Toll Policies for Mitigating Hazardous Materials Transport Risk

Patrice Marcotte, Anne Mercier
Université de Montréal, Montréal, Québec, and CIRRELT, Montréal, Québec H3C 3J7, Canada
{marcotte@iro.umontreal.ca, mercier@crt.umontreal.ca}

Gilles Savard
École Polytechnique de Montréal, Montréal, Québec, and GERAD, Montréal, Québec H3T 1J4, Canada,
gilles.savard@polymtl.ca

Vedat Verter
McGill University, Montréal H3A 1G5, Canada, and CIRRELT, Montréal, Québec H3C 3J7, Canada,
vedat.verter@mcgill.ca

In this paper, we investigate toll setting as a policy tool to regulate the use of roads for dangerous goods shipments. We propose a mathematical formulation as well as a solution method for the hazardous materials toll problem. Based on a comparative analysis of proposed mathematical models, we show that toll policies can be more effective than the popular network design policies that identify road segments to be closed for vehicles carrying hazardous materials. We present a summary of computational experiments on a problem instance from Western Ontario, Canada.

Key words: hazardous materials transportation; toll setting; network design; bilevel programming

History: Received: April 2007; revisions received: December 2007; accepted: March 2008. Published online in Articles in Advance August 15, 2008.

1. Introduction

An increasing amount of hazardous materials (hazmats) are shipped by road, rail, waterways, and air. Explosives, gases, flammable liquids, poisonous substances, infectious substances, and radioactive materials are among the hazmats that are transported in large volumes. These shipments are indispensable to our modern way of life, although they can be harmful to the people and the environment in the event that they are released from their container as a result of an accident. Due to the inherent transport risks, the transportation of hazmats is regulated under the Federal Hazardous Materials Transportation Act (which was amended by the Patriot Act in 2001) in the United States and under the Federal Transportation of Dangerous Goods Act in Canada.

The policies that are available to government agencies for hazmat transport risk management can be categorized into two main groups with respect to their underlying philosophy: proactive and reactive. The latter group of policies aims at confining the undesirable consequences of a hazmat incident after the occurrence of the accident. The development of emergency response plans—which involve the establishment of a network of responder teams specializing in different hazmat types—is the most popular example of reactive policies. Clearly, the consequences of an accident can be mitigated through better coordination of responder teams and faster response times to the incident sites. In contrast, the proactive risk mitigation policies aim at reducing the likelihood and consequences of hazmat incidents a priori. The establishment of inspection centers for hazmat trucks is a common example in this category.

Our focus is on the proactive policies regulating the use of road segments by hazmat carriers. In North America and Europe, government agencies do not have the authority to dictate routes to hazmat carriers for moving their shipments. These agencies mitigate hazmat transport risks by imposing (permanent or time-based) curfews on the use of the road segments under their jurisdiction. The closure of certain road segments to hazmat vehicles is a policy that is being used (or considered) in many large cities, such as Washington D.C., Montréal, and Paris. In their seminal paper, Kara and Verter (2004) formulated the problem of identifying the road segments to be closed to hazmat shipments as a network design problem (ND). In their ND formulation, a regulator chooses the road segments to be closed for hazmat transportation so as to minimize population exposure (i.e., the total number of people within a threshold distance from the road segments that are utilized by hazmat vehicles), while taking into account the
carriers’ route choices based on transport cost. This problem involves two levels of decisions, which cannot be solved sequentially. There are usually more than one path left available for some carriers even after the design decisions are made (all carriers use the same road network and the closed arcs are the same for all shipments of the same type of hazmat). If the design decisions were made based solely on the objective of the regulator (i.e., without keeping in mind the carriers’ behaviour), then it is probable that the total risk associated with the carriers’ route choices made subsequently would be much higher than the risk anticipated by the regulator. One such example is provided in Erkut, Tjandra, and Verter (2007). Hence, this problem is considered as a bilevel problem. For a recent survey on bilevel programming, see, e.g., Colson, Marcotte, and Savard (2005) or Dempe (2005).

In this paper, we propose an alternative policy tool to regulate the use of roads for hazmat transport, i.e., the use of tolls to deter the hazmat carriers from using certain road segments, which we refer to as toll-setting policies (TS). This policy, also modeled as a bilevel problem, entails imposing tolls on certain road segments so as to channel the shipments on less-populated roads. Although TS has been studied for regular freight transportation, to the best of our knowledge, this is the first paper that proposes TS as an effective means to mitigate hazmat transport risk. We are also unaware of the use of this policy tool by regulators around the globe. Nonetheless, our findings indicate that TS has significant potential as a policy tool because it is more flexible and effective than the popular ND policies for mitigating transport risk.

Because dangerous goods constitute an integral part of industrialized societies, the economic viability of the hazmat transport sector cannot be ignored while attempting to reduce the public and environmental risk. On the other hand, the carriers must take into account the risks as well as the costs associated with their routing decisions to both minimize their insurance costs (Verter and Erkut 1997) and manage their public image. Therefore, in this paper, we first extend the work of Kara and Verter (2004) to incorporate the cost and risk (i.e., population exposure) considerations at both the regulator and the carrier levels. Based on this extended framework, we also present some improvements on the ND solution methodology that permit us to solve much larger instances than those reported in Kara and Verter (2004). However, our main contribution is the proposed methodology for implementing the TS policy for hazmat transportation. To this end, we present a mathematical formulation for the bilevel hazmat TS problem and show that this model can also be posed as a single-level mixed-integer programming (MIP) formulation. Perhaps more importantly, we show that not only can TS be more effective than ND in reducing hazmat transport risk, it can also be much easier to solve. As a matter of fact, when the objective of the government is to minimize risk only (i.e., when costs are only included at the carrier level), we show that the toll problem is not truly bilevel in that it reduces to a linear program that can efficiently be solved. Finally, because the effectiveness of the hazmat transport policies devised by a government agency depends on the extent of buy-in received from the hazmat carriers during the consultation process (Verter and Kara 2008), we elaborate the use of our methodology on a restricted set of road segments considered for setting tolls to produce solutions that are more acceptable to the carriers.

The remainder of the paper is organized as follows. An overview of the relevant literature that highlights the contributions of this paper is provided in §2. Section 3 presents the mathematical formulations for the network design and the toll problems in the context of hazmat transportation. In this section, we also provide an example showing that these two models are not equivalent. Section 4 shows how the toll problem can be used by a regulator to obtain minimum risk solutions very efficiently. Our solution methodology is outlined in §5, which is followed by a summary of our computational experiments in §6. Our experiments are based on the problem instance in Western Ontario, Canada, studied by Kara and Verter (2004). Section 7 concludes the paper.

2. Overview of the Literature

In this section, we provide a selective overview of the two streams of research that are most relevant for our work, i.e., hazmat ND models and TS applications in transportation. Although hazmat logistics is a mature field of research (see the comprehensive and recent review by Erkut, Tjandra, and Verter 2007), the regulation of the use of road segments has attracted the attention of researchers only fairly recently. Also, we are not aware of any work on the hazmat TS problem discussed in this paper. Nonetheless, the literature contains numerous applications of TS to road pricing and regular freight transportation, which we will review at the end of this section.

As mentioned in the previous section, Kara and Verter (2004) were the first to propose a bilevel programming formulation for the hazmat ND problem. The outer-level problem chooses road segments to close for hazmat transportation so that the total number of people exposed to dangerous goods is minimized, taking into account that the inner-level problem route all origin-destination (O-D) shipments
so that the carriers’ costs are minimized. Using complementary slackness conditions, the authors formulate the problem as a single-level MIP that is solved using an off-the-shelf linear programming solver (CPLEX). The problem is modeled as an optimistic bilevel problem; i.e., it is assumed that the carriers would take the lower risk path in case of equal cost, which is a reasonable assumption. Kara and Verter (2004) present an application of the proposed methodology in Western Ontario, Canada (the case also used for the computational experiments reported in this paper). Their results show that significant reductions in population exposure can be achieved through government intervention on the use of road segments by hazmat vehicles. However, their method cannot solve large-scale instances in a reasonable amount of computation time.

Erkut and Gzara (2008) also formulate the network design problem as a bilevel problem, but instead of solving the complete problem, they propose a heuristic algorithm that iterates between the outer-level and the inner-level problems (that are both pure network flow problems). As a result, they improve the computational performance of the solution methodology but obtain suboptimal solutions. The authors also generalize the model to a biobjective model by including the traveling cost in the regulator’s objective function (outer-level).

Erkut and Alp (2007) formulate the minimum-risk network design problem as a Steiner tree selection problem. By reducing the possibilities of the carriers to a single path for every O-D shipment, this methodology reduces the bilevel problem to a single-level problem. However, it can result in increased population exposure as well as higher travel costs for the carriers. To circumvent the latter weakness, the authors propose a greedy heuristic to add edges to the tree (corresponding to shortest paths) while keeping the risk increase to a minimum. They also include traveling costs to the risk in the objective function of the tree selection problem.

Finally, Verter and Kara (2008) introduced a single-level path-based formulation for the hazmat ND problem where only those paths that are acceptable to the carriers are included in the model. These paths are determined a priori for each O-D shipment and are ranked according to the carrier’s preferences. Consequently, the optimal solution of the Verter and Kara (2008) model determines not only the road segments to be closed to hazmat shipments by the regulator but also the routes that would be used for each shipment on the resulting network. The proposed methodology is intended to facilitate the consultation between the regulator and the hazmat carriers during the policy design process.

Some other interesting work on the hazmat global routing problem can be found in the operations research literature. This planning problem belongs to a government agency whose mandate is to route the hazmat shipments within and through its jurisdiction. This problem is not modeled as a bilevel problem because it is used in a context where the regulator can decide on the routes used by the carriers. The objective of the regulator is to minimize the total risk for the population but also to ensure equity in the spatial distribution of the risk. Recent contributions include Marianov and Revelle (1998); Akgün, Erkut, and Batta (2000); Dell’Olmo, Gentili, and Scozzari (2005); and Carotenuto, Giordani, and Ricciardelli (2007).

We now turn to an overview of the applications of TS in transportation. The congestion pricing problem usually considers a regulator setting tolls so as to minimize the total traveling time for the users (or maximize the social welfare), whereas an optimal solution to the users’ problem is an equilibrium where none of the users is interested in altering his path choice. When all road segments are subject to tolls, marginal cost pricing induces the optimal use of the network (Morrison 1986). In that case, tolls can be seen as the difference between the social cost (contribution to total traveling time) and the perceived cost for the users. If there is more than one toll scheme inducing an optimal use of the road network, then a scheme optimizing a secondary objective such as minimizing the total tolls collected can be utilized (see, e.g., Bergendoff, Hearn, and Ramana 1997 or Larsson and Patriksson 1998). In many situations, however, only second-best solutions are implementable, i.e., solutions in which not every road segment can be tolled. For example, situations calling for second-best solutions occur when pricing is allowed on certain highways only, or in the presence of pay lanes or a toll cordon around a city. These problems are usually more realistic, but a lower social welfare is expected and they are also more difficult to solve. Instead of maximizing total welfare, owners of private roads might wish to maximize the profit related to the tolls set on the road segments. Among others, Vitéon (1995); Liu and McDonald (1999); De Palma and Lindsey (2000); and Verhoef (2005) studied second-best pricing. In such problems, the optimal location of the toll points can also be considered (see, e.g., Verhoef 2002).

Labbé, Marcotte, and Savard (1998) introduced a general bilevel toll model where a regulator seeks to maximize the profits generated by tolls put on a subset of road segments, taking into account that the users choose minimum-cost paths with respect to the chosen tolls. These authors have shown that this problem, having bilinear objective functions at both levels, is strongly NP-hard, whereas primal-dual
algorithms aimed at solving large-scale instances of regular freight transportation problems were derived by Brodor et al. (2000, 2001). A heuristic approach to a similar problem was proposed by Castelli et al. (2004). Also in the context of a profit-maximizing firm, Lederer (1993); Basham (2000); and Brodor et al. (2008) consider the problem of jointly designing and pricing a network. Conflicting objectives between the leader and the follower are not present in the bilevel hazmat TS where the regulator may even want to minimize, in part, the revenues raised from tolls. Finally, we mention the related work of Bouhtou, Erbs, and Minoux (2007), who extended the bilevel framework to the analysis of pricing and resource allocation for telecommunication networks.

3. Mathematical Formulation

Let \( G = (N, A) \) be a road network where \( N \) is the node set and \( A \) is the arc set. Each node \( i \in N \) corresponds to an intersection in the road network, and each arc \( (i, j) \in A \) corresponds to a road segment between two intersections.

Consider a set \( H \) of hazmat types and a set \( S \) of O-D shipments to be performed. Ideally, \( S \) is comprised of all shipments using one of the road segments of the chosen geographical region. For each shipment \( s \in S \), let \( k(s) \) be the associated carrier and \( n^s \) be the number of trucks needed to complete the shipment. Let \( \rho^s_i \) be the risk on arc \((i, j) \in A \) when hazmat type \( h \in H \) is carried. If \( h(s) \) is the type of hazmat transported by shipment \( s \in S \), then \( \rho^s_{ij} \) is the risk on arc \((i, j) \in A \) associated with shipment \( s \in S \) (per truck). Also, let \( c_{ij} \) be the cost of traveling on arc \((i, j) \). Note that throughout the paper, we use the terms “carriers” cost” and “traveled distance” interchangeably. For each node \( i \in N \) and each shipment \( s \in S \), let \( c^e_i \) take the value 1 (respectively, −1) if node \( i \) is the origin (respectively, destination) of shipment \( s \). Finally, let \( x^s_{ij} \) be binary variables that take the value 1 if arc \((i, j) \in A \) is used for shipment \( s \in S \) and can be used for hazmat type \( h \in H \), respectively, and let \( y^h_{ij} \) be the toll on arc \((i, j) \in A \) for hazmat type \( h \in H \). Table 1 provides a summary of the notation used in the formulations.

### 3.1. The Network Design Problem

The general network design problem can be modeled as the following bilevel program:

\[
\begin{align*}
\text{(ND)} \quad \min & \quad \sum_{s \in S} \sum_{(i,j) \in A} n^s (\rho^s_{ij} + \alpha c_{ij}) x^s_{ij} \\
\text{s.t.} & \quad y^h_{ij} \in [0, 1] \quad \forall (i,j) \in A, h \in H \\
\min & \quad \sum_{s \in S} \sum_{(i,j) \in A} n^s (c_{ij} + \beta \rho^s_{ij}) y^h_{ij}
\end{align*}
\]

Table 1: Mathematical Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( A )</td>
<td>Set of arcs</td>
</tr>
<tr>
<td>( H )</td>
<td>Set of hazmat types</td>
</tr>
<tr>
<td>( N )</td>
<td>Set of nodes</td>
</tr>
<tr>
<td>( S )</td>
<td>Set of O-D shipments</td>
</tr>
<tr>
<td>( S^h )</td>
<td>Set of O-D shipments of hazmat type ( h \in H )</td>
</tr>
<tr>
<td>( \alpha )</td>
<td>Parameter converting distance into population exposure units</td>
</tr>
<tr>
<td>( \beta )</td>
<td>Parameter converting population exposure into distance units</td>
</tr>
<tr>
<td>( c_{ij} )</td>
<td>The length of arc ((i,j) \in A )</td>
</tr>
<tr>
<td>( \epsilon^h_i )</td>
<td>Equals 1, −1, or 0 depending if node ( i \in N ) is the origin, the destination or a transshipment node for shipment ( s \in S )</td>
</tr>
<tr>
<td>( h(s) )</td>
<td>Hazmat type carried by shipment ( s \in S )</td>
</tr>
<tr>
<td>( k(s) )</td>
<td>Carrier shipping ( s \in S )</td>
</tr>
<tr>
<td>( M^h )</td>
<td>Big-M constants</td>
</tr>
<tr>
<td>( n^s )</td>
<td>Number of trucks needed by shipment ( s \in S )</td>
</tr>
<tr>
<td>( \rho^s_i )</td>
<td>Number of people exposed on arc ((i,j) ) when hazmat type ( h \in H ) is carried</td>
</tr>
<tr>
<td>( t^h_{ij} )</td>
<td>Continuous variable that represents the toll on arc ((i,j) \in A ) for hazmat type ( h \in H )</td>
</tr>
<tr>
<td>( x^s_{ij} )</td>
<td>Binary variable that represents the flow on arc ((i,j) \in A ) for shipment ( s \in S )</td>
</tr>
<tr>
<td>( y^h_{ij} )</td>
<td>Binary variable that indicates if arc ((i,j) \in A ) is open for hazmat type ( h \in H )</td>
</tr>
</tbody>
</table>

where it is understood that in the outer (or leader) problem (1)–(2), the vector \( x \) must be an optimal solution of the inner (or follower) problem (3)–(6). The parameters \( \alpha \) and \( \beta \) allow the comparison between population exposure and carriers’ costs. Their value is fixed by the regulator. If \( \alpha = \beta = 0 \), then the general ND problem reduces to that proposed by Kara and Verter (2004).

In ND, the leader (regulator) designs a network that minimizes a combination of population exposure and traveling costs, taking into account that carriers optimize their individual utility (it is assumed that all trucks associated to the same shipment take the same path). What makes the problem hard is the fact that the trade-off value between risk and cost may differ for the leader and the follower; i.e., \( \alpha \neq 1/\beta \). Although, for the sake of notational simplicity the parameter \( \beta \) is identical for all carriers, one could make it dependent on the index \( k(s) \) (carrier shipping \( s \in S \)) without changing the nature of the problem. Note that ND is separable by hazmat type. Note also that if ties between inner-level solutions (routes) occur, the bilevel formulation implies that carriers adopt the one that minimizes the leader’s objective, i.e., mainly risk.

3.1.1. Single-Level MIP Reformulations. For fixed design variables \( y^h_{ij} \), the inner problem is a
network flow problem. The binary requirement on \( x \) can thus be replaced by nonnegativity constraints, and the bound \( x^*_{ij} \leq 1 \) for \((i,j) \in A\), \( \forall s \in S \), can be dropped because it is implied by the constraint \( y^b_{ij} \leq 1 \). Hence, the follower’s linear problem can be replaced by its primal-dual optimality conditions. Let \( \pi^*_s \), \( \forall i \in N \), \( s \in S \) and \( \mu^*_s \), \( \forall (i,j) \in A, s \in S \) be the dual variables associated with constraints (4)–(5), respectively. With \( \alpha = \beta = 0 \), Kara and Verter (2004) reformulated ND as the following single-level program:

\[
\begin{align*}
\min_{y,s,x,\pi,\mu} & \quad \sum_{s \in S} \sum_{(i,j) \in A} n^s(\rho^b_{ij} + \alpha c_{ij})x^s_{ij} \\
\text{s.t.} & \quad \sum_{(i,j) \in A} x^s_{ij} - \sum_{(j,i) \in A} x^s_{ji} = e^s_i \quad \forall i \in N, s \in S \quad (7) \\
& \quad x^s_{ij} \leq y^h_{ij} \quad \forall (i,j) \in A, s \in S \\
& \quad \pi^s - \pi^s_i - \mu^s_j \leq n^s(c_{ij} + \beta \rho^h_{ij}) \\
& \quad \forall (i,j) \in A, s \in S \\
& \quad \mu^s(y^h_{ij} - x^s_{ij}) = 0 \quad \forall (i,j) \in A, s \in S \\
& \quad x^s_{ij}(\pi^s - \pi^s_j - \mu^s_i) - n^s(c_{ij} + \beta \rho^h_{ij}) = 0 \\
& \quad \forall (i,j) \in A, s \in S \\
& \quad \mu^s_i \geq 0 \quad \forall (i,j) \in A, s \in S \\
& \quad x^s_{ij} \geq 0 \quad \forall (i,j) \in A, s \in S \\
& \quad y^h_{ij} \in \{0, 1\} \quad \forall (i,j) \in A, h \in H. \\
\end{align*}
\]

Constraints (8), (9), (14), and (15) ensure primal feasibility, constraints (10) and (13) ensure dual feasibility, whereas constraints (11) and (12) force complementary slackness. Repeating \( x \) to be binary, the latter two non-convex groups of logical constraints can be linearized in the usual way. If \( M^s_{ij} \) are big-M constants, constraints (11), (12), and (14) can be replaced with the following constraints:

\[
\begin{align*}
\mu^s_{ij} & \leq M^s_{ij}(1 - (y^h_{ij} - x^s_{ij})) \quad \forall (i,j) \in A, s \in S \\
\pi^s_i - \pi^s_j - \mu^s_j & \geq n^s(c_{ij} + \beta \rho^h_{ij}) - M^s_{ij}(1 - x^s_{ij}) \\
& \quad \forall (i,j) \in A, s \in S \\
x^s_{ij} & \in \{0, 1\} \quad \forall (i,j) \in A, s \in S. \\
\end{align*}
\]

to yield a MIP.

**An Alternative MIP Reformulation.** Recall that when the design variables \( y^b_{ij} \) are fixed, the follower’s problem is linear. The single-level network design problem can thus be modeled with constraints that impose the equality of the objective function values of the follower’s primal and dual problems instead of complementary slackness conditions. In that case, constraints (11) and (12) can be replaced with the following constraints:

\[
\begin{align*}
\sum_{(i,j) \in A} n^s(c_{ij} + \beta \rho^h_{ij})x^s_{ij} = \sum_{i \in N} e^s_i \pi^s_i - \sum_{(i,j) \in A} \mu^s_s y^h_{ij} \\
& \quad \forall s \in S. \\
\end{align*}
\]

One can observe that the latter constraints are non-convex. Following the strategy described in Labbé, Marcotte, and Savard (1998), the bilinear terms can be linearized by introducing the variables \( \tau^s_{ij} = \mu^s_s y^h_{ij} \) in the model. The following linear constraints are added to ensure that \( \tau^s_{ij} = 0 \) when \( y^h_{ij} = 0 \) and \( \tau^s_{ij} = \mu^s_s \) when \( y^h_{ij} = 1 \):

\[
\begin{align*}
\tau^s_{ij} & \geq 0 \quad \forall (i,j) \in A, s \in S \\
\tau^s_{ij} - M^s_{ij} y^h_{ij} & \leq 0 \quad \forall (i,j) \in A, s \in S \\
\mu^s_s - \tau^s_{ij} & \geq 0 \quad \forall (i,j) \in A, s \in S \\
\mu^s_s - \tau^s_{ij} + M^s_{ij} y^h_{ij} & \leq M^s \quad \forall (i,j) \in A, s \in S, \\
\end{align*}
\]

and constraints (19) can be replaced with the following linear constraints:

\[
\begin{align*}
\sum_{(i,j) \in A} n^s(c_{ij} + \beta \rho^h_{ij})x^s_{ij} = \sum_{i \in N} e^s_i \pi^s_i - \sum_{(i,j) \in A} \tau^s_{ij} \\
& \quad \forall s \in S. \\
\end{align*}
\]

to yield an alternative MIP formulation solely based on the integrality of \( y \).

**3.2 A Toll Approach**

An alternative approach to inducing the use of safe routes can be achieved by a toll policy. Its mathematical formulation is as follows:

\[
\begin{align*}
\text{(TS)} \min_{t,s} & \quad \sum_{s \in S} \sum_{(i,j) \in A} n^s(\rho_{ij}^b + \alpha (c_{ij} + t_{ij}))x^s_{ij} \\
\text{s.t.} & \quad t^h_{ij} \geq 0 \quad \forall (i,j) \in A, h \in H \\
& \quad \sum_{s \in S} \sum_{(i,j) \in A} n^s(c_{ij} + t_{ij}^b + \beta \rho_{ij}^h) x^s_{ij} \\
& \quad x^s_{ij} \in \{0, 1\} \quad \forall (i,j) \in A, s \in S, \\
\end{align*}
\]

In TS, the leader sets tolls that minimize a combination of population exposure and travel costs, taking into account that the inner problem (27)–(29) minimizes the carriers’ utility (with respect to the toll policy). As was the case for ND, TS is separable by hazmat type, and one can use in the follower’s objective function (27) parameters \( \beta^s, \forall s \in S \), which are specific to each carrier. Note again that if ties between inner-level solutions (routes) occur, the bilevel formulation implies that carriers adopt the one that minimizes the leader’s objective. Actually, with TS as opposed to ND, ties could be broken through an arbitrarily small perturbation of the tolls.
3.2.1. Single-Level MIP Reformulations. Following our earlier strategy, the inner program can be replaced by its primal-dual optimality conditions. Upon the introduction of dual variables $\pi^i$, $\forall i \in N$, $s \in S$, this yields the single-level program:

$$\min \sum_{i \in N} \sum_{s \in S} n^i (p_{ij}(h) + \alpha c_{ij})x_{ij}^s + n^s \alpha \tau_{ij}^s x_{ij}^s \tag{30}$$

subject to:

$$\sum_{s \in S} x_{ij}^s - \sum_{s \in S} x_{ji}^s = e_i^s \quad \forall (i, j) \in A, \forall s \in S \tag{31}$$

$$\pi^i - \pi^j - n^s \tau_{ij}^s \leq n^i (c_{ij} + \beta \rho_{ij}^h) \quad \forall (i, j) \in A, \forall s \in S \tag{32}$$

$$x_{ij}^s (\pi^i - \pi^j - n^s \tau_{ij}^s) - n^i (c_{ij} + \beta \rho_{ij}^h) = 0 \quad \forall (i, j) \in A, \forall s \in S \tag{33}$$

$$t_{ij}^h \geq 0 \quad \forall (i, j) \in A, h \in H \tag{34}$$

$$x_{ij}^s \geq 0 \quad \forall (i, j) \in A, s \in S \tag{35}$$

Again, after resetting the binary constraints on $x$, one may linearize the complementarity constraints (33):

$$\pi^i - \pi^j - n^s \tau_{ij}^s \geq n^i (c_{ij} + \beta \rho_{ij}^h) - M_s^i (1 - x_{ij}^s) \quad \forall (i, j) \in A, s \in S \tag{36}$$

$$x_{ij}^s \in \{0, 1\} \quad \forall (i, j) \in A, s \in S, \tag{37}$$

as well as the bilinear term of the leader’s objective:

$$\tau_{ij}^s \geq 0 \quad \forall (i, j) \in A, s \in S \tag{38}$$

$$\tau_{ij}^s - M_s^i x_{ij}^s \leq 0 \quad \forall (i, j) \in A, s \in S \tag{39}$$

$$\tau_{ij}^s - t_{ij}^h \leq 0 \quad \forall (i, j) \in A, s \in S \tag{40}$$

$$\tau_{ij}^s - M_s^i x_{ij}^s \geq -M_s^i \quad \forall (i, j) \in A, s \in S \tag{41}$$

to yield a MIP formulation.

An alternative MIP formulation can be obtained by replacing constraints (36) with constraints imposing the equality of the objective function values of the follower’s primal and dual problems:

$$\sum_{(i, j) \in A} n^i (c_{ij} + \beta \rho_{ij}^h) x_{ij}^s + \sum_{(i, j) \in A} n^s \tau_{ij}^s - \sum_{i \in N} e_i^s \pi^i = 0 \quad \forall s \in S, \tag{42}$$

where the value of the variables $\tau_{ij}^s, \forall (i, j) \in A, \forall s \in S$, is already properly set by constraints (38)–(41).

Both MIP formulations require the same integer variables. When $\alpha = 0$, the outer-level objective is linear, variables $\tau_{ij}^s$ and constraints (38)–(41) are redundant in the complementary slackness formulation.

3.3. The Toll Problem Is Not Equivalent to the Design Problem

When there is only one O-D shipment, it can be easily shown that ND is equivalent to TS, in the sense that they yield the same optimal value and all suboptimal paths are made either unattractive (large tolls in TS) or unavailable (ND). Because the problem is separable by hazmat type, this also holds if there is more than one O-D shipment, provided that each carries a different type of hazmat. When more than one shipment carries the same type of hazmat, it is easy to see that by setting high-enough tolls, TS can always reduce to ND. However, the reverse is not true. We next provide an example that illustrates the added flexibility of TS over ND.

Let us consider the example of Figure 1, which involves three O-D shipments, $O_1 \rightarrow D_1$, $O_2 \rightarrow D_2$, and $O_3 \rightarrow D_3$, comprised of only one truck each. One can notice that there is only one possible path for each of $O_2 \rightarrow D_2$ and $O_1 \rightarrow D_1$, which is to go through intersections $B$, $C$, and $O_i$, $B$, respectively. Suppose that the government’s sole objective is to minimize the risk for the population ($\alpha = 0$), and the carriers’ sole objective is to minimize their traveling costs ($\beta = 0$). Suppose also that the risk on arc $(B, C)$ is larger than the one on arc $(A, D_1)$, i.e., $r_{(B, C)} > r_{(A, D_1)}$, and that the risk on all other arcs is null (nobody lives within the evacuation area). Suppose, finally, that the traveling cost on all arcs is one unit, except for arc $(A, D_1)$ and $(A, C)$, both having a traveling cost of three units. In that case, if the regulator does not interfere, $O_1 \rightarrow D_1$ would take the path going through intersections $B$, $C$ (shortest path) and the total risk would be $2r_{(B, C)}$ (recall that path $O_2 \rightarrow D_2$ also uses $(B, C)$).

With a network design policy, the regulator would close arc $(C, D_1)$ because it is the only way to prevent the use of arc $(B, C)$ for $O_1 \rightarrow D_1$. Arcs $(B, C)$ and $(O_1, B)$ cannot be closed because they must be used by $O_2 \rightarrow D_2$ and $O_3 \rightarrow D_3$, respectively. Hence, the total risk would be $r_{(B, C)} + r_{(A, D_2)}$ (path $O_2 \rightarrow D_2$ uses $(B, C)$ and path $O_1 \rightarrow D_1$ uses $(A, D_1)$). On the other
hand, a solution to the toll problem would set the tolls so that path $O_1 \rightarrow D_1$ uses neither arc $(B, C)$ nor arc $(A, D_1)$. For instance, the regulator could set a toll of two units on arc $(B, C)$ and one unit on arc $(A, D_1)$. The risk-free path $O_1 \rightarrow D_1$ going through intersections $A, C$ thus becomes attractive for the carrier as the other more risky paths, and the total risk would be $r_{(B, C)}$ (arc $(B, C)$ must still be used for $O_2 \rightarrow D_2$). In this example, if $r_{(B, C)} \equiv r_{(A, D_1)}$, then a network design policy would thus only marginally reduce risk ($r_{(B, C)} + r_{(A, D_1)}$ versus $2r_{(B, C)}$), whereas it would be halved with a toll policy ($r_{(B, C)}$ versus $2 r_{(B, C)}$). Both risk-mitigating policies are, thus, clearly not equivalent.

The main difference between the network design and the toll policies is that the latter can actually differentiate between carriers. A toll can be high enough to deter a carrier from using the corresponding arc, whereas another carrier moving the same type of hazmat might still use the arc. ND does not have the same flexibility because the design decisions have to be the same for all carriers moving the same type of hazmat.

4. Minimizing Hazmat Transport Risk via Toll Setting

The previous section demonstrated that toll policies are more flexible than network design policies and can thus induce lower hazmat transport risk for the population. In this section, we will further show that it is always possible for a regulator to find a toll policy that induces minimum risk and that finding such a solution is an easy task.

A minimum-risk flow is a solution corresponding to the minimum level of risk at which all shipments are delivered, i.e., a regulator’s ideal solution. The problem of finding a minimum-risk (MR) flow can be stated as follows:

\[
\text{(MR)} \min_{x} \sum_{s} \sum_{(i,j) \in A} n^s r_{ij} x_{ij}^s \quad \text{s.t.} \quad \sum_{(i,j) \in A} x_{ij}^s - \sum_{(j,i) \in A} x_{ij}^s = e_i^s \quad \forall i \in N, s \in S \\
x_{ij}^s \geq 0 \quad \forall (i,j) \in A, s \in S.
\]

MR is comprised of the objective function of TS (25), where the value of $\alpha$ is fixed to zero, and the flow conservation constraints. One can observe that MR is a pure network flow problem (one shortest-path problem per carrier). Let $\bar{x}$ denote the minimum-risk flow obtained by solving MR. For $\bar{x}$ to be the optimal solution to TS (i.e., for a toll policy to induce minimum risk for the population), then tolls have to be set on the road segments in such a way that $\bar{x}$ becomes the carriers’ optimal flow as well (an optimal solution to the inner problem (27)–(29)). This can be achieved by simply setting a toll on every arc with a value equal to the difference between the arc’s coefficient in the objective function of MR and the one of the follower (27). This procedure is akin to marginal cost pricing (Pigou 1920). In the present case, for a given arc $(i,j) \in A$ and a given shipment $s \in S$, this marginal cost is $(1 - \beta) \cdot r_{ij}^h - c_{ij}^s$. When tolls are set to these values, then the objective of the carriers matches that of the leader, and the carriers optimal flow obviously coincides with the minimum-risk flow. However, nothing prevents a toll calculated in this fashion from being negative (population exposure can be null on some road segments). When subsidies are not permitted, some of the constraints (26) might thus be violated. In addition, all road segments can potentially be tolled in such a solution, which makes its implementation economically and technologically difficult, if not impossible.

Alternatively, the problem of finding a set of non-negative tolls that yields the minimum-risk flow can be solved by inverse optimization, which consists of inferring the values of some model parameters (in this case the tolls can be seen as a part of the cost coefficients) given the values of the decision variables. See Dial (1999) or Ahuja and Orlin (2001) for some other applications of inverse optimization (IO). In our context, one might wish to minimize the sum of tolls raised from the carriers besides enforcing the minimum-risk solution $\bar{x}$. This is achieved by the following linear mathematical program:

\[
\text{(IO}(\bar{x})) \min_{t, \pi} \sum_{s} \sum_{(i,j) \in A} n^s t_{ij}^h \bar{x}_{ij}^h \quad \text{s.t.} \quad \pi_i^h - \pi_j^h - n^s t_{ij}^h \leq n^s (c_{ij}^h + \beta r_{ij}^h) \\
\forall (i,j) \in A, s \in S \\
\bar{x}_{ij}^h (\pi_i^h - \pi_j^h - n^s t_{ij}^h) - n^s (c_{ij}^h + \beta r_{ij}^h)) = 0 \\
\forall (i,j) \in A, s \in S \\
t_{ij}^h \geq 0 \quad \forall (i,j) \in A, h \in H,
\]

where nonnegative tolls are chosen so that the complementarity slackness conditions of the follower’s problem (carriers) are satisfied at $\bar{x}$. It is, in fact, the single-level model (31)–(35), where the variables $x_{ij}^h$ are set at $\bar{x}$. One can notice that the flow conservation constraints and the nonnegativity constraints on $x$ are not necessary in IO($\bar{x}$) because they are trivially satisfied at $\bar{x}$.

If one elects to impose the equality of the objective function values of the follower’s primal and dual problems instead of complementarity slackness conditions, constraints (48) can be replaced with the following equivalent linear constraints:

\[
\sum_{(i,j) \in A} n^s (c_{ij}^h + \beta r_{ij}^h) \bar{x}_{ij}^h + \sum_{(i,j) \in A} n^s t_{ij}^h \bar{x}_{ij}^h - \sum_{i \in N} e_i^s \pi_i^h = 0 \\
\forall s \in S.
\]
**Proposition 1.** When all road segments are subject to tolls, there exists a set of nonnegative tolls that yields a minimum-risk solution; i.e., $\text{IO}(\bar{x})$ is always feasible.

**Proof.** First, we note that there always exists a cycle-free minimum-risk solution $\bar{x}$, because this solution is the solution of a linear program and can therefore be assumed to be an extreme point of a flow polyhedron. The proof is based on an argument of Yang and Huang (2004), initially proposed in the context of force method minimum-risk solution for be assumed to be an extreme point of a flow polyhedron. Let us consider the following auxiliary linear program:

\[
\begin{aligned}
\text{(AP)} & \quad \min \sum_{s \in S} \sum_{(i,j) \in A} \eta^s (c_{ij} + \beta_{ij} h^{(o)}) x_{ij}^s \\
\text{s.t.} & \quad \sum_{(i,j) \in A} x_{ij}^s - \sum_{(j,i) \in A} x_{ji}^s = e_i^s \quad \forall i \in N, \ s \in S \\
& \quad \sum_{s \in S} \sum_{(i,j) \in A} x_{ij}^s \leq \sum_{s \in S} \sum_{(i,j) \in A} x_{ji}^s \quad \forall (i,j) \in A, h \in H \\
& \quad x_{ij}^s \geq 0 \quad \forall (i,j) \in A, s \in S,
\end{aligned}
\]

where $S^h$ is the set of O-D shipments carrying hazmat type $h \in H$.

Let $x^s_i, \forall i \in N, s \in S$, and $\lambda^h_{ij}, \forall (i,j) \in A, h \in H$, be the dual variables associated with constraints (52) and (53), respectively. For a feasible solution of AP to be optimal, then it must also satisfy the following primal-dual optimality conditions (after constraints (53) are multiplied by $-1$):

\[
\begin{aligned}
\pi^* - \pi_j^* - n^s \lambda_{ij}^{h(o)} & \leq n^s (c_{ij} + \beta_{ij} h^{(o)}) \quad \forall (i,j) \in A, s \in S \\
x_{ij}^s (\pi^*_i - \pi^*_j - n^s \lambda^h_j - n^s (c_{ij} + \beta_{ij} h^{(o)})) & = 0 \\
& \quad \forall (i,j) \in A, s \in S \\
\lambda^h_{ij} & \geq 0 \quad \forall (i,j) \in A, h \in H.
\end{aligned}
\]

One can notice that the complementary slackness conditions stating that either a constraint (53) is active, or the corresponding dual variable $\lambda^h_{ij}$ is null, are not included in the latter optimality conditions. Because all coefficients are nonnegative in the objective function of MR (used to obtain $\bar{x}$), constraints (53) are, in fact, always active in AP. Otherwise, a feasible solution to MR with a lower risk than $\bar{x}$ would exist, which is impossible because $\bar{x}$ is an optimal solution to MR.

One can also observe that the optimal value of AP (51) is $\sum_{s \in S} \sum_{(i,j) \in A} \eta^s (c_{ij} + \beta_{ij} h^{(o)}) x_{ij}^s$ (the total flow on every arc for every hazmat type is known because all constraints (53) are active in AP for every feasible solution). Hence, $\bar{x}$, which satisfies constraints (52)–(54), is an optimal solution of AP. The optimality conditions of AP are thus satisfied at $\bar{x}$, and $\text{IO}(\bar{x})$ is feasible ($\text{IO}(\bar{x})$) constraints (47)–(49) are equivalent to AP optimality conditions (55)–(57), where the toll variables correspond to the nonnegative dual variables $\lambda^h_{ij}$. Therefore, there always exists a solution to TS where all tolls are nonnegative and for which the corresponding cost is equal to the minimum risk. □

Hence, when the regulator only wishes to minimize risk, i.e., when $\alpha = 0$ in the leader’s objective function (25), TS is not a bilevel problem. However, the more general toll problem, where the regulator rather wishes to minimize a combination of population exposure and traveling costs (including paid tolls), cannot be solved by inverse optimization and is thus a true bilevel problem. Nevertheless, when $\bar{x}$ is an optimal solution to MR, where the objective function (43) is replaced with

\[
\begin{aligned}
\min \sum_{s \in S} \sum_{(i,j) \in A} \eta^s (\rho_{ij}^{h(o)} + ac_{ij}) x_{ij}^s,
\end{aligned}
\]

$\text{IO}(\bar{x})$, although not equivalent to TS, can be used as a proxy. The latter inverse optimization problem indeed finds a set of minimum tolls yielding a solution that itself minimizes a combination of population exposure and distance traveled. It has the advantage of being very easy to solve and providing solutions with a reduced combination of risk and traveled distance for the carriers, but may mean higher paid tolls compared with directly solving one of the MIP formulations for TS.

5. **Solution Methodology**

As demonstrated in the previous section, the toll problem is efficiently solved by inverse optimization when the sole objective of the regulator is to minimize hazmat transport risk. However, the general toll problem is, like the network design problem, truly bilevel. The MIP formulations proposed in §3 for TS and ND can be solved directly with a powerful linear programming software, but some enhancements are required to obtain optimal solutions in reasonable computing times.

5.1. **Bounding the Big-$M$ Constants**

In all MIP formulations presented, large constants are used. It is well known in the integer programming field that the value of such constants has an impact on the solution process, and our formulations are no exception to the general rule.

5.1.1. **MIP Formulation with Equality of the Primal and Dual Objectives.** Dewez et al. (2006) have proposed tight and valid bounds for toll problems where the formulation imposing the equality of the primal and dual objectives of the follower’s problem is used. Among other valid bounds, the authors
propose to calculate, for a given arc \((i, j) \in A\) and a given shipment \(s \in S\) (an O-D pair), the difference between the shortest distance from the origin of shipment \(s\) \((O^s)\) to its destination \((D^s)\) on a toll-free path (a path comprised of nontollable arcs), and the shortest distance from \(O^s\) to \(D^s\) using arc \((i, j)\) (when all tolls are fixed to 0). The idea is to compute the maximum tolls that could be set on every arc for every carrier. A similar procedure could be applied to network design problems. From constraints (20)–(23) and the binary constraints on \(y\), for a given arc \((i, j) \in A\) and a given shipment \(s \in S\):

(i) if \(y_{ij}^{h(s)} = 0\), then \(\tau_{ij} = 0\) and \(M_{ij}^s \geq \mu_{ij}^s\);

(ii) if \(y_{ij}^{h(s)} = 1\), then \(M_{ij}^s \geq \tau_{ij}^s\) and \(\tau_{ij}^s = \mu_{ij}^s\).

Hence, the dual variables associated with constraints (5), \(\mu_{ij}^s\), are valid upper bounds for \(M_{ij}^s\) and, because \(\mu_{ij}^s\) represents the increase in the carriers’ costs of shipment \(s\) when arc \((i, j)\) is closed, they are themselves bounded by the value of the shortest distance from \(O^s\) to \(D^s\) on a path comprised of nonclosable arcs.

In the case of the hazmat transportation problem, the existence of toll-free paths (or paths comprised only of nonclosable arcs) is not guaranteed. Unlike other toll problems, the leader’s objective in TS is not to maximize revenues raised from tolls but to minimize population exposure (and even minimize a fraction of the paid tolls because they contribute to the carriers’ costs). Hence, the problem is bounded without having to suppose that there exist toll-free paths between each origin-destination pairs. A valid upper bound on the shortest distance between an O-D pair, although less tight, can be provided by the longest path between the O-D pair. However, the problem of finding longest paths is NP-complete (unless it is on a directed acyclic graph, which is not the case here because arcs can represent two-way roads). Nevertheless, one can efficiently generate valid bounds by solving, for every O-D pair, a maximum-cost flow problem (minimum-cost flow where all costs are multiplied by 1 in the objective function), which is linear and bounded (every arc has a capacity of one unit of flow). Let \(B_{ij}^1\) be the upper bound on \(M_{ij}^s\) obtained by calculating the difference between the value of the maximum-cost flow problem from \(O^s\) to \(D^s\) (upper bound on the longest path) and the shortest distance from \(O^s\) to \(D^s\) using arc \((i, j)\). Although valid, these bounds are obtained from solutions that are not necessarily paths because they can contain cycles, both attached to the O-D paths or disjoint. For example, Figure 2 shows the solution of a maximum-cost flow problem where a unit of flow goes from \(O\) to \(D\). One can observe that the cycles \((2 \rightarrow 3 \rightarrow 2)\) and \((4 \rightarrow 5 \rightarrow 4)\) are present in the solution because they contribute to increasing the cost of the solution, but they break up the path. However, just removing both cycles \((O \rightarrow 1 \rightarrow 2 \rightarrow D)\) may yield an invalid bound. On the other hand, one can improve the bounds by limiting the flow to one at every node, and thus eliminating the cycles attached to the O-D paths (like \((2 \rightarrow 3 \rightarrow 2)\)). One can observe that this can be done without breaking the network structure, by splitting in two every node, which are afterward linked together with a capacity of one unit. Let \(B_{ij}^2 \leq B_{ij}^1\) be the upper bounds on the longest path obtained from these modified maximum-cost flow problems.

When one wishes to further improve the bounds through the incorporation of cycle elimination constraints (disjoint cycles like \((4 \rightarrow 5 \rightarrow 4)\)), then the network structure collapses and the solution process has to be embedded within a branch-and-bound procedure. Our numerical results show that when even the simplest such constraints are added (two-cycle constraints), the improved quality of the bounds is offset by the CPU time required for their computation. Nonetheless, the linear relaxation of these constrained problems yields valid upper bounds (maximization problem), denoted by \(B_{ij}^3\), which improve on \(B_{ij}^2\).

Our computational experiments show that the value of the linear relaxation and the total CPU time required to solve the network design problem are indeed improved by using \(B_{ij}^3\) compared with using \(B_{ij}^1\) and \(B_{ij}^2\), but also compared with a best empirical bound obtained by gradually decreasing a unique \(M\) appearing in every constraints (21) and (23) until the objective value stops being optimal.

5.1.2. MIP Formulation with Complementary Slackness Conditions. From constraints (16)–(18) and the binary constraints on \(y\), for a given arc \((i, j) \in A\) and a given shipment \(s \in S\), we may write:

(i) if \(x_{ij}^s = 0\) and \(y_{ij}^{h(s)} = 1\), then \(M_{ij}^s \geq \pi_i^s - \pi_j^s + n^s(c_{ij} + \beta \rho_{ij}^{h(s)})\);

(ii) if \(x_{ij}^s = 0\) and \(y_{ij}^{h(s)} = 0\), then \(M_{ij}^s \geq \mu_i^s + \pi_j^s - \pi_i^s + n^s(c_{ij} + \beta \rho_{ij}^{h(s)})\);

(iii) if \(x_{ij}^s = 1\), then \(y_{ij}^{h(s)} = 1\) and \(M_{ij}^s \geq \mu_i^s\).

Hence, the constant \(M_{ij}^s - n^s(c_{ij} + \beta \rho_{ij}^{h(s)})\) is bounded by \(\mu_i^s + \pi_j^s - \pi_i^s\), where \(\mu_i^s\) is the increase in the carriers’ costs when arc \((i, j)\) is closed for shipment \(s\), and \(\pi_j^s - \pi_i^s\) is the difference between the shortest distance from \(O^s\) to \(j\) and the shortest distance from \(O^s\) to \(D^s\).
5.2. Warm-Starting with a Toll Scheme
In some cases, the regulator can be more interested in network design solutions than in toll solutions if it feels that the former are easier to implement. Nevertheless, the toll problem (or its proxy) can be used to construct a feasible solution to the network design problem to accelerate the solution process. This is particularly true when the computing time is limited and a good feasible solution is needed rapidly (e.g., when evaluating different scenarios).

A feasible solution to ND can be found by solving a minimum-cost flow problem on a reduced network where all arcs that are tolled in the optimal solution of TS, but unused by a carrier, are removed. This latter solution \((x, y)\) can be used, after the value of the remaining variables \((\pi, \mu, f)\) have been computed, as an upper bound in a branch-and-bound procedure. It is interesting to add that a solution obtained with the toll problem proxy can also be used to warm-start the general bilevel toll problem.

The computational experiments found in §6 show that this enhancement is helpful in reducing computing times. This latter statement is true even when the improved solution process is compared with a solution process using CPLEX 10.0, which includes MIP heuristics that have been known to efficiently find integer solutions.

6. Computational Experiments
In this section, we present computational experiments that were carried out on the data found in Kara and Verter (2004). We first provide a description of these instances, followed by a summary of our computational experiments.

6.1. The Data Set
The test data are based on the highway system of Western Ontario, Canada. Geographical information systems were used to obtain a description of highway segments and information on population exposure within the region of interest. Artificial nodes were added to the real road network to ensure that the density of the population along any given arc is constant. The 1998 records of Statistics Canada (available by request from Statistics Canada) provided the list of hazmat shipments with corresponding origin, destination, hazmat type, and the number of trucks used. Four different hazmat types, accounting for 56% of all the hazmat transported, are considered: gasoline, fuel oil, alcohol, and petroleum and coal tar. However, because the first three types pose the same exposure (evacuation of the people within 800 meters, according to Transport Canada, 1996), they were grouped together. Therefore, the data set is comprised of 287 shipments of either one of two hazmat types. The road network is comprised of 48 nodes and 114 arcs (57 two-way links) affecting 31 population centers. In the study of Kara and Verter (2004), only the 53 shipments with an annual volume of 500 trucks or more were kept in the data. In the present paper, our tests are done on the same subset of shipments (500 + trucks), but also on all 287 shipments (all shipments). The partial data set is included in our computational experiments for the reader to appreciate the increased difficulty of solving the complete data set.

6.2. Computational Experiments
To evaluate the benefits of solving TS versus ND, we solved both formulations of each problem: the formulation with complementary slackness conditions (CS) (used by Kara and Verter 2004 for ND) and the alternative formulation involving the equality of the primal and dual objectives (PD). For TS (with positive \(\alpha\)) and for ND, the single-level MIP formulations were solved, using CPLEX 10.0. The big-M constants were set to \(B_{ij}^c\) (see §5.1). TS was also solved by inverse optimization (IO), and we warm-started the solution process of ND with a feasible solution constructed from the optimal set of tolls (IS) obtained by IO. All experiments were performed on an AMD Opteron Processor 248, 2,191 MHz computer, using two processors. When IS is used (and only in that case), the heuristics used by CPLEX 10.0 to generate integer solutions became unnecessary and were thus deactivated.

We first present numerical results for the case where the leader’s objective is solely to minimize the population exposure, and then for the more general case where a fraction of the carriers’ costs is also minimized in the leader’s objective function. Population exposure (PopExp), traveled distance (Dist), and computational effort (CPU) required to solve both data sets with the different approaches are compared. We also indicate, for all approaches, the number of cuts generated by CPLEX (Cuts), the number of nodes evaluated in the branch-and-bound tree (Bn), and the number of closed, or tolled, arcs (Nc-Nt) out of the 228 possibilities (114 arcs and two hazmat types).
For the toll problem, we also report the total amount of tolls paid by the carriers ($T_{paid}$). Finally, we computed the percentage change in population exposure and traveled distance between ND and TS (% chg). The notation is displayed in Table 2.

### 6.2.1. Minimizing Population Exposure

Even when the government’s sole objective is to minimize population exposure, it is advantageous to set $\alpha$ to a small positive value to favor, among minimum-risk solutions, one that minimizes carriers’ cost. For both data sets tested, $\alpha = 1$ was suitable. ND and TS were solved for $\alpha = 0$ and $\alpha = 1$. The results are presented in Table 3.

For ND, the alternative PD formulation is faster than the current CS formulation, with the exception of the smallest data set ($\alpha = 1$), where the optimal solution is found at node 0° of the branch-and-bound procedure, i.e., exploiting CPLEX heuristics and/or cuts at node 0. Recall that, in CS, binary constraints are required on $x$, whereas they are not in PD (see §3.1.1). Formulation CS could not even solve the data set involving all shipments within 36 hours of computing time unless warm-started (IS). The warm-start procedure actually improves the running time of both CS and PD, either with $\alpha = 0$ or $\alpha = 1$.

In Table 3, one observes that the number of arcs closed is significantly reduced under PD. The latter MIP formulation thus yields, in a reduced computing time, more attractive solutions for the regulator (less expensive to implement). When the leader’s objective function is perturbed to allow the minimization of the number of arcs closed, as a second objective, the problem becomes much harder to solve, without achieving a significant improvement. For instance, PD closes 14 arcs for 500 trucks, whereas the minimum possible is 11 arcs. For this reason, the results of the latter problem are not reported. If, to gain more control over the carriers, one is interested in a solution involving a large number of closed arcs, then one simply has to close all arcs that carry no flow in the ND PD IS solutions. The same result can be achieved under TS by setting the tolls on all unused arcs to arbitrarily large values.

When $\alpha = 0$, the distance traveled by the carriers can vary for the same level of risk, up to 3.6% higher for ND in all shipments, i.e., 35.81 million kilometers compared with the minimum of 34.58 million. Because the inclusion of a fraction of the carriers’ traveling costs within the leader’s objective function actually makes ND easier to solve, PD IS with $\alpha = 1$ (model 8) seems to be the best choice for ND when the government’s objective is to minimize population exposure.

TS is solved very quickly, and it yields the minimum-risk flow while minimizing the distance traveled (with $\alpha = 1$) and setting positive tolls on a small number of arcs. With a small positive $\alpha$, it is
interesting to note that for both data sets, the solution given by TS IO provides the same optimal value as the true bilevel model (TS PD, where the traveling costs include the paid tolls on top of the traveling distance); i.e., there is no solution yielding the minimum risk while reducing a combination of traveled distance and paid tolls compared with the solution provided by the proxy. For these instances, the proxy is thus equivalent to TS when the traveling costs are only reduced by (0.64%) when all shipments are considered. The total population exposure is only reduced by (0.03%) for 500 + trucks, but by a higher percentage (0.64%) when all shipments are considered. The total traveled distance can also be slightly reduced under TS. For 500 + trucks, the increase in total cost related to the tolls actually paid is slightly smaller than the decrease in total traveling costs (0.14%), whereas it is slightly higher when all shipments are considered (0.76%). It is important to note that this last statement applies no matter what the traveling costs per kilometer are. Depending on the size of the truck and on the annual utilization, the operating costs of a liquid tanker in Ontario lies between $1.40 and $2.30 per kilometer (Transport Canada 2005). Because arc costs are constants in the models, modifying the traveling costs only scales the models, as long as the large constants $M_{ij}$ are scaled proportionally. Algorithmic efficiency is the same, and the toll vectors are only scaled. Finally, Table 4 gives a summary of some data that can be obtained when comparing TS to ND solutions. From this table, one can observe that for more than 90% of all shipments, the path that is taken from the origin to the destination remains the same, and only 3.8% of the shipments incur a cost increase (path change or toll increase) under TS.

6.2.2. Bounding the Big-M Constants. As described in §5.1, the big-M constants used in the single-level MIP formulations can be set to the difference between the shortest distance from $O^i$ to $D^k$ using arc $(i, j)$, and an upper bound on the longest distance from $O^i$ to $D^k$. Recall that $B1_{ij}$ is obtained by solving a maximum-cost flow problem from $O^i$ to $D^k$, whereas $B2_{ij}$ is obtained by solving a modified problem where the flow is limited to one at every node and $B3_{ij}$ is obtained by solving the linear relaxation of the latter modified maximum-cost flow problem with added constraints to forbid $k$-cycles. In our numerical results, the addition of $k$-cycles constraints did not improve $B3_{ij}$ for $k > 2$.

Table 5 compares the different bounding methods on the basis of the total CPU time required to solve ND PD IS, with $a = 1$, and the linear relaxation value (LP value) they yield. Besides the bounds described in §5.1 ($B1_{ij}$, $B2_{ij}$, and $B3_{ij}$), two other methods were tested. Total arc costs uses a common $M$ that is set equal to the value of the sum, for all carriers, of all arc costs in the network (it is valid since every arc has a capacity of one for every carrier). This trivial bound was then decreased empirically until the optimal value of the resulting problem stopped being optimal. The latter bound (Best empirical $M$), for which the optimal value needs to be known a priori, served only as a comparison point. The methods are ranked on the basis of their corresponding LP relaxation. One observes in Table 5 that the CPU time decreases significantly with every slight improvement in the LP value (with $a = 1$, the optimal integer objective function value is 691.45), and that $B3_{ij}$ is clearly the best choice. It is interesting to note that the LP value with the best empirical $M$ (common constant) can be lower than with other bounding methods with a specific large constant for every arc and every carrier ($M_{ij}$).

Our numerical experiments have also shown that the linear programming (LP) value of the existing MIP formulation (ND CS IS based on $B3_{ij}$) is equal to the one obtained with the best empirical $M$ (687.20). Even though the upper bounds based on $B3_{ij}$ can be more than twice as large under CS as under PD, they are nevertheless quite good for CS, and the comparison between formulations CS and PD found previously remains relevant. The fact that the LP value obtained under PD is better than the one obtained under CS provides numerical evidence that PD is more efficient.

6.2.3. The General Hazmat Transportation Problem. For the problem where the leader’s objective function involves a carrier term, Figure 3 illustrates the compromise between the population exposure and the traveled distance when the parameter $a$ is gradually increased in TS (all shipments), i.e., the Pareto boundary.
One can notice in Figure 3 that the population exposure slowly increases at first, when the carriers’ costs rapidly decrease, and then more rapidly (when the population exposure goes beyond about 850 millions). This turning point corresponds to a value of $\alpha = 70$. A similar curve is found when $\alpha$ is gradually increased in the smaller data set.

Table 6 presents a comparison of the population exposure, the traveled distance, and the computational effort needed to solve ND and TS on both data sets for the turning point $\alpha$ value. For TS and ND, both single-level MIP formulations were solved (PD and CS), but because PD was again clearly the best choice, only the results with PD are included in the table. As a comparison to the true bilevel TS, we also solved a proxy of TS by IO (see §4). The solution to the latter problem also served to warm-start ND and TS. For this general problem, we indicate the leader’s objective function value when it combines risk and traveled distance ($ObjVal$), but also when it combines risk, traveled distance, and the paid tolls ($ObjVal+$). The abbreviations for all the given solution characteristics are defined in Table 2.

The same conclusions as the minimum-risk problem can be drawn for the general network design problem; i.e., the proposed alternative formulation warm-started from an initial solution constructed from a set of tolls (model 2, PD IS) is clearly the best choice for ND. It is solved efficiently, and the solutions contain a small number of closed arcs. For the smaller data set, one can observe that when TS is approximated with IO (model 3), the solution obtained is equivalent to the one given by the true bilevel model (model 4, PD IS). When all shipments are considered, the decrease in the combination of risk and traveling costs ($ObjVal$) is higher with the proxy than with the true model ($-0.34\%$ for TS IO and $-0.19\%$ for TS PD IS, compared with ND). On the other hand, when the paid tolls are taken into account, the proxy actually increases the combination of risk and total carriers’ costs ($ObjVal+$) compared with ND, whereas the true model does not. The bilevel TS is a lot harder to solve than its proxy, but not significantly harder than ND. The different methodologies can provide different scenarios to be analyzed by the regulator. Finally, Table 7 gives a summary of some data that can be obtained when comparing TS (proxy) to ND solutions. One can notice that the results found in the table are similar to the ones that were given in Table 4 for the minimum-risk problem.

### Table 6: General Network Design Problem vs. General Toll Problem ($\alpha = 70$)

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>BBn</th>
<th>Cuts</th>
<th>PopExp</th>
<th>Dist</th>
<th>ObjVal</th>
<th>Tpaid</th>
<th>ObjVal+</th>
<th>Nc-Nt</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ND</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. PD</td>
<td>0.90</td>
<td>10</td>
<td>3</td>
<td>623.59</td>
<td>24.43</td>
<td>2,333.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PD IS</td>
<td>0.19</td>
<td>18</td>
<td>5</td>
<td>623.59</td>
<td>24.43</td>
<td>2,333.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. IO</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>623.46</td>
<td>24.38</td>
<td>2,329.83</td>
<td>0.012</td>
<td>2,330.67</td>
<td>27</td>
</tr>
<tr>
<td>4. PD IS</td>
<td>0.01</td>
<td>0</td>
<td>28</td>
<td>623.46</td>
<td>24.38</td>
<td>2,329.83</td>
<td>0.012</td>
<td>2,330.67</td>
<td>16</td>
</tr>
<tr>
<td>% chg TS vs. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.02</td>
<td>-0.20</td>
<td>-0.15</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>All shipments</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ND</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. PD</td>
<td>10.41</td>
<td>160</td>
<td>5</td>
<td>855.76</td>
<td>29.76</td>
<td>2,938.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PD IS</td>
<td>4.64</td>
<td>147</td>
<td>5</td>
<td>855.76</td>
<td>29.76</td>
<td>2,938.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. IO</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>867.41</td>
<td>29.45</td>
<td>2,928.87</td>
<td>0.546</td>
<td>2,967.08</td>
<td>39</td>
</tr>
<tr>
<td>% chg 3 vs. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1.36</td>
<td>-1.04</td>
<td>-0.34</td>
<td>+0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. PD IS</td>
<td>8.71</td>
<td>353</td>
<td>81</td>
<td>857.40</td>
<td>29.66</td>
<td>2,933.29</td>
<td>0.029</td>
<td>2,933.32</td>
<td>34</td>
</tr>
<tr>
<td>% chg 4 vs. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.19</td>
<td>-0.35</td>
<td>-0.19</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note.* All CPU times are in minutes.
6.3. Summary of Computational Experiments—Constrained Case

In the models presented in the previous sections, it was assumed that all road segments were subject to restrictions (tolls or curfew). In real-world situations, however, it is possible that some of them are free of restrictions for economical, political, or technical reasons, irrespective of the actual risk. When it is the case, TS becomes a combinatorial program that can no longer be solved as a linear program. By contrast, the corresponding network design problem may become easier to solve because the number of feasible combinations is reduced. When some road segments have to stay toll-free, the optimal value of the objective function is likely to deteriorate (second-best pricing).

A weakness of the toll problem is that tolls are not necessarily set on the risky arcs. For instance, one of the optimal solutions to the example shown in Figure 1 sets tolls on arcs \((A, D_3)\) and \((O_1, B)\) (instead of \((A, D_1)\) and \((B, C)\)). The solution, although equivalent for the regulator, can be viewed as inequitable because \(O_3 \rightarrow D_3\) has to pay a toll although it uses a risk-free path, whereas \(O_2 \rightarrow D_2\) is toll-free, even though it uses a risky arc! This weakness also arises in the network design problem, because nothing prevents risk-free arcs to be closed and thus lengthen a path for a carrier that would not have gone through a populated area but can be partially dealt with by restricting the set of arcs subject to tolls or curfew, according to their associated risk. Some rules might allow an arc to be tolled, or closed, only if the corresponding population exposure exceeds a given threshold value, yielding solutions that may be more acceptable to the carriers. For the numerical results presented in this section, this minimum level of risk \((\text{Rmin})\), given by a minimum number of people exposed, was gradually increased, and Table 8 compares ND and TS for the different values, when all shipments are considered and \(\alpha = 1\). The single-level MIP formulation imposing the equality of the objective function values of the follower’s primal and dual problems (PD) was solved (with \(M_0 = B_0\)) for ND and TS. We also tried to improve the solution process of ND by warm-starting it from a feasible solution constructed with an optimal toll scheme; and the total CPU time of the latter solution process (including the computing time for solving TS) is given in the table (CPU IS). We also indicate, for every level of risk, the percentage of arcs that are subject to restrictions among all arcs in the network (\(\text{Arc\%}\)) and the percentage decrease in population exposure (\(\downarrow \text{R\%}\)) obtained with TS as opposed to ND. The abbreviations for all other solution characteristics are defined in Table 2.

One can see, from Table 8, that 55% of the network’s arcs do not involve any population exposure. Once these arcs are taken out of the subset of arcs that are subject to restrictions, i.e., when \(\text{Rmin} = 1\), the number of closable combinations is reduced and ND becomes much easier to solve. The opposite phenomenon can be observed for TS because it stops being linear when \(\text{Rmin} \geq 1\). As \(\text{Rmin}\) increases, ND continues to get easier to solve, whereas the CPU time for TS is more stable. The fact that TS is harder to solve when \(\text{Rmin} \geq 1\) makes the use of its solution as a starting point for ND less attractive, but one can observe that ND PD IS is nevertheless generally slightly faster to solve than ND PD (recall that CPU TS is already included in CPU IS).

One can also observe in Table 8 that from \(\text{Rmin} = 0\) to 1,500, the total carriers’ costs (distance traveled and tolls) and the total population exposure do not increase for TS, while the number of tolled arcs decreases as \(\text{Rmin}\) increases. In addition, the set of tolled arcs in the solutions also changes. Hence, the

<table>
<thead>
<tr>
<th>Table 7</th>
<th>From ND to TS: Some Interesting Data—General Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>% of all shipments</td>
</tr>
<tr>
<td>1. Same path—no tax</td>
<td>81.2</td>
</tr>
<tr>
<td>2. Same path—taxed in TS</td>
<td>5.2</td>
</tr>
<tr>
<td>3. New path in TS—overall cost decrease</td>
<td>11.5</td>
</tr>
<tr>
<td>4. New path in TS—overall cost increase</td>
<td>2.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 8</th>
<th>Network Design Problem vs. Toll Problem—Constrained Case</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rmin</strong></td>
<td><strong>Arc%</strong></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>500</td>
<td>40</td>
</tr>
<tr>
<td>1,500</td>
<td>37</td>
</tr>
<tr>
<td>3,000</td>
<td>32</td>
</tr>
<tr>
<td>5,000</td>
<td>25</td>
</tr>
<tr>
<td>7,000</td>
<td>23</td>
</tr>
<tr>
<td>10,000</td>
<td>18</td>
</tr>
</tbody>
</table>

*Note.* All CPU times are in minutes.
solution with $R_{\text{min}} = 1,500$ is as interesting for the regulator as the one with $R_{\text{min}} = 0$, while being perceived as more fair from the carriers. It has the advantage of not restricting the use of less-risky arcs and thus preventing situations where a carrier pays a toll even if it does not go through any populated area (just to prevent another carrier from using a risky path). For the network design problem, the population exposure starts increasing when $R_{\text{min}} = 1,500$. At that minimum-risk level, there is, in fact, a 1% difference in population exposure when the design problem is solved instead of the toll problem, which is solved about six times faster than ND. One can finally observe that when $R_{\text{min}} = 10,000$, TS becomes equivalent to ND. When only the most risky arcs are subject to restrictions, no tolls are paid by the carriers (they only serve to discourage the carriers to use the corresponding arcs) and the optimal risk for the population and costs for the carriers are the same in TS and in ND. It is interesting to add that when the optimal value is the minimum risk, i.e., up until $R_{\text{min}} = 3,000$, it was always possible to solve TN with inverse optimization, in a fraction of TS PD CPU, which makes warm-starting ND with TS even more advantageous.

In summary, these constrained hazmat problems are interesting because they produce solutions that can be more acceptable to the carriers. For these problems, toll setting still finds better solutions than network design in a reduced computing time.

7. Conclusion

This paper has introduced toll setting as an efficient policy tool for mitigating the public and environmental risks associated with dangerous goods shipments. We compared the hazmat TS problem, where tolls are imposed on road segments in order to channel the hazmat shipments toward less-populated roads; with the more popular hazmat ND problem, where certain road segments are closed to hazmat transportation. We demonstrated that TS, by being able to differentiate between carriers, can achieve higher reductions in the associated transport risks while only slightly increasing the carriers’ costs, and can be used by a regulator to obtain minimum-risk solutions very efficiently. The paper has also proposed a more efficient ND formulation requiring a reduced number of integer variables and introduced an improved solution methodology where the toll problem is used to construct an initial solution. Finally, this paper has proposed valid and easily calculated bounds for the value of the large constants used in the MIP formulations. The bounds that are proposed in the literature for other toll problems always rely on the existence of a toll-free path, which is not the case for this hazmat transportation problem. Together, the proposed enhancements have allowed us to solve a much larger instance of the network design problem in reasonable computing time, whereas the former approach proposed by Kara and Verter (2004) could not. The paper further proposed to limit the set of road segments subject to restrictions to improve the buy-in received from the hazmat carriers. Future developments of our approach will consider both risk equity among the different population centers and cost equity among the carriers.

Acknowledgments

This research has been supported in part by a team grant from FQRNT and by NSERC discovery grants (first, third, and fourth authors). The authors are members of the Center for Research on Transportation (CRT) in Montréal, which provided the infrastructure for research. The generosity of Bahar Kara of Bilkent University in sharing the Western Ontario data set with the authors is greatly appreciated. The authors are also grateful to three anonymous referees for their valuable comments.

References


