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Abstract. This paper provides an introductory survey of a class of optimization
problems known as bilevel programming. We motivate this class through a simple
application, and then proceed with the general formulation of bilevel programs.
We consider various cases (linear, linear-quadratic, nonlinear), describe their main
properties and give an overview of solution approaches.
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1 Introduction

This paper is dedicated to two-level – or bilevel – optimization and our purpose is
to provide the reader with the key concepts and solution methods associated with
this particular class of hierarchical mathematical programs.

Although a wide range of applications fit the bilevel programming framework
(see das and Pardalos(2001)o das and Pardalos(2001)l, for domains of application),
real-life implementations are scarce, due mainly to the lack of efficient algorithms
for tackling large-scale problems. This state of affairs motivated us to use as an
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introductory example one exception that has been proposed for modelling rev-
enue maximization situations (see é et al.(2003)Côté, Marcotte, and Savardo é
et al.(2003)Côté, Marcotte, and Savardˆ).

Our example lies in the framework of transportation modelling and more pre-
cisely it concerns a toll-setting problem. The latter arises from a situation where an
authority or the owners of a highway system are allowed to set tolls on (a subset
of) the links of the network. Taking into account that network users wish to min-
imize their travel costs, an optimal toll schedule will be such that toll levels are
not too high – otherwise the users may be deterred from using the infrastructure
– though still generating “large” revenues. Once the network managers have set
tolls, travellers react to these values and select their itinerary in such a way that
total travel cost, i.e. standard costs (time, distance, etc.) plus tolls, is minimized.
An important feature of this problem – and more generally of bilevel programs –
is the hierarchical relationship between two classes of decision makers. This will
be reflected in the mathematical formulation that we derive below.

As previously stated, the network manager’s objective is to maximize revenue.
Denoting by A the set of links of the network and by Ā the subset of tolled links,
this corresponds to the mathematical program

max
T ,x

∑
a∈Ā

Taxa (1.1a)

s.t. la ≤ Ta ≤ ua ∀a ∈ Ā, (1.1b)

where Ta and xa denote the toll and the flow on link a respectively, and la (respec-
tively ua) is a lower (respectively upper) bound on the toll1.

The situation of network users is modelled by means of an equilibrium in terms
of a path-flow vector f , as in classical tools for network analysis and traffic flow
assignment (see e.g., fi(1985)e fi(1985)h, for more details). In the simplest situation,
e.g., in a congestion-free environment, such user equilibrium coincides with a flow
assignment that minimizes total system cost. It follows that the path-flow vector f ,
together with the link-flow vector x, is solution of the linear program:

min
f,x

∑
a∈A

caxa +
∑
a∈Ā

Taxa (1.2a)

s.t.
∑
p∈Prs

f rsp = drs ∀(r, s) ∈ �, (1.2b)

xa =
∑

(r,s)∈�

∑
p∈Prs

δrsa,pf
rs
p ∀a ∈ A, (1.2c)

f rsp ≥ 0 ∀p ∈ Prs , ∀(r, s) ∈ �. (1.2d)

1 While it seems natural to have la = 0, it is sometimes advantageous to set tolls to negative values.
This corresponds to subsidies.
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The objective (1.2a) is the sum of the cost resulting from tolls Ta (a ∈ Ā) and the
other costs (duration, length, etc.) which are aggregated in a measure ca for each
link. Constraint (1.2b) expresses demand satisfaction in the sense that, for a given
origin-destination pair (r, s) (the set of all such pairs is denoted by �), the sum of
the flows f rsp on all paths p connecting r to s (these paths being regrouped in Prs)
equals the travel demand, drs , from r to s. Constraint (1.2c) links path flows f rsp
and link flows xa , where

δrsa,p =
{

1 if path p ∈ Prs uses link a,

0 otherwise.

Clearly, mathematical programs (1.1a) and (1.2a) are connected since both of
them use the same set of variables, namely the tolls Ta (a ∈ Ā) and the flows xa
(a ∈ A). Also, the profit of the network manager (see (1.1a)) cannot be computed
until the flows are known, these flows not being in the direct control of the manager,
but the solution of a mathematical program parameterized in the toll vector T . This
yields the bilevel formulation2

max
T ,f,x

∑
a∈Ā

Taxa

s.t. la ≤ Ta ≤ ua ∀a ∈ Ā,

(f, x) ∈ arg min
f ′,x′

∑
a∈A

cax
′
a +

∑
a∈Ā

Tax
′
a

s.t.
∑
p∈Prs

f ′rs
p = drs ∀(r, s) ∈ �,

x′
a =

∑
(r,s)∈�

∑
p∈Prs

δrsa,pf
′rs
p ∀a ∈ A,

f ′rs
p ≥ 0 ∀p ∈ Prs , ∀(r, s) ∈ �.

The hierarchical relationship is here reflected in that the mathematical program
related to the users’behaviour is part of the manager’s constraints. This is the major
feature of bilevel programs: they include two mathematical programs within a
single instance, one of these problems being part of the constraints of the other one.
Because of this hierarchical relationship, the program (1.1) is called the upper-level
problem while (1.2) corresponds to the lower-level problem.

We will now leave the particular framework of toll-setting problems (the in-
terested reader is referred to e.g., é et al.(1998)Labbé, Marcotte, and Savardb é

2 In the sequel, we will simply write down the upper and lower level problems, dispensing with
the “prime” and “arg min” notation. The resulting “vertical” format is indeed less heavy and more
transparent.



90 B. Colson et al.

et al.(1998)Labbé, Marcotte, and Savarda, corne et al.(2001)Brotcorne, Labbé, Mar-
cotte, and Savardo corne et al.(2001)Brotcorne, Labbé, Marcotte, and Savardr, for
further details). The next section describes bilevel programs from a more general
point of view. This will be followed by a survey of existing methods for solving
various types of bilevel programs (Sect. 3). Mathematical programs with equilib-
rium constraints, which are very similar to bilevel programs, will be the subject
of Sect. 4. We will conclude this paper with a review of some perspectives and
challenges for future research in the field of bilevel programming.

2 General formulation and basic concepts

The general formulation of a bilevel programming problem (BLPP) is

min
x∈X,y F (x, y) (2.1a)

s.t. G(x, y) ≤ 0 (2.1b)

min
y

f (x, y) (2.1c)

s.t. g(x, y) ≤ 0, (2.1d)

where x ∈ R
n1 and y ∈ R

n2 . The variables of problem (2.1) are divided into two
classes, namely the upper-level variables x ∈ R

n1 and the lower-level variables
y ∈ R

n2 . Similarly, the functions F : R
n1 ×R

n2 → R and f : R
n1 ×R

n2 → R are
the upper-level and lower-level objective functions respectively, while the vector-
valued functions G : R

n1 × R
n2 → R

m1 and g : R
n1 × R

n2 → R
m2 are called

the upper-level and lower-level constraints respectively. Upper-level constraints
involve variables from both levels (in contrast with the constraints specified by the
set X) and play a very specific role. Indeed, they must be enforced indirectly, as
they do not bind the lower-level decision-maker.

The previous section illustrated the usefulness of bilevel programs through a
specific example. Several other transportation issues may be modelled by bilevel
programs – see alas(1995)g (i) for a review – but, more generally, real-world prob-
lems involving a hierarchical relationship between two decision levels are fre-
quently encountered in fields such as management (facility location, environmental
regulation, credit allocation, energy policy, hazardous materials), economic plan-
ning (social and agricultural policies, electric power pricing, oil production), engi-
neering (optimal design, structures and shape), chemistry, environmental sciences,
optimal control, etc. For instance, the upper level may represent decision-makers
whose policies lead to some reaction within a particular market or social entity, the
latter corresponding to the lower level of the system under study.

From a historical point of view, multilevel optimization is closely related to the
economic problem of kelberg(1952)a (t) in the field of game theory, which we briefly
describe now. To this end, we consider an economic planning process involving
interacting agents at two distinct levels: some of the individuals – collectively called
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the leader – issue directives to the remaining agents – called the followers. In the
particular framework of Stackelberg games, the leader is assumed to anticipate the
reactions of the followers; this allows him to choose his best – or optimal – strategy
accordingly. More precisely, the leader chooses a strategy x in a set X ⊆ R

n, and
every follower i has a strategy set Yi(x) ⊆ R

mi corresponding to each x ∈ X.
The sets Yi(x) are assumed to be closed and convex. Any follower i also has a cost
function depending on both the leader’s and all followers’strategies and which may
be expressed as

θi(x, ·) :
M∏
j=1

R
mj → R,

where M is the number of followers. It is further assumed that for fixed values of
x ∈ X and yj (j �= i) the function θi is convex and continuously differentiable
in yi ∈ Yi(x). The followers behave collectively according to the noncooperative
principle of (1951)s (a) which means that, for each x ∈ X, they will choose a joint
response vector

yopt ≡ (y
opt
i )Mi=1 ∈ C(x),

where C(x) = ∏M
i=1 Yi(x), such that, for every i = 1, . . . ,M , there holds

y
opt
i ∈ argmin{θi(x, yi, yoptj �=i ) : yi ∈ Yi(x)}.

In the above setting, considered by ali et al.(1983)Sherali, Soyster, and Murphye (h)
in an oligopolistic situation, Stackelberg problems possess a hierarchical structure
similar to that of BLPP, although the lower-level program is an equilibrium rather
than an optimization problem. This class of problems will be discussed in more
details in Sect. 4.

Bilevel programs were initially considered by Bracken and McGill in a series
of papers – see ken and McGill(1973)a (r), ken and McGill(1974)a (r), ken and
McGill(1978)a (r) – that dealt with applications in the military field as well as
in production and marketing decision making. By that time, such problems were
called mathematical programs with optimization problems in the constraints, which
exactly reflects the situation formulated in (2.1), the terms bilevel and multilevel
programming being introduced later by ler and Norton(1977)n (a). Notice how-
ever that the problems studied in the latter paper did not involve joint upper-level
constraints, that is, constraints depending on both x and y. To our knowledge, the
general formulation with G(x, y) ≤ 0 as upper-level constraints first appeared in
shi and Shimizu(1981)y (i).

We now return to problem (2.1) to introduce some further concepts of bilevel
programming. The relaxed problem associated with (2.1) is

min
x∈X,y F (x, y)

s.t. G(x, y) ≤ 0,

g(x, y) ≤ 0,

(2.2)
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and its optimal value is a lower bound for the optimal value of (2.1). The relaxed
feasible region (or constraint region) is

� = {(x, y) ∈ R
n1 × R

n2 : x ∈ X,G(x, y) ≤ 0 and g(x, y) ≤ 0}.
For a given (fixed) vector x̄ ∈ X, the lower-level feasible set is defined by

�(x̄) = {y ∈ R
n2 : g(x̄, y) ≤ 0}

while the lower-level reaction set3 (or rational reaction set) is

R(x̄) = {
y ∈ R

n2 : y ∈ argmin
{
f (x̄, ŷ) : ŷ ∈ �(x̄)}} .

Every y ∈ R(x̄) is a rational response. For a given x, R(x) is an implicitly defined
multi-valued function of x that may be empty for some values of its argument.
Finally, the set

IR = {(x, y) ∈ R
n1 × R

n2 : x ∈ X, G(x, y) ≤ 0, y ∈ R(x)},
that regroups the feasible points of the BLPP, corresponds to the feasible set of the
leader, and is known as the induced region (or inducible region). This set is usually
nonconvex and it can even be disconnected or empty in presence of upper-level
constraints.

We conclude this section with a short discussion on two modelling approaches
to bilevel programming. In the case of optimistic bilevel programming, it is assumed
that, whenever the reaction setR(x) is not a singleton, the leader is allowed to select
the element in�(x) that suits him best. In this situation, a point (x∗, y∗) ∈ R

n1×R
n2

is said to be a local optimistic solution for problem (2.1) if

x∗ ∈ X,
G(x∗, y∗) ≤ 0,

y∗ ∈ R(x∗),
F (x∗, y∗) ≤ F(x∗, y) for all y ∈ R(x∗)

and there exists an open neighbourhood V (x∗; δ) of x∗ (with radius δ > 0) such
that

φo(x
∗) ≤ φo(x) for all x ∈ V (x∗; δ) ∩X,

where φo(x) = miny{F(x, y) : y ∈ R(x)}. It is called a global optimistic solution
if δ = ∞ can be selected, corresponding to V (x∗) = X.

When cooperation of the leader and the follower is not allowed, or if the leader is
risk-averse and wishes to limit the “damage” resulting from an undesirable selection

3 According to the definition of a bilevel program, the lower level problem must be solvable for
global minima. In practice, the lower-level program is assumed to be convex.
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of the follower, then a point (x∗, y∗) ∈ R
n1 × R

n2 is said to be a local pessimistic
solution for problem (2.1) if

x∗ ∈ X,
G(x∗, y∗) ≤ 0,

y∗ ∈ R(x∗),
F (x∗, y∗) ≥ F(x∗, y) for all y ∈ R(x∗)

and there exists an open neighbourhood V (x∗; δ) of x∗ (with δ > 0) such that

φp(x
∗) ≤ φp(x) for all feasible x ∈ V (x∗; δ),

where this timeφp(x) = maxy{F(x, y) : y ∈ R(x)}. It is called a global pessimistic
solution if δ = ∞ can be selected. Note that the difference between the optimistic
and pessimistic approaches can also be explained from the follower viewpoint:
the optimistic solution results from a friendly or cooperative behaviour while an
aggressive follower produces a pessimistic solution. A more complete discussion
of these issues may be found in dan and Morgan(1996)r (o) and e(2002)m (e).

3 A survey of existing methods

Although early work on bilevel programming dates back to the nineteen seventies,
it was not until the early nineteen eighties that the usefulness of these mathemati-
cal programs in modelling hierarchical decision processes and engineering design
problems prompted researchers to pay close attention to bilevel programs. A first
bibliographical survey on the subject was written in 1985 by Kolstad. Bilevel pro-
gramming problems being intrinsically difficult (see Sect. 3.1 below), it is not
surprising that most algorithmic research to date has focused on the simplest cases
of bilevel programs, that is problems having nice properties such as linear, quadratic
or convex objective and/or constraint functions. In particular, the most studied in-
stance of bilevel programming problems has been for a long time the linear BLPP
– in which all functions are linear – and therefore this subclass is the subject of
several dedicated surveys, such as those by nd Wen(1989)u (s), nd Hsu(1991)n
(e) and Ayed(1993)n (e). Over the years, more complex bilevel programs were
studied and even those including discrete variables received some attention, as in
nte et al.(1996)Vicente, Savard, and Júdicec (i). Hence more general surveys ap-
peared, such as those by rd(1989)v (a), dalingam and Friesz(1992)a (n) and nte and
Calamai(1994)c (i). on(1999)l (o) deals with both nonlinear bilevel programming
problems and mathematical programs with equilibrium constraints and recently
e(2003)m (e) wrote an annotated bibliography on these same topics. The combina-
torial nature of bilevel programming has been reviewed in otte and Savard(2005)r
(a).

Following the proliferation of research devoted to bilevel programming, a num-
ber of dedicated textbooks have also been published in the late nineteen nineties.
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Among them, those by izu et al.(1997)Shimizu, Ishizuka, and Bardi (h) and (1998)r
(a) are authored by some of the early protagonists in the field. Another monograph
on the subject is that of alas et al.(1997)Migdalas, Pardalos, and Värbrandg (i), who
consider the more general case of multilevel programming. The most recent book
on bilevel programming, as of May 2005, is that of e(2002)m (e).

3.1 Properties

Bilevel programming problems are intrinsically hard. Even the “simplest in-
stance”, the linear BLPP, was shown to be NP-hard by slow(1985)r (e), while en
et al.(1992)Hansen, Jaumard, and Savardn (a) proved strong NP-hardness, using
a reduction from KERNEL (see y and Johnson(1979)r y and Johnson(1979)a). nte
et al.(1994)Vicente, Savard, and Júdicec (i) strengthened these results and proved
that merely checking strict or local optimality is also NP-hard, based on reductions
from 3-SAT.

A number of authors have proposed optimality conditions for bilevel program-
ming problems. Among them are those by e(1992a)m (e), e(1992b)m (e), and
Florian(1991)e (h) and ata(1993)t (u), who use tools from nonsmooth analysis (see
e.g., ke(1990)a ke(1990)l). rd and Gauvin(1994)v (a) and nte and Calamai(1995)c
(i) developed optimality conditions taking the geometry of the induced region into
account: the former is achieved by adapting the notion of steepest descent to the
case of bilevel programs, while the latter generalizes first- and second-order op-
timality conditions to the case of bilevel programs with quadratic strictly convex
lower-level problems. The main result in nte and Calamai(1995)c (i) is that, at each
point of the induced region, there exists a finite number of convex cones of induced
region directions.

However, due to the inherent difficulty of manipulating the mathematical objects
involved in all these optimality conditions, they have few practical use and do not
provide convenient stopping criteria for numerical algorithms.

3.2 Extreme-point approaches for the linear case

An important property of linear bilevel programs, i.e., programs where all functions
involved are linear and the set X is polyhedral, is that their solution set, whenever
it is nonempty, contains at least one vertex of the constraint region defined by the
polyhedron

� = {(x, y) : x ∈ X, G(x, y) ≤ 0 and g(x, y) ≤ 0}.
Hence a wide class of methods for solving linear BLPPs is based on vertex enu-
meration.

The first method using such an approach was proposed by ler and Towns-
ley(1982)n (a) for solving BLPPs with no upper-level constraints and with unique
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lower-level solutions. Their algorithm explores a decreasing number of bases of the
lower-level problem, but was shown to be relatively slow in subsequent numerical
tests. as and Karwan(1984)a (i) introduced the K-th best method, which considers
bases of the relaxed problem (2.2) sorted in increasing order of upper-level objec-
tive function values. The method stops at the lowest index K corresponding to a
rational basis. Such a basis is clearly globally optimal.

Similar vertex enumeration methods were introduced by vassilopoulos(1982)p
(a), with the difference that all extreme points considered belong to the induced
region IR, and that separation techniques are used to explore the adjacent vertices.

Related contributions are those by and Florian(1992)e (h), et al.(1992)Chen,
Florian, and Wue (h) and t al.(1993)Tuy, Migdalas, and Värbrandy (u).

3.3 Branch-and-bound

When the lower-level problem is convex and regular, it can be replaced by its
Karush-Kuhn-Tucker (KKT) conditions, yielding the single-level reformulation of
problem (2.1):

min
x∈X,y,λ F (x, y) (3.1a)

s.t. G(x, y) ≤ 0, (3.1b)

g(x, y) ≤ 0, (3.1c)

λi ≥ 0, i = 1, . . . , m2 (3.1d)

λi gi(x, y) = 0, i = 1, . . . , m2 (3.1e)

∇yL(x, y, λ) = 0, (3.1f)

where

L(x, y, λ) = f (x, y)+
m2∑
i=1

λigi(x, y)

is the Lagrangean function associated with the lower-level problem.
Even under suitable convexity assumptions on the functions F , G and the set

X, the above mathematical program is not easy to solve, due mainly to the non-
convexities that occur in the complementarity and Lagrangean constraints. While
the Lagrangean constraint is linear in certain important cases (linear or convex
quadratic functions), the complementarity constraint is intrinsically combinatorial,
and is best addressed by enumeration algorithms, such as branch-and-bound.

In the branch-and-bound scheme, the root node of the tree corresponds to prob-
lem (3.1) from which constraint (3.1e) is removed. At a generic node of the branch-
and-bound tree that does not satisfy the complementarity constraints, separation is
performed in the following manner: two children nodes are constructed, one with
λi = 0 as an additional constraint, and the other with the constraint gi(x, y) = 0.



96 B. Colson et al.

The optimal values of these problems yield lower bounds valid for the correspond-
ing subtree.

In the absence of upper-level constraints, a rational solution can be computed
by solving the lower-level problem resulting from setting x to the partial optimal
solution of the relaxed problem. Note that, in contrast with standard branch-and-
bound implementations, feasible (i.e., rational) solutions are then generated at every
node of the implicit enumeration tree. The upper bound is updated accordingly.

Algorithms based on this idea were proposed by and Falk(1982)r (a) and uny-
Amat and McCarl(1981)r (o) for solving linear bilevel programming problems. The
approach was adapted by and Moore(1990)r (a) to linear-quadratic problems and
by hayal et al.(1992)Al-Khayal, Horst, and Pardalos- (l), (1988)r (a) and nds and
Bard(1991)m (d) to the quadratic case.

Combining branch-and-bound, monotonicity principles and penalties similar
to those used in mixed-integer programming, en et al.(1992)Hansen, Jaumard, and
Savardn (a) have developed a code capable of solving medium-sized linear bilevel
programs4. i et al.(2002)Thoai, Yamamoto, and Yoshiseo (h) have developed a
similar scheme for mathematical programs with linear complementarity constraints.

3.4 Complementary pivoting

The first approach using complementary pivots is that of as et al.(1980)Bialas, Kar-
wan, and Shawa (i) for solving linear BLPPs. Their algorithm – named Parametric
Complementary Pivot (PCP) Algorithm – is based on the reformulation (3.1) of
a linear bilevel program using the KKT optimality conditions for the lower-level
problem. At each iteration, the algorithm computes a feasible point (x, y) for the
original problem such that the upper-level objective F(x, y) takes a value at most
equal to α, and where constraint (3.1f) is perturbed by adding a term εHy, where
H is a negative definite matrix and ε is sufficiently small so that the solution to the
original problem is not modified. The parameter α is updated after each iteration
and the process is repeated until no feasible (x, y) can be found. However Ayed
and Blair(1990)n (e) showed that this algorithm does not always converge to the
optimal solution.

Let us also mention the contributions of ce and Faustino(1988)d (ú), ice and
Faustino(1992)u (´), ce and Faustino(1994)d (ú), who introduced the so-called
sequential linear complementarity problem (LCP) for solving linear and linear-
quadratic bilevel programming problems. Note that their approach may actually be
viewed as a combination of the techniques described in Sects. 3.2 and 3.3, namely
vertex enumeration and branch-and-bound methods.

4 I.e., of the order of 100 variables and 100 constraints.
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3.5 Descent methods

Assuming that, for any x, the optimal solution of the lower-level problem is unique
and defines y as an implicit function y(x) of x, problem (2.1) may be viewed solely
in terms of the upper-level variables x ∈ R

n1 . Given a feasible point x, an attempt
is made to find a feasible (rational) direction d ∈ R

n1 along which the upper-level
objective decreases. A new point x + αd (α > 0) is computed so as to ensure
a reasonable decrease in F while maintaining feasibility for the bilevel problem.
However, a major issue is the availability of the gradient (or a sub-gradient) of the
upper-level objective, ∇xF (x, y(x)), at a feasible point. Applying the chain rule of
differentiation, we have, whenever ∇xy(x) is well defined:

∇xF (x, y(x)) = ∇xF (x, y)+ ∇yF (x, y) ∇xy(x),
where the functions are evaluated at the current iterate. tad and Lasdon(1990)l (o)
have proposed a method for approximating this gradient.

Another line of attack is that of rd and Gauvin(1994)v (a), for problems where
no upper-level constraints are present and where the lower-level constraints are
rewritten as:

gi(x, y) ≤ 0, i ∈ I,
gj (x, y) = 0, j ∈ J.

The authors first show that an upper-level descent direction at a given point x is a
vector d ∈ R

n1 such that

∇xF (x, y∗) d + ∇yF (x, y∗) w(x, d) < 0, (3.2)

where y∗ = y(x) and w ∈ R
n2 is a solution of the program

min
w

(dT ,wT )∇2
xyL(x, y∗, λ) (d,w)

s.t. ∇ygi(x, y∗)w ≤ −∇xgi(x, y∗)d, i ∈ I (x),
∇ygj (x, y∗)w = −∇xgj (x, y∗)d, j ∈ J, (3.3)

∇yf (x, y∗)w = −∇xf (x, y∗)d + ∇xL(x, y∗, λ)d,

with I (x) = {i ∈ I : gi(x, y∗) = 0} and

L(x, y, λ) = f (x, y)+
∑

i∈I (x)∪J
λigi(x, y)

is the Lagrangean of the lower-level problem with respect to the active constraints.
The steepest descent then coincides with the optimal solution of the linear-quadratic
bilevel program

min
d

∇xF (x, y∗)d + ∇yF (x, y∗)w(x, d)

s.t. ‖d‖ ≤ 1, (3.4)

w(x, d) solves the quadratic program (3.3),
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for which exact algorithms exist, such as those by and Moore(1990)r (a) or ard
et al.(2000)Jaumard, Savard, and Xiongu (a).

Alternatively, nte et al.(1994)Vicente, Savard, and Júdicec (i) proposed a descent
method for convex quadratic bilevel programs, i.e., problems where both objectives
are quadratic, and where constraints are linear. They extend the work of rd and
Gauvin(1994)v (a) by solving problem (3.4) using the sequential LCP method of ce
and Faustino(1994)d (ú), and propose a way to compute exact stepsizes. Motivated
by the fact that checking local optimality in the sequential LCP approach is very
difficult, nte et al.(1994)Vicente, Savard, and Júdicec (i) have designed a hybrid
algorithm using both the abovementioned features and a pivot step strategy that
enforces the complementarity constraints.

Finally, let us mention the work of and Liu(1995)l (a), who present a bundle
method where the decrease of the upper-level objective is monitored according to
subdifferential information obtained from the lower-level problem. They call the
resulting setup a leader predominate algorithm, according to the role played by the
leader in the sequential decision making process.

3.6 Penalty function methods

Penalty methods constitute another important class of algorithms for solving non-
linear BLPPs, although they are generally limited to computing stationary points
and local minima.

An initial step in this direction was achieved by shi and Shimizu(1981)y (i), shi
and Shimizu(1984)y (i) and izu and Aiyoshi(1981)i (h). Their approach consists in
replacing the lower-level problem (2.1c)-(2.1d) by the penalized problem

min
y

p(x, y, r) = f (x, y)+ r φ(g(x, y)), (3.5)

where r is a positive scalar, φ is a continuous penalty function that satisfies

φ(g(x, y)) > 0 if y ∈ int S(x),

φ(g(x, y)) → +∞ if y → bd S(x),
(3.6)

and int S(x) and bd S(x) denote the relative interior and the relative boundary of
S(x) = {y : g(x, y) ≤ 0}, respectively. Problem (2.1) is then transformed into:

min
x∈X,y F (x, y∗(x, r))

s.t. G(x, y∗(x, r)) ≤ 0, (3.7)

p(x, y∗(x, r), r) = min
y
p(x, y, r).

izu and Aiyoshi(1981)i (h) proved that the sequence {(xk, y∗(xk, rk))} of optimal
solutions to (3.7) converges to the solution of (2.1). The main drawback of this
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method is that solving (3.7) for a fixed value of r requires the global solution at
every update of the upper-level variables. Each subproblem is not significantly
easier to solve than the original bilevel program.

zuka and Aiyoshi(1992)h (s) proposed a double penalty method in which both
objective functions (2.1a) and (2.1c) are penalized. They still use the augmented
lower-level objective (3.5) and the penalty function φ characterized by (3.6) but
replace the lower-level problem by its stationarity condition ∇yp(x, y, r) = 0, thus
transforming (2.1) into the single-level program

min
x∈X,y F (x, y)

s.t. G(x, y) ≤ 0, (3.8)

∇yp(x, y, r) = 0,

g(x, y) ≤ 0.

Note that the last constraint restricts the domain of the function p. For a given r ,
problem (3.8) is solved using a second penalty function applied to the constraints.

A more recent contribution, by (1999)s (a), follows up on ideas of al.(1991)Bi,
Calamai, and Conne (i), who themselves extend a technique proposed in
al.(1989)Bi, Calamai, and Conne (i) for linear bilevel programs. Their approach
is based on (3.1), that is, a bilevel program for which the lower-level problem
has been replaced by its Karush-Kuhn-Tucker conditions. Their method involves a
penalty function of the form

p(x, y, λ, µ) = F(x, y)+ µ ν(x, y, λ),

where µ is a positive penalty parameter and the upper-level objective F(x, y) is
augmented by a weighted, nonnegative penalty function associated with the current
iterate. More precisely, (1999)s (a) builds a penalty function ν(x, y, λ)with respect
to the �1 norm, defined as the sum of the terms associated with each constraint of
the single-level problem (3.1). The resulting algorithm involves the minimization
of the penalty function p(x, y, λ, µ) for a fixed value of µ. In view of the complex
structure of the latter function, the authors develop a trust-region method, where
the model for p (see Sect. 3.7) is obtained by replacing each component function
of p(x, y, λ, µ) by its second-order Taylor expansion around the current iterate.

3.7 Trust-region methods

Trust-region algorithms are iterative methods based on the approximation of the
original problem by a model around the current iterate. More specifically, let us
consider the unconstrained problem

min
x
f (x).
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Given the iterate xk obtained at iteration k, one constructs a model mk that ap-
proximates the objective function within a trust region usually defined as a ball
(according to some norm) of radius�k centered at xk . The solution sk to the trust-
region subproblem

min
s

mk(xk + s)

s.t. ‖s‖ ≤ �k

is then computed. One then evaluates the quality of the model through the ratio of
the actual reduction over the predicted reduction5

ρk = f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
. (3.9)

If ρk is large enough (ρk > η2 for some 0 < η2 < 1), the trial point is accepted
as the next iterate (xk+1 = xk + sk), and the trust region radius may be increased.
The trial point is also accepted for smaller values of ρk that satisfy the condition
ρk ∈ [η1, η2), with 0 < η1 < η2, but in this case the trust-region radius is not
increased (it might be decreased). Finally, if ρk is too small, the trial point is
dismissed (xk+1 = xk) and the trust-region radius is decreased. The rules for
modifying �k are as follows:

�k+1 ∈




[�k,∞) if ρk ≥ η2,[
γ2�k,�k

]
if ρk ∈ [η1, η2) ,[

γ1�k, γ2�k
]

if ρk < η1,

where 0 < γ1 ≤ γ2 < 1 are predefined parameters. For an in-depth study and a
comprehensive reference on trust-region methods we refer the reader to the mono-
graph of et al.(2000)Conn, Gould, and Tointn (o).

A trust-region algorithm was recently developed by on et al.(2005)Colson, Mar-
cotte, and Savardl (o) for solving nonlinear bilevel programs where the function
G depends solely on the upper-level vector x. This is not the first attempt to solve
bilevel programs by means of a trust-region methods. Indeed, a related approach
has been proposed by t al.(1998)Liu, Han, and Wangu (i) for problems that do not
involve upper-level constraints, and where the lower-level program is strongly con-
vex and linearly constrained. Under suitable assumptions, convergence to a Clarke
stationary point may be proved. No computational experience has been reported.

The algorithm in on et al.(2005)Colson, Marcotte, and Savardl (o) is an iterative
method which, given the current iterate or incumbent solution (x̄, ȳ), is based on
the linear-quadratic bilevel model

min
x∈X,y Fm(x, y)

5 Note that, if the model is not accurate, there could be a deterioration of the objective, i.e., the ratio
could be negative.
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s.t. Gm(x) ≤ 0 (3.10)

min
y

fm(x, y)

s.t. gm(x, y) ≤ 0,

of problem (2.1), whereFm,Gm andgm are linear models ofF ,G,g at (x̄, ȳ) respec-
tively, while fm is a quadratic model of f at (x̄, ȳ). The bilevel problem (3.10) thus
defines the trust-region subproblem. This subproblem can be solved for its global
solution either by using a specialized algorithm – e.g., ard et al.(2000)Jaumard,
Savard, and Xiongu (a) –, either by reformulating it as a mixed integer program
(see otte and Savard(2005)r otte and Savard(2005)a) and resorting to an off-the-
shelf software.

Let (xm, ym) denote the solution of the subproblem, that may fail to be rational.
In order to evaluate the true value of this solution, one must compute the lower-level
reaction to xm, i.e., the optimal solution of

min
y

f (xm, y)

s.t. g(xm, y) ≤ 0, (3.11)

which is denoted by y∗. After computation of the ratio (3.9) of achieved versus
predicted reduction

ρk = F(xk, yk)− F(xm, y∗)
Fm(xk, yk)− Fm(xm, ym)

,

the algorithm updates both the current iterate and the trust-region radius, and the
process is repeated until convergence occurs.

This algorithm has been tested on a set of test problems, including toll-setting
problems described in Sect. 1. The good performance of the algorithm in terms of
the quality of the solution (a global solution is frequently reached) is due to the
accuracy of the model approximation, itself a bilevel program that can be solved
for its global solution.

4 Mathematical programs with equilibrium constraints

Having reviewed the major developments in the field of bilevel programming,
we would like to complete our survey by considering another important class of
related problems, namely Mathematical Programs with Equilibrium Constraints,
or MPECs. Actually, relationships between BLPPs and MPECs are so strong that
some authors use the same terminology for both classes of problems, which may
sometimes lead to confusion.

MPECs may be viewed as bilevel programs where the lower-level problem
consists in a variational inequality. For a given function ψ : R

n → R
n and convex
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set C ⊆ R
n, the vector x∗ ∈ C is said to be a solution of the variational inequality

VI(ψ,C) if it satisfies

(x − x∗)T ψ(x∗) ≥ 0 for all x ∈ C. (4.1)

Note that variational inequalities are mathematical programs that allow the mod-
elling of many equilibrium phenomena encountered in engineering, physics, chem-
istry or economics, hence the origin of the name of MPEC. The reader is referred to
the monograph of t al.(1996)Luo, Pang, and Ralpho (u) for a description of fields
of application.

The general formulation of an MPEC is as follows:

min
x,y

F (x, y)

s.t. (x, y) ∈ Z and y ∈ S(x), (4.2)

where Z ⊆ R
n1+n2 is a nonempty closed set and S(x) is the solution set of the

parameterized variational inequality

y ∈ S(x) ⇔ y ∈ C(x)
and (v − y)T ψ(x, y) ≥ 0 for all v ∈ C(x) (4.3)

defined over the closed convex set C(x) ⊂ R
n2 . As for bilevel problems, the terms

upper-level and lower-level variables are used to designate x and y respectively.
The relationship between bilevel programming problems and MPECs may be

illustrated by considering two particular cases. To this end, let us first assume
that the mapping ψ(x, ·) is the partial gradient map of a real-valued continuously
differentiable function f : R

n1+n2 → R, that is,

ψ(x, y) = ∇yf (x, y).
Then, for any fixed x, the VI (4.3) characterizes the set of stationarity conditions
of the optimization problem

min
y

f (x, y)

s.t. y ∈ C(x). (4.4)

Moreover, if the parameterized set C(x) takes the form

C(x) = {y : g(x, y) ≤ 0},
then problem (4.4) is nothing but the lower-level problem (2.1c)–(2.1d). This shows
that MPECs subsume bilevel programs provided the latter involves a convex and
differentiable lower-level problem. Conversely, an MPEC can be formulated as
a bilevel program by replacing the lower-level VI by an optimization problem.
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The latter can, for instance, be constructed around the gap function as defined by
ender(1976)s (u) (α = 0) or shima(1992)k (u) (α > 0), that is

Hα(x, y) = max
z∈C(x) φ(x, y, z) (4.5)

where

φ(x, y, z) = 〈ψ(x, y), y − z〉 − 1

2
α‖y − z‖2.

Alternatively, one may minimize the sum of the complementarity slackness terms
associated with the KKT formulation of the variational inequality, under suitable
regularity conditions on the lower-level constraints.

Many active set approaches have been proposed for solving MPECs, see
(1998)r (a). More recent methods deal with constraint regularization (e.g., hinei
et al.(1996)Facchinei, Jiang, and Qic hinei et al.(1996)Facchinei, Jiang, and Qia,
shima and Pang(1999)k shima and Pang(1999)u, ltes(2001)h ltes(2001)c), implicit
programming techniques (ata(1994)t ata(1994)u, ata et al.(1998)Outrata, Kočvara,
and Zowet ata et al.(1998)Outrata, Kočvara, and Zoweu), or techniques borrowed
from constrained nonlinear programming. For instance, filter methods have been
used by cher and Leyffer(2002)e (l), while sequential quadratic programming ap-
proaches have been proposed by and Ralph(1997)a (i), h(1998)l (a) and cher
et al.(2002)Fletcher, Leyffer, Ralph, and Scholtese (l). otte and Zhu(1996)r (a) dis-
cuss algorithms based on penalty functions, exact or inexact, constructed around gap
functions (4.5). A trust-region scheme has been developed by ltes and Stöhr(1999)h
(c), which is closely related to the algorithm of on et al.(2005)Colson, Marcotte,
and Savardl (o) for nonlinear bilevel programming as presented in the previous sec-
tion. The reader interested in a comprehensive analysis of MPECs is referred to the
monographs of t al.(1996)Luo, Pang, and Ralpho (u) and ata et al.(1998)Outrata,
Kočvara, and Zowet (u).

5 Perspectives and challenges

As evidenced in this survey, bilevel programming is the subject of important re-
search efforts from the mathematical programming and operations research commu-
nities. Many classes of bilevel programs now have dedicated solution algorithms,
and researchers have started to study more complicated instances – like bilevel
programs with integer variables or without derivatives – which to our view is an
indication that some maturity has been reached in the field.

It is nevertheless the case that challenges remain to be tackled, in particular
concerning nonlinear bilevel problems. Besides the improvement of existing meth-
ods and derivation of proper convergence results, our feeling is that a promising
approach would be to develop tools similar to those by ltes(2002)h (c) allowing to
take advantage of the inherent combinatorial structure of bilevel problems. These
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ideas, combined with well-tried tools from nonlinear programming like sequen-
tial quadratic programming, should allow the development of a new generation of
solution methods.

From a more practical point of view, we feel that the set of available bilevel
programming test problems is relatively poor compared to those existing for other
classes of mathematical programs. There exist some collections, like the MacMPEC
collection maintained by fer(2000)y (e) or the problems presented in on(2002)l (o),
but no modelling language currently allows a user-friendly embedding of the two-
level structure (in MacMPEC, for instance, problems are reformulated as single-
level programs using optimality conditions). This issue, together with the devel-
opment of a suitable modelling language, might trigger advances in the numerical
solution of BLPPs.
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