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Département de Mathématiques et de génie industriel and GERAD, Ecole Polytechnique de Montréal, CP 6079,
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Abstract. We consider the approximation of nonlinear bilevel mathematical programs by solvable programs of
the same type, i.e., bilevel programs involving linear approximations of the upper-level objective and all constraint-
defining functions, as well as a quadratic approximation of the lower-level objective. We describe the main features
of the algorithm and the resulting software. Numerical experiments tend to confirm the promising behavior of the
method.
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1. Introduction

Bilevel programs, which are closely related to leader-follower (Stackelberg) games in
economics, describe hierarchical structures that occur naturally in real-world situations:
management (network facility location, environmental regulation, credit allocation, energy
policy), economic planning (social and agricultural policies, electric power pricing, oil pro-
duction), engineering design (optimal structure and shape) and optimal control, to cite but
a few (see Section 2 in [50], Section 4 in [73] and Part III in [8]). Another important area of
application is transportation planning and modeling (see [57] for a review). Mathematically,
the general problem we address can be stated as follows:

min
x1,x2

F(x1, x2) (1a)

s.t. G(x1, x2) ≤ 0 (1b)

x2 ∈ arg min
x ′

2

f (x1, x ′
2) (1c)

s.t. g(x1, x ′
2) ≤ 0. (1d)
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Our algorithm is designed for the case where G depends solely on the upper-level variable
x1 and where F : R

n1 × n2 → R, f : R
n1 × n2 → R, G: R

n1 × n2 → R
m1 , g: R

n1 × n2 → R
m2 are

twice continuously differentiable functions. We assume that the constraint sets defined by
the functions G and g are regular, i.e., some constraint qualification is satisfied. We denote
by � the set of feasible points for the bilevel program:

� = {(x1, x2): G(x1, x2) ≤ 0 and g(x1, x2) ≤ 0}.

The main feature of problem (1) is that it involves two mathematical programs, the solu-
tion of one being part of the constraints of the other. Due to the implicit dependence of the
lower-level solution on the upper-level decision vector, bilevel programs are intrinsically
hard, and the early contributions in the literature are limited to particular subclasses pos-
sessing properties such as linearity or bilinearity, which allow the development of efficient
approaches.

Also note that there are two possible approaches when considering bilevel programming
problems, namely the optimistic (or weak) approach and the pessimistic (or strong) one.
The former assumes that, whenever the reaction set

R(x̄1) = {x2 ∈ R
n2 : x2 ∈ argmin{ f (x̄1, x̂2): x̂2 ∈ �(x̄1)}},

is not a singleton, the leader selects an element in the lower-level feasible set that suits
him best. Conversely, the latter approach deals with the situation where cooperation of the
leader and the follower is not allowed or impossible, and as a result the leader is not able
to influence the follower anymore; all he can do is to bound the damage resulting from an
undesirable selection of the follower (for a more complete discussion on these issues, we
refer the reader to Loridan and Morgan [55] and Chapter 5, Section 5.1 in Dempe [29]).

The algorithm presented in this paper is based on the optimistic approach. More precisely,
our approach consists in approximating a nonlinear bilevel program by a solvable problem
of the same type, namely, a bilevel program of the linear-quadratic type. Although dissimilar
on the surface, our technique is somewhat related to the trust-region approach developed by
Scholtes and Stöhr [64] for solving mathematical programs with equilibrium constraints.
However, unlike their algorithm, ours preserves the original non-convex bilevel structure
of the original program. One key feature of the method is that it combines two ways of
thought in mathematical optimization, namely combinatorial optimization (mixed-integer
programming) and nonlinear programming (trust regions, descent). The convergence pro-
cess is monitored by a trust-region mechanism which ensures that any progress obtained
while minimizing the linear-quadratic model is compared to that achieved for the original
problem. This allows, as new approximations are computed, efficient control and refinement
of the region under consideration.

This paper is organized as follows. First, we provide a short survey of existing work
related to bilevel programming and more specifically to its nonlinear instances. This is the
subject of Section 2 and is based on previous work by the first author [25]. In Section 3
we recall the basic trust-region framework before we describe our algorithm for solving
nonlinear bilevel programming problems. Implementation details are provided in Section 4
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together with an analysis of the numerical results. We conclude by discussing extensions
of our methodology to mathematical programs with equilibrium constraints.

2. Bilevel programming: A short bibliographical review

The usefulness of bilevel programming in modeling hierarchical decision processes and
engineering design problems prompted researchers, in the nineteen eighties, to pay close
attention to bilevel programs. Their formulation can be traced back to the 1973 article
by Bracken and McGill [16], while Candler and Norton [22] were the first to use the
terms bilevel and multilevel programming. A bibliographical review on the subject was
written by Kolstad [50] as early as 1985, while the most recent surveys are those of Vicente
and Calamai [73] and Dempe [30]. Other reference works can be found in the papers of
Anandalingam and Friesz [4] and the books of Shimizu et al. [66], Bard [8] and Dempe [29].

Bilevel programming problems are difficult to solve. Even the simplest instance—in
which all functions are linear—is strongly NP-hard, as was shown by Hansen et al. [42].
More recently, Vicente et al. [75] showed that checking local optimality for a linear bilevel
program is also NP-hard. It is therefore no surprise that most algorithmic research to date has
focused on the simplest cases of bilevel programs, that is problems having nice properties
such as linear, quadratic or convex objective and/or constraint functions (see Bard [7] for the
study of the convex case). In particular, linear bilevel problems have received much attention
for the last two decades. Linear bilevel programs have the property (see Savard [61]) that
the solution set, whenever it is nonempty, contains at least one vertex of the polyhedron.

� = {(x1, x2): G(x1, x2) ≤ 0 and g(x1, x2) ≤ 0}.

A wide class of methods is based on vertex enumeration (see e.g. Candler and Townsley [23],
Bialas and Karwan [14], Tuy et al. [72]). Other approaches are based on replacing the
lower-level problem by its primal-dual optimality conditions. This operation reduces the
original problem to a single-level program involving disjunctive constraints. Other branch-
and-bound algorithms have been developed by Bard and Falk [9] and Fortuny-Amat and
McCarl [39]. Combining branch-and-bound, monotonicity principles and penalization,
Hansen et al. [42] have developed a code capable of solving medium-size instances of
linear bilevel programs. Alternatively, Bialas et al. [15] and Júdice and Faustino [48, 49]
based their solution approach on complementary pivoting theory. Comprehensive reviews
related to that particular class of problems may be found in Hsu and Wen [43, 76] and
Ben-Ayed [11].

Several algorithms have been proposed for nonlinear bilevel programming, under various
assumptions. Roughly speaking, methods for solving the general nonlinear case may belong
to one of three categories: enumeration (branch-and-bound), descent and penalty methods.

The abovementioned branch-and-bound approach can be extended to cover the situa-
tion where the lower-level objective is quadratic in x2 and the lower-level constraints are
linear in x2. In this case, one replaces the lower-level problem by the equivalent Karush-
Kuhn-Tucker system, whose equalities and inequalities are linear, with the exception of
the complementarity constraint. The latter being a difficult type of constraint to deal with,
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branch-and-bound methods may be used to defer the introduction of such constraints in the
solution process for as long as possible. This is the basic idea underlying the approaches
of Edmunds and Bard [32], Al-Khayyal et al. [3] and more recently Thoai, Yamamoto and
Yoshise [71].

Some authors have proposed descent methods for solving bilevel programs. Assuming
that for any x1 the optimal solution x∗

2 of the lower-level problem is unique and defines
x2 as an implicit function of x1, problem (1) may be viewed solely in terms of the upper-
level variables x1 ∈ R

n1 . Given a feasible point x1, an attempt is made to find a direction
d ∈ R

n1 along which the upper-level objective decreases. A new point x1 + αd (α > 0) is
computed so as to ensure a reasonable decrease in F while maintaining feasibility for the
bilevel problem. However, a major issue is the availability of the gradient (or a generalized
gradient) of the upper-level objective at a feasible point. While Kolstad and Lasdon [51]
have proposed a method for approximating this term, a slightly different approach is that
of Savard and Gauvin [62], for problems where no upper-level constraints of the type (1b)
are present and where the lower-level constraints are rewritten in the following way:

gi (x1, x2) ≤ 0, i ∈ I,

g j (x1, x2) = 0, j ∈ J.

They first show that an upper-level descent direction at a given point x1 is a vector d ∈ R
n1

such that

∇x1 F(x1, x∗
2 ) d + ∇x2 F(x1, x∗

2 ) w(x1, d) < 0, (2)

where w ∈ R
n2 is a solution of the program

min
w

(dT , wT ) ∇2
x1x2

L(x1, x∗
2 , λ) (d, w)

s.t. ∇x2 gi (x1, x∗
2 ) w ≤ −∇x1 gi (x1, x∗

2 ) d, i ∈ I (x1),

∇x2 g j (x1, x∗
2 ) w = −∇x1 g j (x1, x∗

2 ) d, j ∈ J,

∇x2 f (x1, x∗
2 )w = −∇x1 f (x1, x∗

2 ) d + ∇x1L(x1, x∗
2 , λ) d,

(3)

where I (x1) = {i ∈ I : gi (x1, x∗
2 ) = 0} and

L(x1, x2, λ) = f (x1, x2) +
∑

i ∈ I (x1)∪J

λi gi (x1, x2)

is the Lagrangian of the lower-level problem with respect to the active constraints. The
steepest descent direction among those defined by (2) may be shown to coincide with the
optimal solution of the linear-quadratic bilevel program

min
d

∇x1 F(x1, x∗
2 ) d + ∇x2 F(x1, x∗

2 )w(x1, d)

s.t. ‖d‖ ≤ 1,

w(x1, d) solves the quadratic program (3),
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for which exact algorithms exist (see e.g. Bard and Moore [10], Jaumard et al. [46]). We also
mention the work of Falk and Liu [34] who present a bundle method where the decrease of
the upper-level objective is adapted according to subdifferential information obtained from
the lower-level problem. They call the resulting setup a leader predominate algorithm in
view of the role of the leader in the sequential decision making process. Note that all these
descent methods only intend to find local optima.

Finally, penalty methods constitute a third category of algorithms. Because of the inherent
difficulty of the nonlinear case, these methods are generally limited to computing stationary
points and local minima. An initial step in this direction was achieved by Aiyoshi and
Shimizu [1, 2, 65]. However the main drawback of their method is that, for a fixed value of
the penalty parameter, it must compute the solution of the unconstrained lower-level problem
at every update of the upper-level variables. Ishizuka and Aiyoshi [45] proposed a double
penalty method in which both objective functions (1a) and (1c) are penalized. They still use
the augmented lower-level objective and the penalty function of Aiyoshi and Shimizu but
replace the lower-level problem by its stationarity condition, thus transforming (1) into a
single-level program. For a given value of the penalty parameter, this single-level problem
is solved using a second penalty function applied to the upper-level objective. A more recent
contribution is proposed in Case’s Ph.D. thesis [24] and follows up on ideas of Bi et al. [13],
who themselves extend a technique they proposed earlier for linear bilevel programs [12].
Their approach focuses on a bilevel program for which the lower-level problem has been
replaced by its Karush-Kuhn-Tucker conditions. More precisely, Case [24] builds a penalty
function ν(x1, x2, λ) with respect to the l1 norm, defined as the sum of the terms associated
with each constraint of the KKT reformulation of the original problem. In view of the
complex structure of their penalty function, the authors use a trust-region method, i.e., they
minimize a simplified version of p whose local behavior is expected to model that of p.
The trust-region model adopted by [24] corresponds to replacing each component function
of the penalty by its second-order Taylor expansion around the current iterate.

We conclude this section by mentioning the relationship between bilevel programming
problems and another important class of problems, namely Mathematical Programs with
Equilibrium Constraints, or MPECs. The word equilibrium frequently refers to the formu-
lation of the lower-level problem as a finite-dimensional variational inequality. This allows
the mathematical representation of phenomena which may be encountered in engineering,
physics, chemistry or economics. For a given function F : R

n1+n2 → R, the general form of
an MPEC is as follows

min
x1,x2

F(x1, x2)

s.t. (x1, x2) ∈ Z and x2 ∈S(x1),
(4)

where Z ⊆ R
n1+n2 is a nonempty closed set and S(x1) is the solution set of a variational

inequality (or VI) parameterized in x1, that is,

x2 ∈S(x1) ⇔ x2 ∈ C(x1) and

(v − x2)T φ(x1, x2) ≥ 0 ∀v ∈ C(x1),
(5)
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where C(x1) is a closed convex subset of R
n2 and φ: R

n1+n2 → R
n2 . As for bilevel problems,

the terms upper-level and lower-level variables are also used to designate x1 and x2 respec-
tively. If the mapping φ(x1, ·) is the partial gradient map of a real-valued C1 function f :
R

n1+n2 → R, that is φ(x1, x2) = ∇x2 f (x1, x2), then, for any fixed x1, the VI (5) defines the
set of stationarity conditions of the optimization problem

min
x2

f (x1, x2)

s.t. x2 ∈ C(x1).
(6)

Moreover, if C(x1) takes the form

C(x1) = {x2: g(x1, x2) ≤ 0},

then problem (6) is nothing but the lower-level problem (1c)–(1d). This shows that MPECs
subsume bilevel programs with convex lower-level problems. Conversely, an MPEC can
be formulated as a bilevel program by reformulated the lower-level VI as an optimization
problem. The optimization problem can, for instance, be constructed around the gap function
(see e.g. Auslender [6] or Fukushima [40]), or by simply minimizing the complementarity
slackness term.

While many active set approaches have been proposed for solving MPECs (see Bard [8]),
more recent methods deal with constraint regularization (e.g. Facchinei et al. [33],
Fukushima and Pang [41], or Scholtes [63]), implicit programming techniques (Outrata
et al. [59]), or nonlinear programming techniques (filter methods: Fletcher and Leyffer [35,
36], sequential quadratic programming: see Jiang and Ralph [47], Ralph [60] and Fletcher
et al. [37]). We refer to the monographs of Luo et al. [56] and Outrata et al. [59] for a
comprehensive analysis of MPECs.

3. An approximation algorithm for bilevel programming problems

In this section, we describe our trust-region algorithm for solving nonlinear bilevel program-
ming problems in the absence of joint upper-level constraints, i.e., constraints unrelated to
the lower level and involving both upper and lower-level decision variables. We briefly
recall that trust-region methods are iterative methods whose underlying idea is both intu-
itive and simple: at each iteration, a model of the considered problem is built around the
incumbent solution and this model is then minimized within some prescribed region where
the approximation is thought to be a sufficiently accurate representation of the original
problem; this gives a new point and the next step consists in verifying that this point yields
a sufficient improvement of the true objective function: if this is the case, the model is good
and the trust region may be enlarged while if the objective function is not improved the
region is shrinked and a new model is computed (for more details and an in-depth study
of trust-region methods, we refer the reader to the books of Dennis and Schnabel [31] and
Conn et al. [27]).

Note that our algorithm is not the first attempt to solve bilevel programming problems
by means of a trust-region method since such an approach was presented by Liu et al.
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[54]. Their algorithm is also based on a linear-quadratic approximation of the original
problem, but its application is restricted to bilevel programs without upper-level constraints
and whose lower-level problem is a strongly convex mathematical program with linear
constraints. Under adequate assumptions, convergence to a Clarke stationary point may be
proved. However no computational experience is reported.

3.1. Description of the algorithm

To describe our algorithm, we first assume that an initial solution is available (see details
below). We build a linear-quadratic model of problem (1) around local linear approxima-
tions of F , G and g, and a quadratic approximation of the lower-level objective f . If (x̄1, x̄2)
denotes the current iterate, we set up the model functions:

Fm(x1, x2) = F(x̄1, x̄2) + cT
1 (x1 − x̄1) + cT

2 (x2 − x̄2), (7)

Gm(x1) = G(x̄1) + A1(x1 − x̄1), (8)

fm(x1, x2) = f (x̄1, x̄2)

+ dT
1 (x1 − x̄1) + dT

2 (x2 − x̄2)

+ 1

2
(x1 − x̄1)T Q11(x1 − x̄1)

+ (x1 − x̄1)T Q12(x2 − x̄2)

+ 1

2
(x2 − x̄2)T Q22(x2 − x̄2), (9)

gm(x1, x2) = g(x̄1, x̄2) + H1(x1 − x̄1) + H2(x2 − x̄2), (10)

where

c1 = ∇x1 F(x̄1, x̄2) ∈ R
n1 , c2 = ∇x2 F(x̄1, x̄2) ∈ R

n2 ,

A1 = Jx1 G(x̄1) ∈ R
m1×n1 ,

d1 = ∇x1 f (x̄1, x̄2) ∈ R
n1 , d2 = ∇x2 f (x̄1, x̄2) ∈ R

n2 ,

H1 = Jx1 g(x̄1, x̄2) ∈ R
m2×n1 , H2 = Jx2 g(x̄1, x̄2) ∈ R

m2×n2 ,

Q11 = ∇2
x1x1

f (x̄1, x̄2) ∈ R
n1×n1 , Q12 = ∇2

x1x2
f (x̄1, x̄2) ∈ R

n1×n2 ,

Q21 = ∇2
x2x1

f (x̄1, x̄2) ∈ R
n2×n1 , Q22 = ∇2

x2x2
f (x̄1, x̄2) ∈ R

n2×n2 .

The above notation yields the linear-quadratic bilevel program:

min
x1,x2

Fm(x1, x2)

s.t. Gm(x1) ≤ 0
min

x2

fm(x1, x2)

s.t. gm(x1, x2) ≤ 0.

(11)
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Due to its combinatorial structure, problem (11) can be reformulated as a mixed-integer
program (MIP) and solved using either specialized algorithms (see Jaumard et al. [46]) or
an off-the-shelf MIP software.

To transform (11) into an equivalent MIP, we first remove the constant terms from (7)
and (9) and set

Ḡ = G(x̄1) − A1 x̄1,

and

ḡ = g(x̄1, x̄2) − H1 x̄1 − H2 x̄2.

The upper and lower-level functions are then expressed as

Fm ′ (x1, x2) = cT
1 x1 + cT

2 x2,

Gm ′ (x1) = A1x1,

fm ′ (x1, x2) = r T
1 x1 + r T

2 x2 + 1

2

(
xT

1 xT
2

) (
Q11 Q12

Q21 Q22

) (
x1

x2

)
,

gm ′ (x1, x2) = H1x1 + H2x2,

where

r1 = d1 − QT
21 x̄2 − QT

11 x̄1 ∈ R
n1

and

r2 = d2 − QT
12 x̄1 − QT

22 x̄2 ∈ R
n2 .

The problem (11) can then be rewritten as:

min
x1

Fm ′ (x1, x2)

s.t. Gm ′ (x1) ≤ −Ḡ
min

x2

fm ′ (x1, x2)

s.t. gm ′ (x1, x2) ≤ −ḡ.

Incorporating the trust-region constraint with respect to the upper-level vector x1, we derive
an equivalent MIP:

min cT
1 x1 + cT

2 x2 (12a)

s.t. ‖x1 − x̄1‖∞ ≤ �k, (12b)

A1x1 ≤ −Ḡ, (12c)

H1x1 + H2x2 ≤ −ḡ, (12d)

λ ≥ 0 ∈ R
m2 , (12e)
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λi ≤ Mzi , i = 1, . . . , m2, (12f)

[−ḡ − H1x1 − H2x2]i ≤ M(1 − zi ), i = 1, . . . , m2, (12g)

zi ∈ {0, 1}, i = 1, . . . , m2, (12h)
1

2

(
QT

12 + Q21
)
x1 + Q22x2 + H T

2 λ + r2 = 0. (12i)

The trust-region constraint is expressed as (12b), while (12c) represents the primal feasibility
of the upper-level problem. Primal feasibility of the lower-level problem is ensured by (12d);
dual feasibility corresponds to (12e) and (12i). Finally, the complementarity constraint

λi [−ḡ − H1x1 − H2x2]i = 0, i = 1, . . . , m2

is linearized and replaced by (12f), (12g) and (12h), where the parameter M is a ‘large
number’ that ensures that the MIP is equivalent to the model bilevel program. The existence
of such constant follows from a result of Anandalingam and White [5].

Let (xm
1 , xm

2 ) denote a global solution of (12). In order to evaluate the true value of this
solution, one must compute the lower-level reaction to xm

1 , i.e., the optimal solution of

min
x2

f
(
xm

1 , x2
)

s.t. g
(
xm

1 , x2
) ≤ 0,

(13)

which we denote by x∗
2 . Since a global solution of (13) is required, the lower-level problem

will be assumed to be convex, unless one is willing to solve to optimality a non-convex
program, using global optimization techniques. This completes the description of the trust-
region subproblem which, starting from a given point (x̄1, x̄2), generates a solution (xm

1 , x∗
2 )

of a model of (1) around (x̄1, x̄2). We are now in position to summarize the complete
algorithm.

1. Initialization. Initial values are provided for the trust-region radius �0, parameters η1,
η2, γ1 and γ2 satisfying

0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2.

Values are also provided for M , �min, kmax and ε. It is further assumed that an initial
feasible point (x (0)

1 , x (0)
2 ) is available. This point may for instance be deduced from the

high point, that is, x (0)
1 is set to the partial solution (in x1) of the single-level program:

min
x1,x2

F(x1, x2)

s.t. G(x1) ≤ 0

g(x1, x2) ≤ 0

(14)

and x (0)
2 is the solution of the lower level problem corresponding to x (0)

1 . Next, the iteration
counter k is set to 0.
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2. Computation of the model. Construct Ḡ, ḡ and the non-constant terms in the model
functions Fm , Gm , fm and gm .

3. Solving the subproblem. Solve problems (12) and (13) for their respective solutions
(xm

1 , xm
2 ) and x∗

2 .
4. Updating radius and iterate. Compute the ratio of achieved versus predicted reduction

ρk = F
(
x (k)

1 , x (k)
2

) − F
(
xm

1 , x∗
2

)

Fm
(
x (k)

1 , x (k)
2

) − Fm
(
xm

1 , xm
2

) .

If ρk < η1, the model is deemed inaccurate: set (x (k+1)
1 , x (k+1)

2 ) := (x (k)
1 , x (k)

2 ) and �k+1 :=
γ1�k .
Otherwise, set (x (k+1)

1 , x (k+1)
2 ) := (xm

1 , x∗
2 ). If ρk ≥ η2, �k+1 := γ2�k .

5. Stopping criteria. The optimization process is stopped if one of the following criteria is
met:

– ‖x (k+1)
1 − x (k)

1 ‖ < ε after a successful iteration,
– the achieved reduction equals the predicted one, i.e. ρk ≈ 1, and the predicted reduc-

tion Fm(x (k)
1 , x (k)

2 ) − Fm(xm
1 , xm

2 ) is small (e.g. smaller than 1.0e-10),
– a predetermined number mxnuns of consecutive unsuccessful iterations has been

reached,
– the trust-region radius becomes smaller than some predetermined threshold

(�k+1 < �min),
– the number of iterations exceeds some predetermined number (i.e. k + 1 > kmax).

If none of the above conditions is satisfied, set k := k + 1 and return to Step 2.

3.2. Joint upper-level constraints

Joint upper-level constraints G(x1, x2) ≤ 0 are transparent to the lower-level ‘player’ and
must naturally be induced by the upper-level vector x1. Finding a feasible point that respects
these constraints and is compatible with the lower-level reaction is, theoretically, as difficult
as solving a bilevel program. Actually, these constraints can make the feasible set of the
bilevel program disconnected. Since these constraints are not in the direct control of the
leader player, their inclusion in the trust-region model could lead to infeasible solutions,
once the lower-level reaction is properly taken into account. Further research might be
dedicated to an adaptation of our algorithm for dealing with this type of problems.

4. Computational experience

BIPA (Bilevel Programming with Approximation methods) is a C ANSI code for solving
problems of type (1), based on the above-described methodology. The software is designed
around existing and efficient tools for addressing subproblems (12) and (13). This enables
us to focus our programming effort on both the approximation and trust-region aspects.
The MIP (12) is solved using the CPXmipopt routine from the CPLEX Callable Library



TRUST-REGION METHOD FOR NONLINEAR BILEVEL PROGRAMMING 221

Table 1. Test problems: data and references.

Problem type Problem name n1 n2 m1 m2 Reference

Linear-quadratic AiyoShim84P2 2 2 5 6 Aiyoshi and

Shimizu [2]

Quadratic-quadratic Bard88Ex1 1 1 1 4 Bard [7]

Bard88Ex2 4 4 9 12 Bard [7]

Bard88Ex3 2 2 3 4 Bard [7]

Dempe92 1 1 0 1 Dempe [28]

DeSilva78 2 2 0 4 DeSilva [67]

FalkLiu95 2 2 0 4 Falk and Liu [34]

Nonlinear BIPA2 1 1 1 4 New problem

BIPA3 1 1 2 2 New problem

BIPA4 1 1 2 2 New problem

BIPA5 1 2 1 6 New problem

Network design NDP1 5 5 5 8 See [26]

NDP2 5 5 5 8 See [26]

Toll-setting TOLL1 3 8 3 13 Labbé et al. [52]

TOLL2 3 18 3 28 New problem

TOLL3 3 18 3 28 New problem

TOLL4 2 4 2 6 Brotcorne [17]

TOLL5 1 4 1 6 Brotcorne [17]

MPEC Outrata94P1 1 2 2 4 Outrata [58]

[44], while problem (13) is solved using the C ANSI version of Spellucci’s DONLP2 code
(see [69, 70] for the underlying algorithm and [68] for DONLP2 users guide). An in-depth
description of BIPA is provided in [26].

We tested BIPA on a set of representative instances, which are listed in Table 1 below. A
complete description of all these test problems may be found in the user’s guide of BIPA [26].
Some problems involving linear or quadratic functions are borrowed from the literature.
Others are new problems created by customizing some of the former ones through the
introduction of nonlinearities. A third set of test problems is based on two applications of
bilevel programming to transportation modeling and planning, namely a continuous variant
of the network design problem and a toll-setting problem. We also tested BIPA on a problem
introduced by Outrata [58] in a paper dedicated to MPECs. Note that some of the problems
do not satisfy the assumption on the convexity of the lower-level problem.

The values of the various parameters are reported in Table 2, where mxnuns denotes
the maximum number of unsuccessful iterations. Trust-region parameters agree with those
recommended by Conn et al. [27], with the exception of the initial trust-region radius, for
which we could observe that a larger value often leads to an increase in the number of
iterations. The issue of fine tuning the values of kmax and �min proved to be non-critical.
Indeed, the associated stopping criteria (number of iterations too large or trust-region radius
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Table 2. Parameters for numerical experiments.

Initial trust-region radius �0 10.0

Other trust-region parameters η1 0.01

η2 0.90

γ1 0.6

γ2 1.4

MIP-parameter M 1.0e+2

Stopping criteria kmax 50

�min 1.0e−6

ε 1.0e−6

mxnuns 5

too small) were seldom met in practice. Finally, we emphasize the role of the parameter M
appearing in the MIP (12). Ideally, M should be chosen as small as possible, in order that
the linear programming relaxation of the MIP be as tight as possible, thus improving the
quality of the lower bound and accelerating the implicit enumeration process. However, if
M assumes a value that is too small, the optimal solution could be missed and, in an extreme
situation, the MIP could be infeasible. Although our computational experiments showed
that the value M = 100 was ‘uniformly’ suitable, this issue, which is problem dependent,
would certainly deserve a more thorough analysis.

The numerical results are summarized in Table III. All tests were performed on a Sun
Ultra-10/300 computer (512M RAM). The starting points for the algorithm correspond to
those given in [26]. For the problems taken from the literature, we used the initial points
provided in the relevant papers.1 Otherwise, we started the algorithm from the point obtained
from the high point (see (14)).

Generally speaking, all problems are solved in a small number of iterations. Note that
the number of calls for functions evaluating F , G, f , g and their derivatives is equal to the
number of iterations so we did not include these numbers in Table 3. The last two columns
provide the total and the average (per iteration) number of enumeration nodes required by
CPLEX to solve the MIP reformulations. Due to its powerful preprocessing capabilities
and the small size of the MIP problems, CPLEX could often uncover an optimal solution
at node 0, i.e., without resorting to branching.

BIPA is able to find the optimal solution of all problems from the literature as well as
for the NDP and TOLL problems. For problem FalkLiu95, our solution improves2 on that
reported in [34]. For the new problems (BIPA2-BIPA4), we report the best solution found.

For most problems the optimal solution is found very early and the subsequent iterations
are used to check optimality. Even for problems requiring a larger number of iterations,
good solutions were found rapidly. For instance, F(x1, x2) = − 6598.4687 after only 10
iterations for problem Bard88Ex2, F(x1, x2) = − 1 after 7 iterations for DeSilva78a, and
F(x1, x2) = − 2.25 after 20 iterations for problem FalkLiu95b.

Toll-setting problems constitute a very particular class of problems for which specific
methods are developed. Actually, building a linear-quadratic model of these problems might
deteriorate their structure since it ignores the bilinear structure of the lower-level. However
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Table 3. Results with BIPA.

Objectives at solution Enumeration nodes
CPU

Problem name Iter. time F(x∗
1 , x∗

2 ) f (x∗
1 , x∗

2 ) Total Average

AiyoShim84P2 2 0.40 0.00 200.00 0 0.00

Bard88Ex1 7 1.12 17.00 1.00 3 0.42

Bard88Ex2 32 6.22 −6600.00 57.48 19 0.59

Bard88Ex3 1 0.20 −12.68 −1.02 0 0.00

Dempe92 6 0.94 31.25 4.00 0 0.00

DeSilva78a 13 2.10 −1.00 0.00 1 0.07

DeSilva78b 7 1.23 −1.00 0.00 7 1.00

FalkLiu95a 47 7.76 −2.25 0.00 0 0.00

FalkLiu95b 45 7.14 −2.25 0.00 10 0.22

BIPA2 7 1.16 17.00 2.00 3 0.43

BIPA3 1 0.17 2.00 24.02 0 0.00

BIPA4 2 0.33 88.79 −0.77 0 0.00

BIPA5 16 2.53 2.75 0.57 3 0.19

NDP1 6 1.09 300.50 419.80 0 0.00

NDP2 6 1.04 142.90 81.95 0 0.00

TOLL1 10 2.36 −7.00 12.00 33 3.30

TOLL2 9 4.19 −9.00 32.00 163 18.11

TOLL3 10 4.48 −24.00 81.00 105 10.50

TOLL4 9 1.32 −8.00 14.00 0 0.00

TOLL5 8 1.16 −11.00 34.00 4 0.50

Outrata94P1a 12 1.88 3.2077 −20.5293 0 0.00

Outrata94P1b 10 1.69 3.2077 −20.5293 0 0.00

the algorithms performs well and produces the optimal solution with a very reasonable
amount of computational work.

Some comments about problem Outrata94P1 are in order. This problem was originally
introduced by Outrata [58] and is part of a series of four problems. These problems represent
MPECs where the variational inequality corresponds to the optimality conditions of the
lower-level and hence they involve multipliers for the lower-level constraints. Only the first
of these four problems fits our framework. The remaining three involve those multipliers
in the upper-level objective, which leads to a class of problems slightly different from the
one we study.

5. Comments and future work

The originality of our algorithm is twofold, in that it combines techniques from nonlin-
ear programming (trust-region methods) and combinatorial optimization (mixed-integer
programming), and preserves the bilevel structure of the approximated model. The numerical
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results collected so far reflect the good behavior of the algorithm and the robustness of the
associated code.

At this point, we would like to make two comments about the numerical testing of bilevel
programs. First, the number of test problems treated in this paper, as well as the size of these
instances, is small. This is due to the fact that very few instances of large-scale, unstructured,
nonlinear bilevel programs are available in the literature. Actually, some of the examples
addressed in this paper are the largest having been addressed by a software that does not
take into account the specific structure of the problems. While there exist generators of
bilevel problems (see Calamai and Vicente [18–20], Calamai et al. [21] or Vicente et al.
[74]), these are limited to linear or quadratic problems, and are obviously irrelevant to our
approach. To our knowledge, there exist but two collections of test problems: the first is
described in Chapter 9 of Floudas et al. [38] and contains 19 problems, most of them linear
or quadratic; the second is the MacMPEC collection maintained by Leyffer [53], which
contains about 130 MPECs, only a handful of them being equivalent to bilevel programs.

Our second comment is concerned with the lack of a proper testing environment
(including a possible proper modeling language) for solving general bilevel programs. Such
an environment should provide all the necessary tools for evaluating objective functions,
gradients, . . . and would allow to avoid coding these functions from scratch.

The convergence study of the algorithm presented in this paper is the subject of ongoing
research. Beyond the theoretical justification of our method, a further benefit from this might
be to provide more appropriate stopping criteria than those listed at Step 5 of the algorithm.

Finally, in view of the promising results obtained by our algorithm, we will extend the
methodology to mathematical problems with (monotone) variational inequality constraints,
a subclass of MPEC of great practical importance. Since no robust software is currently
available for general variational inequalities, we intend to adapt DONLP2 for this purpose.
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Notes

1. The starting point for problems DeSilva78a and FalkLiu95a is (0, 0, 1, 1) while DeSilva78b and Falk-
Liu95b start from (1, 1, 1, 1). Outrata94P1a is started with x (0)

1 = 0 and Outrata94P1b takes x (0)
1 = 10.

2. Note that we had to set mxnuns = 6 to be able to find the optimal solution with the second starting point.
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