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ABSTRACT In this study, we establish a parallel between two classes of pricing problems that have
attracted the attention of researchers in marketing, theoretical computer science and operations research, each
community addressing issues from its own vantage point. More precisely, we contrast the problems of pricing a
network or a product line, in order to achieve maximum revenue, given that customers maximize their individual
utility. Throughout the article, we focus on problems that can be formulated as mixed-integer programs.
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INTRODUCTION
The issue of setting the right price for a

product lies at the core of the economics or

marketing processes. In this study, we focus on

mathematical models that are fairly elementary,

yet pose challenges, both theoretical and
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computational. More specifically, we contrast

two streams of research that have lived in

parallel in the marketing and operations

research literature for sometime. The first,

examplified by the seminal paper of Dobson

and Kalish (1988), consists in devising profit-

maximizing prices for a generic product sold

on a market of utility-maximizing customers.

The second, related to the paper Labbé et al

(1998), deals with the setting of revenue-

maximizing tolls on a subset of links of a

transportation network. While the first leads to

‘classical’ mathematical programming formula-

tions, the second one is set within the frame-

work of bilevel programming, a branch of

optimization that deals with mathematical

programs whose constraint set is described by

an auxiliary problem, and is closely related to

Stackelberg games in economics.

The aim of this study is to provide an

overview of results, either theoretical (worst-

case complexity), methodological (applications)

or numerical (exact or heuristic algorithms),

associated with both the original models and

variants thereof. Focusing on models that

can be formulated as mixed-integer programs,

we highlight the relationships between these

models, as well as their treatment by the various

communities of researchers. This article is

organized as follows: the next section is

devoted to product pricing models, the sub-

sequent section to toll setting and the penulti-

mate section to the relationships between the

respective models.

PRODUCT PRICING
In the area of pricing that we are concerned

with, three essential paradigms have emerged:

buyer welfare, seller welfare and share-of-

choices. Although all these consider utility-

maximizing customers, they involve different

objective functions and/or constraints. As they

frequently appear jointly in the literature, we

first provide a presentation of all three, followed

by an overview of the main contributions.

Next, various extensions of the seller welfare

problem are presented. Throughout, we do not

consider models where customer choice is

subject to randomness and could be cast within

the framework of probabilistic discrete choice

theory. The interested reader is referred to

Krieger and Green (2002), Shioda et al (2007)

or Maddah and Bish (2008) for further details

with regard to this topic.

Three paradigms
Given products and purchasers, the buyer and

seller welfare problems consist in determining

which subset of products should be introduced

into the market, so as to maximize the sum of

the purchasers’ utilities and the seller’s revenue,

respectively. The share-of-choices problem

differs in that its aim is to devise a ‘profile’

for each product so as to maximize the number

of satisfied purchasers.

We now introduce a common notation. Let

K be a set of purchasers and I a set of products.

The purchasers’ preferences for the various

products are described by a utility matrix

whose elements are ui
k: kAK, iAI . In the

buyer and seller welfare problems, a subset of

products SDI is first introduced into the

market, the cardinality of S being restricted by

an upper bound Y. Each purchaser then selects

the product with the largest utility, so far as this

utility is positive, otherwise he refrains from

buying. Let yi denote the binary variable that

specifies whether a product i is introduced into

the market or not, while xi
k specifies whether

product i is selected by purchaser k. The buyer

welfare problem can then be formulated as the

mixed-integer program:

BWP: max
x;y

X
k2K

X
i2I

uk
i x

k
i

subject to:X
j2I

uk
j x

k
j Xuk

i yi 8k 2 K; 8i 2 I ð1Þ

X
i2I

xk
i p1 8k 2 K ð2Þ

xk
i pyi 8k 2 K; 8i 2 I ð3Þ
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X
i2I

yipY ð4Þ

xk
i ; yi 2 f0; 1g 8k 2 K; 8i 2 I : ð5Þ

In the above, global utility is maximized,

while ensuring by constraints (1) that individual

utility-maximizing products are purchased.

Constraints (2) force each purchaser to select

at most one product, constraints (3) impose that

the products selected by the purchasers are

available, while constraint (4) provides an upper

bound on the number of products that can be

introduced into the market.

If one integrates additional parameters vi
k

representing the seller’s income resulting from

the purchase by customer kAK of product

iAI , then we can formulate the seller welfare

problem as:

SWP: max
x;y

X
k2K

X
i2I

vk
i x

k
i

subject to constraints ð1Þ � ð5Þ: ð6Þ

In the share-of-choices problem framework,

product description is more detailed. More

specifically, a set A of attributes, which can

occur in various levels belonging to the set La,

is associated with each product. A profile for

product iAI is then characterized by the

assignment of a level to each attribute of a

given product, and is represented by a vector

P¼ (l1, l2,y, l|A|) of its attribute levels. We let

Pi denote the set of available profiles for

product i. On the demand side, each purchaser

k assigns a preference value wal
k to level l of

attribute a, which are normalized to lie

between –1 and 1. Next, purchaser k selects

the product i whose profile pAPi has the largest

utility wkðpÞ ¼ wk
1l1
þ wk

2l2
þ � � � þ wk

jAjljAj, pro-

vided that the latter is positive. Other-

wise he refrains from buying and is not

‘satisfied’. On the supply side, a firm deter-

mines profiles pAPi for each product iAI so as

to maximize the number of satisfied customers.

In the mathematical programming formula-

tion of the problem, binary variables zk specify

whether or not the purchaser k is satisfied,

while variables qip are set to 1 if the profile

pAPi is assigned to product i. With the help of

the assignment variables xi
k: kAK, iAI intro-

duced earlier, the share-of-choices problem can

be formulated as:

SCP: max
q; x; z

X
k2K

zk

subject to: X
p2P i

qip ¼ 1 8i 2 I ð7Þ

wkðpÞqipx
k
i X0

8k 2 K;8i 2 I ;8p 2 Pi ð8Þ
X

j2I ; �p2P j

wkð�pÞqj�px
k
j XwkðpÞzkqip

8k 2 K;8i 2 I ;8p 2 Pi ð9Þ
X
i2I

xk
i p1 8k 2 K ð10Þ

xk
i pzk 8k 2 K; 8i 2 I ð11Þ

qip; x
k
i ; z

k 2 f0; 1g

8k 2 K; 8i 2 I ; 8p 2 P i: ð12Þ

Constraints (7) ensure that a profile is

assigned to each product. Constraints (8)

impose that a product can be selected by a

purchaser only if the corresponding profile

has positive utility. Note that, although this

requirement was implicitly ensured in the

formulations of the buyer and seller welfare

problems, it is not the case for the share-of-

choices problem. As before, constraints (9)

imply that a purchaser selects the product

maximizing its own utility, provided that the

latter is positive. Finally, constraints (10) ensure

that a purchaser buys at most one product

while, according to (11), a customer who buys

a product is characterized as ‘satisfied’.

Several variants of the above problems

have been investigated in the literature. We

start with Green and Krieger (1985), who

consider the buyer welfare problem under the

Heilporn et al
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assumption that the cardinality of the subset S
is fixed, that is,

P
iAIyi¼ |S|. In view of the

intractability of enumerating all feasible solu-

tions, the authors propose for its solution

heuristics based on a greedy approach, as well

as Lagrangean relaxation. Whereas these meth-

ods proved effective for the buyer welfare

problem, they did not perform well for the

seller welfare problem. According to these

authors, neither Lagrangean relaxation nor

exact methods can address with some

success instances of realistic sizes. Moreover, a

greedy heuristic approach yielded very poor

results.

For the single-product share-of-choices

problem, Kohli and Krishnamurti (1987)

showed that a fast dynamic programming

heuristic outperformed a Lagrangean relaxation

heuristic in terms of both computational

time and quality of solutions. On the theore-

tical side, NP-hardness of this problem was

proved by Kohli and Krishnamurti (1989).

Based upon a graph representation of the

problem, these authors developed two heuristic

procedures based, respectively, on dynamic

programming and shortest path computations.

Although both heuristics possess arbitrarily bad

worst-case bounds, they exibited good practical

performance, the dynamic programming

procedure performing better than that based

on shortest paths.

Kohli and Sukumar (1990) presented dy-

namic programming heuristics for the buyer

welfare, seller welfare and share-of-choices

problems, assuming multi-product sets for the

latter, and a multi-attribute structure similar

to that of the share-of-choices problem for

buyer and seller welfare (levels have to be

determined for each attribute of the products).

For multi-attribute buyer welfare, seller welfare

and share-of-choices problems, Nair et al

(1995) implemented a beam search heuristic,

that is, breadth-first search with no back-

tracking, with breadth limited to a given

number of promising nodes in the enumeration

tree, obtaining results superior to those of

Kohli and Sukumar. Keeping with meta-

heuristics, Alexouda and Paparrizos (2001)

implemented genetic algorithms for solving

the multi-attribute seller welfare problem.

The method outperformed the beam search

heuristic of Nair et al, both in terms of solution

quality and computing times. Finally, observing

that constraint (1) is only active when there

exists jAI such that xj
k¼ 1 and uj

koui
k

(then one must have yi¼ 0), McBride and

Zufryden (1988) replaced constraint (1) of the

seller welfare problem by the equivalent:

yi þ xk
j p1

8k 2 K; 8i; j 2 I : i 6¼ j; uk
i 4uk

j :

This reformulation, which could be

solved by a generic mathematical solver,

yielded good results on small- to medium-size

instances.

Simultaneous profit and bundle
pricing problems
In a seminal paper, Dobson and Kalish (1988)

considered an extension of the seller welfare

problem, in which price variables pi: iAI are

explicitly considered. The profit problem consists

in determining a subset of products SDI and

the corresponding product prices yielding

maximum profit for the seller. Note that, in

contrast with the model of Green and Krieger

(1985), the number of products in subset S is

endogenous. The population of purchasers is

partitioned into segments, such that kAK now

denotes a purchaser segment, rather than a

single purchaser as previously. Each segment is

characterized by its total demand Zk: kAK.

Further, a reservation price ri
k provides a

measure of the value of product i for segment

k of the customer population. The utility ui
k

associated to segment kAK and product iAI is

then defined as the difference between the

reservation price ri
k and the product price pi.

Also, the cost of introducing a product i into

the market induces a fixed cost fi for the seller.

Finally, in order to manage the case in which a

segment refrains of buying because all corre-

sponding utilities are negative, a ‘null’ product

Pricing problems in transportation and marketing
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is introduced. The mixed-integer program-

ming formulation of this pricing problem is

as follows:

PP: max
p; x; y

X
k2K;i2I

Zkpix
k
i �

X
i2I

fiyi

subject to: X
j2I

ðrk
j � pjÞxk

j Xðrk
i � piÞyi

8k 2 K;8i 2 I ð13ÞX
i2I

xk
i ¼ 1 8k 2 K ð14Þ

xk
i pyi 8k 2 K; 8i 2 I ð15Þ

X
i2I

yipY ð16Þ

p0 ¼ 0 ð17Þ

piX0 8i 2 I ð18Þ

xk
i ; yi 2 f0; 1g 8k 2 K; 8i 2 I : ð19Þ

For the numerical solution of this problem,

the authors proposed a ‘reverse greedy heur-

istic’ that exploits the underlying structure of

the problem. More precisely, the optimal prices

corresponding to a given assignment of pro-

ducts to customers can be computed in

polynomial time by solving the shortest path

problems. The procedure stops when no

further improvement can be achieved. The

selection criterion for choosing the segment to

reassign at each iteration is the seller’s profit,

that is, among all segments that prevent the

seller from increasing its prices, one selects the

one that would lead to the largest improvement

of the objective function. In a related paper,

Dobson and Kalish (1993) adapted their results

to the buyer welfare and profit problems. They

formally show that the buyer welfare and

the plant location problems are equivalent;

hence the former is NP-hard. They also

propose heuristics for this problem: greedy

heuristic (start with an empty subset S of

products and append products one at a time in

S, whenever this increases profit), greedy

interchange (greedy assignment of purchasers

to products, followed by pairwise product

interchanges until no improvement is possible),

reverse greedy (see Dobson and Kalish, 1988)

and reverse greedy interchange. These authors

also showed that the profit problem is NP-hard

through a reduction involving Vertex Cover.

For this problem, they considered the reverse

greedy heuristic introduced in Dobson and

Kalish (1988), as well as a greedy heuristic.

These algorithms have been adapted by

Shioda et al (forthcoming) to the full profit

problem variant, where all products are available

(Y¼N, S¼I and yi¼ 1 for all i in I) and fixed

costs of putting a product on the market are set

to zero. These authors also derived a novel

linear mixed-integer formulation for which

they derived valid inequalities.

Hanson and Martin (1990) considered the

profit problem with zero fixed costs in the

context of ‘global elements’, such as data-

processing software, that possess up to n

components. One can then form 2n�1 subsets

or ‘products’. For this variant of the bundle

pricing problem, they assumed that product prices

are sub-additive, that is, whenever product iAI
is the union of other products, then its price

is lower than the sum of the prices of these

other products:

pip
X
j2S

pj

8i 2 I ;8S � I : i ¼ [j2S j ð20Þ

Based on a mixed-integer formulation of the

problem, they devised an exact solution

method. Whenever the number of components

n is large, the authors restricted the number of

subsets, observing that there often exists a ‘key

component’ that belongs to all subsets supplied

on the market, and to which additional

components could be appended. In Guruswani

et al (2005), all products of the bundle pricing

problem are considered, and sub-additivity is

not assumed. The problem is shown to be

Heilporn et al
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APX-hard1 through a reduction to Vertex

Cover, and a logarithmic approximation algo-

rithm is proposed. Approximation or poly-

nomial time algorithms, together with other

theoretical results, were also provided for

specific cases.

Finally, Nichols and Venkataramanan (2005)

considered a formulation of the conjoint buyer

welfare and profit problem similar to the one

suggested by Dobson and Kalish (1988, 1993),

in which the objective function consists of a

weighted sum of seller’s income and purchasers’

utilities (that is, a weighted sum of both

objective functions from the buyer welfare

and profit problems). Three heuristics were

proposed for its solution. The first one is a

‘pure’ genetic algorithm used for comparison

purposes. Next, a genetic procedure was used

to generate product prices, while utility-

maximizing assignments were obtained by

applying a partial enumeration (branch-and-

bound) procedure. A third heuristic randomly

selects the products to be introduced into the

market. Next, for a given set of flows,

corresponding prices are obtained by solving

an inverse problem. The results show that, on

large instances, the relaxation methods perform

better than a pure genetic algorithm, thus

prompting the development of approaches

where only a subset of ‘hard’ variables is

genetically treated.

We close this section with three figures

(Figures 1, 2 and 3) that illustrate a taxonomy

of research pertaining to the buyer welfare,

seller welfare and share-of-choices problems,

respectively.

NETWORK PRICING
In this section, we address the issue of pricing

the arcs of a general transportation network.

A generic network pricing problem is introduced

in the section ‘Problem definition’ together

with the main contributions from the litera-

ture. Several variants involving specific network

structures are presented in the section ‘High-

way pricing’.

Problem definition
Let us consider a transportation network

composed of a set of nodes (cities), a set of

arcs (routes) linking pairs of nodes, and

commodities corresponding to sets of commu-

ters having identical origins and destinations.

In addition to a fixed travel cost associated

with every arc of the network, tolls are imposed

Buyer’s Welfare
Problem

Formulation with
⎟ S ⎢exogenous

Formulation with
⎟ S ⎢endogenous

Exact Inexact Exact Inexact

Other

Greedy (interchange)
heuristic (Green 85)

Dynamic-programming
heuristic (Kohli 90)

Solution
approaches

Lagrangian relaxation
(Green 85)

Equivalent to the
Plant Location

Problem (Dobson
93) → NP-hard

Solution
approaches

Greedy heuristic
(Dobson 93)

Dynamic-programming
heuristic (Kohli 90)

Figure 1: Taxonomy for the buyer welfare problem.
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by the authority on a specified subset of arcs of

the network. The network pricing problem consists

in devising the toll levels in order to maximize

the authority’s revenues. Reacting to tolls, each

commodity travels on the cheapest path2 from

its origin to its destination, with respect to a cost

set to the sum of tolls and fixed costs.

As tolls are set before flows are assigned, the

problem belongs to a class of hierarchical,

sequential and non-cooperative optimization

problems known as bilevel programs, in which

a leader (the authority) integrates within its

optimization process the reaction of a follower

(the commodities) to its decisions. Bilevel

programming and the related mathematical

programs with equilibrium constraints have

been the topic of several studies, for which

the reader is referred to the surveys of Dempe

(2002), Marcotte and Savard (2005), Colson

et al (2007) and Luo et al (1996).

Seller’s Welfare
Problem

Formulation with fixed cost
for a product introduction in

the market

Formulation without fixed
cost for a product

introduction in the market

Exact Inexact

Exact Inexact

(Reverse) Greedy heuristic
(Dobson 88, Dobson 93)

Profit Problem: models
including price variables
(Dobson 88, Dobson 93)

Greedy heuristic
(Green 85)

Dynamic-programming
heuristic (Kohli 90)

Using X-system
(McBryde88)

Solution
approaches

Solution
approaches

Other

NP-hard
(Dobson 93)

Problem structure study when
the reservation matrix satisfies
Monge properties (Gunluk 06)

Similar to:

Bundle Pricing
(Hanson 90,

Guruswani 05)

Conjoint Buyer’s and
Profit Problem

(Nichols05)

Figure 2: Main contributions to the seller welfare problem.

Share-of-Choices
Problem

Solution
approaches Other

Exact Inexact NP-hard (Kohli 89)

Greedy heuristic
(Kohli 89)

Dynamic-programming
heuristic (Kohli 89,

Kohli 90)

Figure 3: Main contributions to the share-of-choices problem.
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Bilevel network pricing was first introduced

by Labbé et al (1998). They considered a multi-

commodity network defined by a node set N ,

an arc set I,J and a set of commodities

{(ok, dk): kAK}, each one endowed with a

demand Zk. Fixed costs ci are supplied for all

arcs iAI,J , and provide a measure of delay,

distance or gas consumption. Let I be the

subset of arcs i upon which tolls ti can be added

to the original fixed-cost vector c, and J the

complementary subset of toll free arcs. Upon

the introduction of variables xi
k that specify

the unit flows on commodities kAK and

arcs iAI,J , the network pricing problem

can be formulated as the bilevel program

(Labbé et al, 1998):

NP: max
t; x

X
k2K

X
i2I

Zktix
k
i

subject to:

tiX0 8i 2 I ð21Þ

x 2 arg min
x

X
k2K

X
i2I
ðci þ tiÞxk

i þ
X
i2J

cix
k
i

 !

ð22Þ

subject to:

X
i2n�\ðI[J Þ

xk
i �

X
i2nþ\ðI[J Þ

xk
i ¼

�1 if n ¼ ok

1 if n ¼ dk

0 otherwise

8>><
>>:

8k 2 K; 8n 2 N ð23Þ

0pxk
i p1 8k 2 K;8i 2 I ; ð24Þ

where n�(respectively nþ ) denotes the set of

arcs having node n as their head (respectively

tail). Note that, because the constraint matrix

associated with a shortest path problem is

totally unimodular, the lower level solutions

can be restricted to origin-destinations paths

carrying either no flow or the total origin-

destination flow.

Alternatively to the above arc flow formula-

tion, one may express the optimality of the

lower-level problem in terms of path flows. To

this aim, let us introduce the set Pk of feasible

paths associated with commodity kAK. This

yields a binary program that can be linearized

by introducing variables pi
k:kAK,iAI that

represent the actual unit revenue raised from

each arc-commodity, that is, pi
k¼ tixi

k for all

kAK and iAI . Based on these remarks, one

can derive a Mixed Integer Linear Program for

the problem (see Labbé et al, 1998; Heilporn

et al, 2006):

NP2: max
X
k2K

X
i2I

Zkpk
i

subject to:

X
i2n�\ðI[J Þ

xk
i �

X
i2nþ\ðI[J Þ

xk
i ¼

�1 if n ¼ ok

1 if n ¼ dk

0 otherwise

8><
>:

8k 2 K; 8n 2 N ð25Þ

X
i2I
ðcixk

i þ pk
i Þ þ

X
i2J

cix
k
i

p
X

i2I\p

ðci þ tiÞ þ
X

i2J\p

ci

8k 2 K;8p 2 Pk ð26Þ

pk
i pMk

i xk
i 8k 2 K;8i 2 I ð27Þ

ti � pk
i pNið1� xk

i Þ 8k 2 K; 8i 2 I ð28Þ

pk
i pti 8k 2 K; 8i 2 I ð29Þ

pk
i X0 8k 2 K; 8i 2 I ð30Þ

xk
i 2 f0; 1g 8k 2 K; 8i 2 I ð31Þ

xk
i X0 8k 2 K; 8i 2 J ; ð32Þ

where Mi
k and Ni are ‘big-M’ constants that

must theoretically be set to an upper bound on

the largest possible revenue associated with arc i

and commodity k. In this formulation, (25)

Pricing problems in transportation and marketing
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describe the polyhedron of feasible flows (the

flow conservation equations), constraints (26)

impose that the cost of an optimal path for a

commodity kAK is smaller than or equal to the

cost of any other path for the associated

commodity, and (27), (28) and (29) come from

the linearization of the model and ensure that

pi
k¼ tixi

k for all kAK,iAI .

The network pricing problem has been

investigated by several researchers. From the

theoretical standpoint, Roch et al (2005) and

Grigoriev et al (2005) have proved its NP-

hardness, under various restrictive conditions.

However, some particular cases are polynomi-

ally solvable, such as the network pricing

problem with a single toll arc (see Brotcorne

et al, 2000). In fact, Van Hoesel et al (2003)

showed that, when the number of toll arcs is

bounded, the optimal solution can be obtained

by solving a polynomial number of linear

programs. The latter authors also considered

other polynomially solvable variants.

In contrast with the ‘arc formulation’ NP2,

Bouhtou et al (2007) and Didi-Biha et al (2006)

have proposed formulations involving path

flow variables. These are based on a graph

reduction whose size is, in practice, much

smaller than that of the original graph.

Unfortunately, no off-the-shelf software

can address the above formulations for large-

scale instances, mainly because of the poor

quality of the upper bound obtained by

relaxing the integrality requirements in

mixed-integer formulations. To overcome this

difficulty, several avenues have been investi-

gated. By computing upper bounds on the

toll arcs, Dewez et al (2008) obtained tight

values for the constants Mi
k, Ni: kAK, iAI

in formulation NP2, while simultaneously

introducing valid inequalities for both the arc

and path formulations. The authors showed

that the proposed bounds allow to halve the

duality gap at the root node of the branch-

and-bound tree, whereas the valid cuts allow

a further reduction of the number of explored

nodes, as well as a reduction of computing

time.

Other improvements can be achieved by

focusing on the efficient resolution of the

inverse problem, which consists in finding

revenue-maximizing tolls compatible with a

given flow assignment. As the latter possesses

the structure of a side-constrained flow pro-

blem, it is amenable to column generation (see

Cirinei, 2007). Numerical tests indicated that

the method significantly speeds up the solution

process. Coupled with an efficient generation

of the lower level solutions and a clever use of

data structures, the algorithm also improves

sharply the upper bounds on the revenue.

On larger instances, Brotcorne et al (2001)

presented two heuristics: a quick and greedy

method that sets tolls sequentially over the arcs,

and a primal-dual approach based on penalizing

the complementarity constraints that occur

when the lower-level problem is replaced by

its primal-dual optimality conditions. A similar

approach was applied by Brotcorne et al (2000)

in the framework of a single-commodity

transportation problem. From a different per-

spective, Cirinei (2007) implemented a tabu

metaheuristic that exploits the network struc-

ture of the lower-level problem. He obtained

better results than Brotcorne et al (2001). Let us

also mention a paper of Roch et al (2005),

in which an approximation algorithm is

proposed for the single-commodity network

pricing problem together with worst case

lower bounds.

Brotcorne et al (2008) addressed an extension

of the network pricing problem in which the

leader must simultaneously determine which

toll arcs belong to the network, and is

reminiscent of the profit problem introduced

by Dobson and Kalish (1988). They proposed

for its solution a Lagrangean-based heuristic. In

the next subsection, we provide an overview of

variants of the basic network pricing problem.

Highway pricing
The problem of maximizing the revenue raised

from a toll highway can be cast in the

framework of network pricing. For instance,

Dewez (2004), Heilporn (2008) and Heilporn

Heilporn et al
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et al (2009, forthcoming) have considered

network topologies that reflect the features of

an actual toll highway. More specifically, they

consider structured networks composed of a

toll path (the highway), toll free arcs linking

the origin and destination nodes, and toll free

arcs to and from the highway. Commodities

(commuters) either travel on the shortest toll

free path, or take the highway, using shortest

toll free paths to and from it. Throughout,

we assume that commodities who have left the

highway are not allowed to re-enter, which

implies that paths are uniquely determined

by their respective entry and exit nodes. In

the case where tolls are set with respect

to entry–exit pairs, the situation can be

represented by a complete toll subgraph where

every single feasible toll subpath (that is, a

subpath on the highway) from any origin to

any destination in the network is represented

by exactly one toll arc. This highway structure

is illustrated in Figure 4, in which toll arcs are

dashed.

Precisely, for each toll arc iAI , let tail(i),

head(i)AN denote its tail and head nodes,

respectively. For each commodity kAK and for

each toll arc iAI , let ci
k denote the fixed cost on

the corresponding path ok-tail(i)-head(i)-
dk, where tail(i), head(i)AN are the entry and

exit nodes on the highway, respectively. The

fixed cost on the toll free path ok-dk is

denoted by cod
k . For each commodity kAK

and for each toll arc iAI , variable xi
k represents

the unit flow on the corresponding path

ok-tail(i)-head(i)-dk, while variable ti
denotes the toll on the toll arc i. This yields

the bilevel program (Labbé et al, 1998; Dewez,

2004):

HP: max
t;x

X
k2K

X
i2I

Zktix
k
i

subject to:

tiX0 8i 2 I ð33Þ

x 2 arg min
x

X
k2K

X
i2I
ðcki þ tiÞxk

i þ ckodð1�
X
i2I

xk
i Þ

 !

ð34Þ
subject to: X

i2I
xk

i p1 8k 2 K ð35Þ

0pxk
i p1 8k 2 K; 8i 2 I ; ð36Þ

Set of entry
and exit nodesSet of origin and

destination nodes

Set of origin and
destination nodes

and exit nodes
Set of entry

Figure 4: Transformation of the highway (on the left) into a complete toll subgraph (on the right).

Note: Only the shortest toll free paths need to be represented in addition to the highway, as commodities are assigned to

the shortest paths.
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Constraints (35) ensure flow conservation.

Indeed, if xi
k¼ 0 for all toll arcs iAI , the

corresponding commodity is assigned to the

shortest toll free path from its origin to its

destination.

Similar to the network pricing problem,

Heilporn et al (forthcoming) expressed the

optimality of the lower-level problem in terms

of path flows. Variables pi
k: kAK, iAI are also

introduced so that pi
k¼ tixi

k for all kAK and

iAI . This yields the linear mixed-integer

program (see Dewez, 2004; Heilporn, 2008):

HP2 : max
p

X
k2K

X
i2I

Zkpk
i

subject to: X
i2I

xk
i p1 8k 2 K ð37Þ

X
j2I
ðpk

j þ ckj xk
j Þþckodð1�

X
j2I

xk
j Þpcki þ ti

8k 2 K; 8i 2 I ð38Þ

pk
i pMk

i xk
i 8k 2 K;8i 2 I ð39Þ

ti � pk
i pNið1� xk

i Þ 8k 2 K; 8i 2 I ð40Þ

pk
i pti 8k 2 K; 8i 2 I ð41Þ

pk
i X0 8i 2 I ð42Þ

xk
i 2 f0; 1g 8k 2 K; 8i 2 I ; ð43Þ

where Mi
k: kAK, iAI and Ni:iAI are suitably

large constants. By the flow constraints (37),

each commodity kAK chooses at most one toll

path i. By constraints (38), the cost of the

optimal path for a commodity kAK is smaller

than the cost of any other path for this

commodity. Constraints (39)–(41) ensure that

the actual revenue is consistent with the

commodity revenue, that is, pi
k¼ tixi

k for all

kAK, iAI .

Next, for the sake of realism, additional

constraints on the toll structure are appended to

the model. The triangle constraints (44) ensure

that it cannot be profitable to leave and re-enter

the highway, whereas the monotonicity con-

straints (45) force the toll along a path to

exceed the toll on any of its subpaths, that is:

tiptj þ tl 8i; j; l 2 I :

tailðiÞ ¼ tailðjÞ; headðjÞ
¼ tailðlÞ; headðlÞ ¼ headðiÞ

ð44Þ

tiXtj 8i; j 2I : tailðiÞ ¼ tailðjÞo headðiÞ ¼ headðjÞ þ1

or tailðiÞ ¼ tailðjÞ � 1oheadðiÞ ¼ headðjÞ

or tailðiÞ ¼ tailðjÞ4headðiÞ ¼ headðjÞ � 1

or tailðiÞ ¼ tailðjÞ þ 14headðiÞ ¼ headðjÞ

ð45Þ

In the absence of monotonicity constraints,

the single-commodity problem is trivially

solved. Indeed, the toll arc yielding the largest

potential revenue for the leader can be found

in O(n)-time, and the optimal solution consists

in setting its toll to the maximum value

compatible with the toll free path. Other tolls

are set to arbitrarily large values. For multi-

commodity problems, Dewez (2004) proposed

a solution approach based on the enumeration

of the lower level solutions. Unfortunately, the

time required to solve the problem to optim-

ality grows exponentially with the number of

commodities and the number of nodes in the

network. Alternatively, the author proposed

several flow selection heuristics. Once flows are

determined, optimal tolls can be recovered

through the solution of an inverse problem,

which consists in determining revenue max-

imizing tolls compatible with a given flow

assignment, and has polynomial complexity.

More recently, Heilporn et al (forthcoming)

proved the NP-hardness of the highway

pricing problem, and derived strong valid

inequalities. Focusing on two-commodity

problems, Heilporn et al (2009) showed that

classes of valid inequalities, as well as classes of

constraints in the original formulations, define

facets of the convex hull of feasible solutions.

In the absence of triangle and monotonicity

Heilporn et al
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constraints, a complete description of the

convex hull of feasible solutions was also

obtained for single-commodity problems (see

Heilporn et al, forthcoming). Numerical ex-

periments showed that appending the valid

inequalities to HP2 yielded significant decreases

of the optimality gap, computing time and

number of nodes in the resulting branch-

and-cut algorithm.

Let us mention that Grigoriev et al (2005)

considered a model where commuters select

at most one toll arc, which is equivalent to

a highway pricing problem involving neither

triangle nor monotonicity constraints. As the

resulting topology is reminiscent of bridges

crossing a river, they refer to it as the cross

river pricing problem. The authors proved that

this instance is NP-hard. They also showed

that uniform pricing yields an n-approximation

scheme, where n is the number of toll arcs and

that, under further assumptions, uniform pri-

cing yields an O(log n)-approximation algo-

rithm.

Contributions to the network pricing

problem are summarized in Figure 5.

RELATIONSHIPS BETWEEN
PRODUCT AND NETWORK
PRICING
At this point in the study, it should be clear that

product and network pricing, although they

have drawn the attention of different scientific

communities, are closely related. Indeed, a

common thread to welfare, profit and toll

problems lies in the explicit consideration

of rational, utility-maximizing customers.

However, there are some differences. For

instance, in most models presented in the

section ‘Product pricing’, the set of products is

Network Pricing 
Problem

Arc formulation Path formulation

Exact solution
approaches: Didi 99,

Bouhtou 03, Dewez 07

Inexact solution
approaches: Brotcorne 01,

Roch 05, Cirinei 07

Exact solution
approaches: Labbé 98,
Cirinei 07, Dewez 07

Highway Network
Pricing Problem

Cross River Network 
Pricing Problem

Inexact solution
approaches: Dewez 04

Inexact solution
approaches: Grigoriev 05

Exact solution
approaches: Dewez 04

Figure 5: Main contributions to the network pricing problem.
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exogenous, whereas this is not the case for

network pricing where products correspond to

paths, whose number is exponentially large and

cannot be enumerated. This has an impact both

on model formulation and on numerical

resolution. On the other hand, there is a clear

parallel between the seller welfare problem

and the highway pricing problem, both models

having to do with revenue maximization in

the context of utility-maximizing purchasers

or cost-minimizing commuters, respectively.

Note that the full profit problem, where all

products are offered, is equivalent to the high-

way pricing problem. Indeed, let us rewrite the

highway pricing problem in its nonlinear

form, using the fact that pi
k¼ tixi

k in model

HP2. One obtains:

HP2�NL: max
t; x

X
k2K

X
i2I

Zktix
k
i

subject to: X
i2I

xk
i p1 8k 2 K ð46Þ

X
j2I
ðtj þ ckj Þxk

j þ ckodð1�
X
j2I

xk
j Þpcki þ ti

8k 2 K;8i 2 I ð47Þ

tiX0 8i 2 I ð48Þ

xk
i 2 f0; 1g 8k 2 K; 8i 2 I : ð49Þ

Next, a binary variable xod
k is appended to the

model, which is equal to 1 if commodity k is

assigned to the toll free arc (ok, dk) and 0

otherwise. Constraints (46) and (47) become

X
i2I

xk
i þ xk

od ¼ 1 8k 2 K ð50Þ

X
j2I
ðtj þ ckj Þxk

j þ ckodx
k
odpcki þ ti

8k 2 K; 8i 2 I ð51Þ

Note that (51) could also be written as:X
j2I[fodg

ðckod � ckj � tjÞxk
j Xckod � cki � ti

8k 2 K; 8i 2 I ð52Þ

if one considers a zero toll tod¼ 0. Now one

can match purchaser segments with commod-

ities, and products with toll arcs. The product

prices pi:iAI then correspond to the tolls on

arcs ti:iAI . Also, the assignment of a commod-

ity to a toll free arc corresponds to the purchase

of a null product at zero cost by a demand

segment, that is, this segment refrains from

buying. Finally, the reservation price ri
k of

purchaser segment k for product i corresponds

to the toll window cod
k –ci

k. These correspon-

dences are summarized in Table 1.

One obtains:

FPP : max
t;x

X
k2K

X
i2I

Zkpix
k
i

subject to: X
i2I[fodg

xk
i ¼ 1 8k 2 K ð53Þ

X
j2I[fodg

ðrk
j � pjÞxk

j Xrk
i � pi

8k 2 K; 8i 2 I ð54Þ

pod ¼ 0 ð55Þ

Table 1: Notation for the full profit and highway pricing

problems

Full profit problem Highway pricing problem

Purchaser segments

kAK
Commodities kAK

Products iAI Toll arcs iAI
Reservation prices

ri
k:kAK,iAI

Toll windows

cod
k –ci

k:kAK,iAI
Prices pi:iAI Tolls ti:iAI
Assignments

xi
k:kAK,iAI

Unit flows

xi
k:kAK,iAI
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piX0 8i 2 I ð56Þ

xk
i 2 f0; 1g 8k 2 K; 8i 2 I ; ð57Þ

which is exactly the full profit problem

described in the section ‘Product pricing’.

Hence, while a purchaser segment buys the

product that maximizes its utility ri
k–pi, a

commodity travels on the toll arc that max-

imizes the difference cod
k –ci

k–ti, that is, that

minimizes its travel cost ci
kþ ti.

Similar relationships can be established

between the bundle pricing problem, where

each product to be priced represents a subset

of components of a ‘global element’, and the

network pricing problem, where each path

consists of a subset of arcs of the network.

More precisely, while n components of a global

element yield 2n�1 products, one also obtains

an exponential number of paths by combining

the n toll arcs of a transportation network.

However, the connection is not as direct as for

the previous two problems.

From the complexity viewpoint, both

families of problems have been investigated

(see Table 2). From the computational per-

spective, they have motivated different algo-

rithmic approaches. For one, the community of

network pricing has proposed valid inequalities

that have led to improved formulations and

faster resolution. In contrast, few results of

the sort have been proposed for product

pricing, with the notable exception of works

by McBride and Zufryden (1988) and Shioda

et al (forthcoming). The situation is different on

the heuristic front, which has been the subject

of several proposals by both communities of

researchers. In this respect, note that the inverse

optimization procedure of Labbé et al (1998)

is a slight generalization of the reverse greedy

heuristic initially proposed by Dobson and

Kalish (1988).

CONCLUSION
In the current context of deregulations, setting

prices right offers a competitive advantage

to firms operating in an oligopolistic environ-

ment, and is a key component of revenue

management, a branch of management

science whose objective is to optimize the

revenue raised from perishable resources, and

that was initiated in the airline industry.

The aim of this study was to highlight the

close relationship between two families of

pricing problems that have been studied,

frequently in parallel, in the fields of marketing,

Table 2: Complexity classification

Network pricing problem NP-hard (Grigoriev et al, 2005; Roch et al, 2005)

with lower bounded tolls NP-hard (Labbé et al, 1998)

with unrestricted tolls NP-hard (Roch et al, 2005)

with a single commodity NP-hard (Roch et al, 2005)

with a single toll arc Polynomial (Brotcorne et al, 2001)

with number of toll arcs upper bounded Polynomial (Van Hoesel et al, 2003)

Cross river pricing problem NP-hard (Grigoriev et al, 2005)

Highway pricing problem NP-hard (Heilporn et al, forthcoming)

with a single commodity Polynomial (Dewez, 2004)

Buyer welfare problem NP-hard (Dobson and Kalish, 1993)

Profit problem NP-hard (Dobson and Kalish, 1993)

Share-of-choices problem NP-hard (Kohli and Krishnamurti, 1989)

Bundle pricing problem APX-hard (Guruswami et al, 2005)
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economics, operations research and theoretical

computer science. We hope that breakthroughs

achieved in any field, whether theoretical,

methodological or computational, translate

into improved knowledge for design and

pricing problems that arise in the fields of

industrial marketing or revenue management.

As a concrete example, the triangle and

monotonicity inequalities that occur naturally

in highway pricing are also meaningful for the

general product pricing problem. In the latter

case, when prices are assigned to product with

different product formats, it would make

sense, whenever the product quantity X satisfies

the relationship X¼YþZ, to require the

triangle inequality pXppYþ pZ, for the sake

of market consistency. In the same vein,

one would expect that pXppY if XpY, that

is, monotonicity inequalities are satisfied.

NOTES

1 An APX -hard problem is an NP -hard

problem that allows a polynomial time

approximation algorithm with an approx-

imation ratio bounded by a constant (see

Papadimitriou and Yannakakis (1991) or

Ausiello et al (1999)).

2 The terms ‘shortest path’ and ‘cheapest path’

are used interchangeably throughout the

paper.
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