-Dual Algorithm (Inner Iteration)

Step 0: (initialization)
—j (major iteration index); Z∗ ←−	
—if

∑
k∈K�uk

a − fa�� 0 then vj
a ← 1 else vj

a ← 0
—l← 1 (minor iteration index)

Step 1: (computation of Tl and �l)
—for fixed xk

l−1 and yk
l−1, �Tl��l� ← solution of

PEN2(T ��)
Step 2: (computation of xl and yl)
—solve (PEN3(x� y)) for the tariff vector �1−+�Tl +

+Tl−1
Step 3: (computation of optimal tariffs for given flows)
if flows are identical to those of some previous

iteration
then go to Step 4
else

—T̃ ← optimal solution of T-OPT
—if xla = 1 then ṽa ← 1 else ṽa ← 0
—let Z̃�T̃ � ṽ�= T̃ xl − f ṽ− cxl.
—if Z̃ > Z∗ then Z∗ ← Z̃ and �T ∗� v∗� x∗� y∗��∗� ←

�T̃ � ṽ� xl� yl� �l�
Step 4: (stopping criterion)
if stopping criterion met then �T j� vj� xj� yj � �j� ←

�T ∗� v∗� x∗� y∗��∗�
else l ← l + 1, increase the penalty factor M1 and

return to Step 1.

5. Numerical Results
The algorithm has been tested on both randomly generated
and real data. The random problems consist of complete
grid networks that promote interaction between commodi-
ties, and makes for problems that are combinatorially chal-
lenging. The real-life instances correspond, respectively, to
a freight transportation network in the Nord-Pas-de-Calais
region of northern France, and to a doctored version of
France Telecom’s backbone network. Before addressing the
large instances, the algorithm’s parameters have been cali-
brated with respect to random instances for which the opti-
mal solution was computable by a mixed-integer approach.
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All computations have been performed on a Sun Enterprise
10,000 workstation.
The generation of random instances is adapted from tech-

niques introduced in Brotcorne et al. (2001) for a pure pric-
ing problem and where there exists at least one toll-free
path for each commodity. The main parameters of the prob-
lem are: cost symmetry (yes or no), size of the network
(number of commodities, nodes, arcs), proportion of design
arcs; all toll arcs involve a design variable. Note that this
is without loss of generality because one may assign a null
cost to a tariff arc that is part of the network. All exper-
iments are based on networks of 60 nodes (5 × 12 grid)
and 208 arcs. Even on such medium-sized networks, find-
ing a good solution can be extremely difficult, depending
on the choice of key parameters such as the percentage of
design arcs and the number of commodities. In our exper-
iment, these parameters belonged to the ranges .5%�20%/
and .10�40/, respectively.
As stated previously, the training set consisted of

instances that could be solved for their global optimum.
These involved networks with 10% or 15% of design arcs
and 10 commodities. The parameters that were adjusted
through sensitivity analysis were the following:
—u0a (initial value of the Lagrange multiplier);
—l (fixed step size along the subgradient direction);
—m (number of inner primal-dual iterations);
—+ (relaxation factor);
—� (parameter involved in the stopping criterion).
Tables 1 through 5 are concerned with the calibration of

the algorithm’s various parameters, with the exception of
the penalty factor M1 involved in the Lagrangean phase,
which has been initialized to 1.3, and incremented by 0�05
at the end of each primal-dual iteration.
Starting from the initial setting (u0a = 0� l = 1�m = 1,

+ = 0� � = 300), the parameters have been calibrated in a
sequential (left-to-right) manner. When treating one param-
eter, the “left” parameters are fixed at their updated value,

Table 1. Sensitivity analysis on Lagrange multiplier u0
�u0� l= 1�m= 1�+= 0� �= 300�.

Heuristic CPLEX

u0 %TA #TA DI #BAS H/M CPU CPU

0 10 5.5 69.7 36.8 0.85 22.2 28.3
0 15 7.3 67.9 46.5 0.71 25.0 29.1
(min fa�− 0�001/�K� 10 5.5 71.6 36.7 0.91 22.4 28.3
(min fa�− 0�001/�K� 15 6.2 68.2 41.0 0.83 24.1 29.1
fa/�K� − 0�01 10 5.3 57.8 33.1 0.93 21.5 28.3
fa/�K� − 0�01 15 6.5 68.5 38.9 0.80 24.8 29.1
fa/�K� + 0�01 10 5.4 56.2 30.1 0.92 21.9 28.3
fa/�K� + 0�01 15 7.1 56.0 37.0 0.82 24.3 29.1
(max fa)/�K� 10 5.2 66.3 33.2 0.93 21.8 28.3
(max fa)/�K� 15 7.1 68.6 37.4 0.76 24.4 29.1
1�000/�K� 10 5.3 55.5 23.0 0.80 21.4 28.3
1�000/�K� 15 5.3 41.7 28.2 0.70 22.8 29.1

Table 2. Sensitivity analysis on step lengths l �u0 =
fa/�K� + 0�01� l�m= 1�+= 0� �= 300�.

Heuristic CPLEX

l %TA #TA DI #BAS H/M CPU CPU

1 10 5.4 56.2 30.1 0.92 21.9 28.3
1 15 7.1 56.0 37.0 0.82 24.3 29.1
5 10 5.4 18.5 22.8 0.94 21.4 28.3
5 15 6.4 40.8 25.2 0.93 23.8 29.1
10 10 5.1 14.2 17.1 0.94 22.0 28.3
10 15 6.5 18.7 20.2 0.92 20.2 29.1
15 10 5.1 29.8 18.7 0.95 21.6 28.3
15 15 6.8 30.2 18.1 0.93 22.5 29.1
20 10 5.4 39.3 16.8 0.95 20.9 28.3
20 15 6.4 33.0 17.7 0.92 22.6 29.1

and the “right” parameters at their initial value. The mean-
ing of column headings is the following: “%TA” refers
to the percentage of design arcs, “#TA” to the number of
design arcs actually opened in the solution, “DI” to the
index of the subgradient iteration at which the solution was
reached, “#BAS” to the number of follower basis encoun-
tered during the iterative process, and “H/M” to the ratio of
the heuristic objective over the optimal solution achieved by
the mixed integer optimizer Cplex 8.1. The “CPU” labels
refer to running times expressed in seconds. Each line pro-
vides CPU times averaged over 10 randomly generated
instances.
Table 1 presents the results for different values of the ini-

tial Lagrange multiplier u0a. Very small (respectively very
high) values of the multiplier force the design arcs to be ini-
tially closed (respectively, open). A sufficient and necessary
condition for an arc a to be opened, at a given iteration,
is that

∑
k∈� uk

a − fa be positive. A compromise is reached
by setting, for every commodity k, the Lagrange multiplier
u0�ka to the value �fa/����+ ), where ) is some small pos-
itive number. Accordingly, all design arcs are open before
entering the subgradient procedure.

Table 3. Sensitivity analysis on the number of primal-
dual iterations m �u0 = fa/�K� + 0�01� l= 5,
m�+= 0� �= 300�.

Heuristic CPLEX

m %TA #TA DI #BAS H/M CPU CPU

1 10 5.4 18.5 22�8 0.94 21�0 28.3
1 15 6.4 40.8 25�2 0.93 24�0 29.1
5 10 5.0 19.1 54�8 0.96 83�5 28.3
5 15 6.5 26.6 46�0 0.94 88�9 29.1
10 10 4.9 20.5 68�1 0.96 161�3 28.3
10 15 6.6 26.7 59�3 0.97 168�1 29.1
15 10 4.7 23.0 82�5 0.98 230�0 28.3
15 15 6.2 27.1 69�1 0.98 246�0 29.1
20 10 4.6 24.6 102�7 0.97 311�9 28.3
20 15 6.3 28.4 79�9 1.00 334�2 29.1
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Table 4. Sensitivity analysis on the overrelaxation fac-
tor + �u0 = fa/�K� + 0�01� l = 5, m = 20,
+��= 300�.

Heuristic CPLEX

+ %TA #TA DI #BAS H/M CPU CPU

0 10 4.6 24.6 102�7 0.97 311.9 28.3
0 15 6.3 28.4 79�9 1.00 334.2 29.1
0.3 10 4.5 24.8 105�7 0.98 279.6 28.3
0.3 15 6.3 26.1 88�3 0.99 282.1 29.1
0.5 10 4.6 23.4 114�3 0.98 282.5 28.3
0.5 15 6.3 27.1 87�3 1.00 282.3 29.1
0.7 10 4.7 20.7 96�3 0.97 279.3 28.3
0.7 15 6.2 27.8 87�8 0.99 284.4 29.1

The impact of the step size l taken along the subgradient
direction is assessed in Table 2. Our choice of the value
l= 5 has been motivated by the fact that it produced solu-
tions of high quality and allowed the algorithm to proceed
through a high number of basic solutions. This is akin to a
diversification phase, where each basic solution is probed
using inverse optimization.
The maximum number of primal-dual steps m has been

set to 20, a value that produced a high number of optimal
solutions for the largest instances (see Table 4). Note that:
• The number of basis visited increases with m, and so

does the quality of the solution (almost always);
• The computation time grows linearly with m.
The parameter + has been set to 0�5 (see Table 4). Note

that this parameter does not have a significant impact on
either CPU time or the quality of the solution. Finally, the
parameter � that controls the stopping of the algorithm has
been set to 30 (see Table 5). Because higher values do not
improve the solution and do result in higher CPU times,
they have not been considered. From now on, the param-
eter vector is set to �u0 = fa/�K� + 0�01� l = 5�m = 20�
+= 0�5� �= 30�.
The numerical results on randomly generated networks

are summarized in Tables 6 to 8. Each line corresponds
to an average taken over five problem instances. In addi-
tion to previous column headings, label “Type” refers to

Table 5. Sensitivity analysis on the stopping crite-
rion �u0 = fa/�K� + 0�01� l = 5�m = 20�
+= 0�5� ��.

Heuristic CPLEX

� %TA #TA DI #BAS H/M CPU CPU

10 10 5.0 17.9 87�2 0.94 33.4 28.3
10 15 7.2 18.1 71�1 0.90 34.4 29.1
20 10 4.7 19.3 91�4 0.97 40.3 28.3
20 15 6.6 18.9 79�6 0.96 42.5 29.1
30 10 4.6 23.4 112�6 0.99 60.6 28.3
30 15 6.3 27.1 86�7 1.00 63.6 29.1
40 10 4.6 23.4 112�9 0.99 69.4 28.3
40 15 6.3 27.1 86�8 1.00 73.3 29.1

Table 6. Fixed cost sensitivity on asymmetric networks
(20 commodities).

Heuristic CPLEX

fa %TA NOPT #TA DI #BAS BOPT H/M CPU CPU

0 5 5 9�0 0�6 16�0 12�0 0.99 28�4 1�959�6
0 10 3 15�6 0�4 17�6 8�4 1.03 31�8 8�682�0
0 15 0 27�0 16�0 18�2 17�0 1.03 53�4 15�974�0
0 20 0 34�4 0�8 9�8 7�4 1.05 45�6 16�453�4

30 5 5 4�8 19�8 159�6 133�60 0.98 6�0 251�4
30 10 5 5�4 27�0 187�4 171�2 0.97 84�8 879�6
30 15 4 9�8 32�8 196�0 181�2 1.05 118�4 14�480�0
30 20 1 12�6 33�4 348�2 236�4 1.02 268�6 23�446�8

60 5 5 2�0 29�2 177�0 165�6 1.00 67�8 29�6
60 10 5 3�0 33�2 232�4 187�8 0.97 86�6 35�8
60 15 5 5�6 37�2 317�6 263�6 1.00 140�8 3�500�2
60 20 4 7�0 49�4 466�8 426�4 1.02 314�6 6�561�0

the arc cost structure, either symmetric (S) or asymmet-
ric (AS); label “���” represents the number of commodi-
ties; “BOPT” refers to the position (rank) of the basis
within the sequence of basis generated by the heuristic
procedure; the label “H/M” now refers to the ratio of the
heuristic objective over the best (not necessarily optimal)
solution achieved by the mixed-integer programming code
CPLEX 8.1. The latter was halted whenever one of these
conditions was fulfilled: CPU time exceeded eight hours,
the number of nodes explored in the enumeration process
exceeded 400,000, or memory requirements exceeded one
gigabyte. Finally, label “NOPT” refers to the number of
problems solved to optimality. On the larger instances pre-
sented in Table 8, CPLEX was unable to find feasible solu-
tions, hence the absence of a “CPLEX” column.
Tables 6 and 7 show the results of sensitivity analyses

performed with respect to the opening cost fa. The sensi-
tivity analyses confirm some intuitive results. For instance,
when the ratio of opening to operating costs is high, most

Table 7. Fixed cost sensitivity on symmetric networks
(20 commodities).

Heuristic CPLEX

fa %TA NOPT #TA DI #BAS BOPT H/M CPU CPU

0 5 4 9�6 0�0 9�2 5�6 0.99 27�6 375�0
0 10 1 18�6 3�4 10�8 7�4 1.03 3�0 11�941�8
0 15 0 25�4 8�2 14�8 13�6 1.19 47�6 20�458�2
0 20 1 35�8 1�6 19�6 15�8 1.15 52�0 21�470�4

30 5 5 6�8 8�8 41�8 29�0 0.98 47�5 2�488�0
30 10 3 6�6 19�0 129�0 82�4 1.27 92�0 13�982�4
30 15 1 8�6 41�0 288�6 277�4 1.07 195�5 21�866�8
30 20 1 7�8 37�6 339�4 299�2 1.14 241�9 23�553�2

60 5 5 4�2 22�4 86�0 82�8 1.00 63�6 158�6
60 10 5 3�8 27�0 168�4 154�8 0.98 79�4 543�8
60 15 3 5�4 38�6 356�2 271�0 0.96 176�0 12�750�8
60 20 4 4�8 46�2 335�6 295�4 1.00 184�0 6�695�6
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Table 8. Asymmetric and symmetric networks (40
commodities).

Heuristic

Type %TA #TA DI #BAS BOPT OPT CPU

AS 5 3�6 22.2 246�8 225.8 401�0 189�8
AS 10 8�2 30.0 426�8 270.6 719�2 290�5
AS 15 7�2 52.4 817�0 667.8 1�078�4 966�8
AS 20 9�4 60.0 1�052�4 778.6 1�089�8 1�682�8

S 5 4�2 25.2 326�8 283.0 434�0 212�6
S 10 4�8 36.4 569�8 444.4 463�6 531�0
S 15 5�2 42.6 686�4 585.4 402�4 818�0
S 20 11�0 49.4 910�2 684.0 1�437�6 2�312�6

tariff arcs are left closed. In this case, the combinatorial
structure is “weak” and it is not surprising to observe that
CPLEX can easily solve this class of problems. The con-
verse conclusion holds when this ratio is low. We also
remark that symmetric problems tend to be more difficult
to solve.2

As a general rule, we may infer that Lagrangean relax-
ation produces high-quality solutions rapidly and consis-
tently. Typically, the solutions are greatly superior to those
obtained by CPLEX. With the exception of the smallest
instances (10 commodities, 5% or 10% tariff arcs) the pro-
posed heuristic is also much faster than the exact MIP
algorithm. It has been observed that even if the CPU time
required by the heuristic increases with the percentage of
tariff arcs and the number of commodities, this increase is
more modest than for CPLEX.
All 10-commodity instances, with the exception of

instances with null fixed cost and 20% of tariff arcs, could
be solved by CPLEX. However, running times rise steeply
and in an unstable fashion as the number of tariff arcs is
increased from 5% to 20%. In contrast, Table 7 shows mod-
erate CPU times for the Lagrangean algorithm, for which
both symmetric and asymmetric 20-commodity instances
could be solved, with no significant decrease in solution
quality. As observed, the symmetric instances proved more
difficult. Indeed, beyond 20 commodities, these problems
could not be solved to optimality by CPLEX. This remark
is compatible with the fact that, as indicated in columns
“BOPT” and “#BAS,” the best bases are uncovered toward
the end of the enumeration process.
In Table 8 are presented the results pertaining to the

largest instances, with the parameters fa set to 30. It is
interesting to have a look at the upper envelopes on profit
function, which are given in Figures 3 and 4 for two typ-
ical instances involving, respectively, 20 commodities and
40 commodities. These functions exhibit similar behavior:
They increase sharply at the beginning of the process, and
flatten out in the middle and at the end of the algorith-
mic process. Note that although the initial iterates produce
negative revenues, they still participate in the “open-close”
process that eventually yields near-optimal solutions.

Figure 3. Network with 20 commodities.
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The real-life instances come from the freight transporta-
tion and telecommunication areas. First we consider an
aggregate transportation network of the Nord-Pas-de-Calais
region (France) consisting of 78 nodes, 180 links, 42 tax-
able arcs, and 40 OD pairs. The transportation network
supports a large amount of freight flows, mainly due to the
locations of three main harbours (Dunkerque, Calais, and
Boulogne), a large metropolitan area (Lille), and a mul-
timodal transportation platform in Dourges (road, railway,
waterway network). Moreover, the region is crossed from
north to south and east to west by highways. The trans-
portation data come from the Conseil Régional du Nord-
Pas-de-Calais. Three scenarios have been considered, the
first (NPDC1) corresponding to the base scenario. The sec-
ond scenario is characterized by the existence of a direct
link between each OD pair (NPDC2), and the third by
the increase of freight to and from Dunkerque (NPDC3).
Whether or not to open a taxable arc corresponds to the
decision of a service carrier (the leader) to accept a request
or not and, whenever the request is accepted, to set a price.
The cost of the arcs are related to the distance and the type
of associated road.

Figure 4. Network with 40 commodities.
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Table 9. Freight transportation instances.

Heuristic CPLEX

Instance #TA DI #BAS H/M CPU GAP CPU

NPDC1∗ 28 45 330 1.05 295 58.11 7,093
NPDC2∗ 32 49 280 0.98 321 39.92 7,888
NPDC1∗ 28 36 239 0.98 274 39.12 7,108

∗Could not be solved to optimality by CPLEX.

Second, we consider telecommunication instances. In
this area, the leader is a service provider who has to make
network deployment decisions and set usage prices. The
network represents the French telecommunication back-
bone network (doctored for confidentiablity reasons) that
consists of 20 nodes, 100 links, and 65 taxable links. Three
instances were considered, involving number 40, 60, and 80
origin-destination pairs, respectively. The results, which are
reported in Tables 9 and 10, are self-explanatory. In all but
one instance (TELE1), an optimal solution of JDP could
not be achieved by CPLEX. Worse, no feasible (integral)
solution could be found for TELE3, within the allocated
time limit. Empirically, the results in Tables 9 and 10 illus-
trate that the heuristic uses moderate CPU time to produce
a high-quality solution. From a qualitative point of view,
it has been observed that the cost of “tariff” paths fre-
quently matches those of the shortest tariff-free paths. How-
ever, in certain instances, tariffs have been set to smaller
values to induce customers to travel on tariff paths and
maximize revenue.

6. Conclusion
In this paper, we introduced a mixed continuous-discrete
design problem that arises naturally when modelling pric-
ing decisions over transportation networks, and proposed
for its solution an algorithm based on the application
of Lagrangean relaxation within a bilevel programming
framework. In view of the algorithm’s encouraging perfor-
mance on random problems involving more that 4,000 vari-
ables, we are looking forward to applying the methodology
more general problems involving link capacities and elastic
demand. Finally, while some applications would require to
take into account congestion, we believe that the resulting
nonlinear models would call for an entirely different kind
of approach.

Table 10. Telecommunication instances.

Heuristic CPLEX

Instance #TA DI #BAS H/M CPU GAP CPU

TELE1 16 24 28 1.00 73 0.00 166
TELE2∗ 20 117 2�333 1.00 632 2.66 7�397
TELE3∗ 56 20 391 — 759 inf 7�019

∗Could not be solved to optimality by CPLEX.

Endnotes
1. A bilinear program with objective uQv + cu + dv is
disjoint if none of its linear constraints involve both vectors
u and v.
2. Interestingly, such a result is a “folk theorem” in the
case of the traveling salesman problem.
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