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Abstract In this paper, we survey applications and algorithms pertaining to an
important class of price setting problems formulated as bilevel programs.

Introduction. Bilevel Programming.
The present paper focuses on a specific class of bilevel problems that

arise naturally when tariffs, tolls or devious taxes are imposed on a set
of commodities. Not only does this class encompass several important
optimization problems encountered in the transportation, telecommu-
nication and airline industries, but its structure makes it amenable to
efficient solution techniques. Our aim is to present several such models
and briefly discuss algorithmic approaches, either exact or heuristic, that
can be applied to large scale problems within this class.

Bilevel programming is the adequate framework for modelling asym-
metric games where one player (the leader) calls the shots first, taking
into account the optimal reaction of the second player (the follower).
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If one denotes by x (respectively y) the decision vector of the leader
(respectively the follower), a bilevel program can be expressed as

min
x,y

f(x, y)

subject to (x, y) ∈ X

y ∈ S(x),

where S(x) denotes the set of optimal solutions of a mathematical pro-
gram parameterized in the leader’s vector x, i.e.,

S(x) = arg min
y

g(x, y)

subject to (x, y) ∈ Y.

The above formulation implicitly assumes that, if the lower level problem
admits multiple solutions, ties are broken in favor of the leader. Alter-
native situations, where the follower reacts in an antagonistic fashion,
have been analyzed by Loridan and Morgan [16].

Bilevel programs are closely related to mathematical programs with
equilibrium constraints (MPECs), where the lower level corresponds to
an equilibrium problem. Indeed, whenever the objective g of the lower
level program is differentiable and convex in y and the set Y is convex,
y ∈ S(x) if and only if (x, y) ∈ Y and satisfies the variational inequality

〈∇yg(x, y), y − y′〉 ≤ 0

for all y′ such that (x, y′) ∈ Y . Letting Y (x) = {y : (x, y) ∈ Y } we
obtain the one-level optimization formulation

min
x,y

f(x, y)

subject to (x, y) ∈ X

y ∈ Y (x)
〈∇yg(x, y), y − y′〉 ≤ 0 ∀y′ ∈ Y (x)

which subsumes the more general form of an MPEC:

min
x,y

f(x, y)

subject to (x, y) ∈ X

y ∈ Y (x)
〈G(x, y), y − y′〉 ≤ 0 ∀y′ ∈ Y (x),

where the vector function G need not be a gradient mapping with re-
spect to the variable y. Conversely, an MPEC can be reformulated as
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a standard bilevel program by noting that a vector y is solution of the
lower level variational inequality if and only if it globally minimizes,
with respect to the argument y, the strongly convex function gap(x, y)
defined as (see Fukushima [7]):

gap(x, y) = max
y′∈Y (x)

〈G(x, y), y − y′〉 − 1
2
‖y − y′‖2.

The reader interested in the theory and applications of bilevel program-
ming and MPEC is referred to the recent books by Shimizu, Ishizuka
and Bard [20] and by Luo, Pang and Ralph [17].

Being generically nonconvex and nonsmooth, bilevel programs are dif-
ficult optimization problems. Even in the simple situation where both
objectives are affine and the constraint sets are polyhedral, determining
whether a solution is locally optimal is strongly NP-hard. This explains
why global optimization techniques such as implicit enumeration, cut-
ting planes or metaheuristics have been proposed for its solution (see
e.g. [8] and [10]). These are most successful when the set S(x) assumes
a piecewise polyhedral structure, for instance when the lower level prob-
lem takes the form of a convex quadratic program. In the absence of
such property, two main lines of attack have been pursued. The first,
based on sensitivity analysis, adapts descent methods that are compati-
ble with the optimality requirements of the follower, and relies on recent
nonsmooth analysis results; the work of Kocv̌ara, Outrata and Zowe
[19] is typical of this trend. A drawback of this approach is that, even
under strong regularity assumption, it may fail to uncover even a local
optimum for the bilevel program.

A second approach applies standard optimization techniques to a one-
level reformulation, smooth or not, of the bilevel program. A recent
member of this family have been proposed by Scholtes and Stohr [21].

While interesting in their own right, the above approaches cannot
solve the large scale applications that we have in mind, thereby justifying
the development of specific algorithms.

A generic price setting problem
Let x and y be real vectors that specify the respective levels of taxed

and untaxed activities (commodities or services), and T denote the tax
vector attached to x. For a given vector T , in control of the leader, the
follower strives to minimize its operating costs, while the leader seeks
to maximize the revenues raised from taxes. If one denote by F and
f the leader’s and follower’s respective objective functions, the leader
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maximizes his profit by solving the bilevel program

max
T,x,y

F (T, x, y)

subject to (x, y) ∈ arg min
(x′,y′)∈Π

f(T, x′, y′) (1.1)

where Π represents the constraint set of the second level player. From
now on, we will record programs of the form (1.1) in the vertical format:

max
T

F (T, x, y)

min
x,y

f(T, x, y) (1.2)

subject to (x, y) ∈ Π.

This seemingly simplistic model can cover a wide variety of situations.
For instance the vector T may embody subsidies as well as taxes, while
the vectors x and y may represent consumption or production levels.
Alternatively, the lower level can represent the group behavior of eco-
nomic agents competing for scarce resources; if the equilibrium states of
the system are the solutions of a variational inequality parameterized in
the leader’s decision variables, we obtain an MPEC.

Let us first consider a basic model where the leader’s revenues are
proportional to tax and consumption levels, and where all constraints
are linear. The resulting bilevel program, where both objectives are
bilinear, takes the form

max
T

Tx

min
x,y

(c1 + T )x + c2y

subject to A1x + A2y = b
x, y ≥ 0.

(1.3)

Note that, from the leader’s perspective, the objective function Tx is
discontinuous at the points T that induce a change of optimal basis in
the follower’s linear program.

Assuming that the polyhedron {(x, y) : A1x + A2y = b, x, y ≥ 0}
is bounded and that the recourse polyhedron {y : A2y = b, y ≥ 0} is
nonempty, the lower level always admits an optimal solution for any
value of the tax vector T . Therefore, one can replace the lower level
problem by its primal-dual optimality conditions to obtain the mathe-
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matical program with linear and complementarity constraints

max
T,x,y,λ

Tx

subject to A1x + A2y = b

x, y ≥ 0
λA1 ≤ c1 + T

λA2 ≤ c2

(c1 + T − λA1)x = 0
(c2 − λA2)y = 0

or the equivalent program

max
T,x,y,λ

λb− (c1x + c2y)

subject to A1x + A2y = b

x, y ≥ 0
λA1 ≤ c1 + T (1.4)
λA2 ≤ c2

(c1 + T − λA1)x = 0
(c2 − λA2)y = 0.

It is not difficult to see that (1.4) admits an optimal solution of the form
T = λA1 − c1. Upon substitution, we obtain the simplified model

max
x,y,λ

λb − (c1x + c2y)

subject to λA2 ≤ c2 A1x + A2y = b
x, y ≥ 0

(c2 − λA2)y = 0

(1.5)

If we relax its complementarity constraint, (1.5) decomposes into two
linear programs involving respectively the dual vector λ and the primal
vectors x and y. The linear program associated with the primal variables
corresponds to the lower level problem of (1.3) with taxes set at zero.
The dual of the linear program associated with the dual variables is again
the lower level linear program of (1.3), where the choice of activities
is restricted to untaxed ones or, equivalently, where taxes are set to
arbitrary high values.

Returning to the single-level formulation (1.5), one can penalize the
complementarity constraint into the objective function, yielding a bilin-
ear problem separable in the dual vector λ on the one hand, and in the
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primal vectors x and y on the other hand:

max
x,y,λ

λb− (c1x + c2y)−M(c2 − λA2)y

subject to λA2 ≤ c2

A1x + A2y = b (1.6)
x, y ≥ 0.

Labbé, Marcotte and Savard [14] have established the existence of an
exact penalty parameter M∗ such that any optimal solution of (1.6) is
also optimal for (1.5) whenever M exceeds M∗. Now, for fixed primal
variables x and y, let us replace the objective function λ(b + MA2y) by
its dual objective; this yields the linear bilevel program:

max
x,y

−c1x− (M + 1)c2y + c2y
′

subject to A1x + A2y = b

x, y ≥ 0
(1.7)

min
y′

c2y
′

subject to A2y
′ = b + MA2y

y′ ≥ 0.

An intuitive economic interpretation of the linear bilevel program (1.7)
in terms of a second best alternative for the follower has been discussed
in Labbé et al. [14].

We close this section with computational complexity considerations.
In the absence of constraints on the tax vector T , we could not prove
that (1.3) is NP-hard, although we suspect it is. However we proved
that a variant of (1.3) where taxes are bounded from below is strongly
NP-hard. The proof relies on a reduction from the “Hamiltonian Path”
problem in a directed graph to a price setting problem with lower bound
constraints.

Toll setting
The problem of selecting optimal highway tolls clearly fits our price-

setting framework. Let us consider a multicommodity network where
each commodity k ∈ K is associated with an origin-destination pair
(o(k), d(k)) of a transportation network G defined by a node set N and
an arc set A, the latter being partitioned into the subset A1 of toll arcs
and the subset A2 of toll-free arcs. With each arc a of A1 is associated
a generalized travel time composed of a fixed part c1a representing the
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travel time along arc a and an additional toll Ta, expressed in time units.
Any toll-free arc a ofA2 bears a fixed unit travel cost c2a. Tolls Ta cannot
exceed a prescribed upper bound Tmax

a , which could be infinite.
A travel demand vector {nk}k∈K induces the nodal demand vectors

bk
i =





nk if i = o(k),
−nk if i = d(k),
0 otherwise.

The lower level variable xk
a corresponds to the number of users of com-

modity k on arc a ∈ A1 and the variable yk
a to the number of users of

commodity k on arc a ∈ A2.
Neglecting congestion effects, assuming that demand is fixed and that

users minimize their individual generalized travel costs, the toll setting
problem can be formulated as a bilevel program with bilinear objectives
and linear constraints:

max
T

∑

a∈A1

Ta

∑

k∈K
xk

a

subject to Ta ≤ Tmax
a ∀a ∈ A1

min
x,y

∑

k∈K

( ∑

a∈A1

(c1a + Ta)xk
a +

∑

a∈A2

c2ay
k
a

)

subject to
∑

a∈i+

(xk
a + yk

a)−
∑

a∈i−
(xk

a + yk
a) = bk

i ∀k ∈ K ∀i ∈ N

xk
a ≥ 0 ∀k ∈ K ∀a ∈ A1

yk
a ≥ 0 ∀k ∈ K ∀a ∈ A2,

where i+ (respectively i−) denotes the set of arcs having i as their tail
node (respectively head node).

One can introduce more realism into the previous model by consid-
ering congestion effects and/or a nonuniform distribution of the “time
value of money” across the population. These features will be incorpo-
rated in the next applications.

Price setting of telecommunication networks
Price and revenue optimization in the area of telecommunication is

an active domain of research (see the book of Mitchell and Vogelsang
[18]). Among various approaches to that important problem, one may
mention those based on game theory (Cocchi et al. [4] and Bencheick
[1]), opportunity costing (Wang et al. [23]) and network design (Girard
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and Zidane [9]). In this section, we consider the optimal pricing of
links in a packet-switched telecommunication network. We assume that
users select a telecommunication provider according to two criteria, cost
and quality of service, the latter being in direct relationship with the
capacities of the links. The problem of the leader company is to price
out the arcs of its subnetwork such as to maximize profit, while taking
into account the user-optimized behavior of the customers. Whenever (i)
the arrival rate of messages follows a Poisson process and is independent
of service time, (ii) the length of a message is distributed according to
an exponential random variable, then the average delay of a message
through the network is given by the formula

T (f) =
1
γ

∑

a∈A

(
fa

Ca − fa
+ µfapa

)
, (1.8)

where fa denotes the total flow on arc a ∈ A, γ the total demand on the
network, Ca the capacity of the arc a ∈ A, µ the average message length
and pa the propagation delay along arc a ∈ A. The first term in the
summation, the node delay, reflects congestion at nodes. Under normal
conditions, the second term (arc delay) is negligible and can safely be
discarded.

Let dk
a denote the average generalized cost along the arcs of the com-

peting firms. Upon introduction of trade-off parameters αa that trans-
late quality of service in terms of cost units, the price-setting problem
takes the form of the bilevel program

max
T

∑

a∈A1

∑

k∈K
T k

a xk
a

subject to Ta ≤ Tmax
a ∀a ∈ A1

min
f,x,y

∑

a∈A

αafa

γ(Ca − fa)
+

∑

k∈K

∑

a∈A1

T k
a xk

a

+
∑

k∈K

∑

a∈A2

dk
ay

k
a

subject to
∑

a∈i+

(xk
a + yk

a)−
∑

a∈i−
(xk

a + yk
a) = bk

i ∀k ∈ K ∀i ∈ N
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fa =
∑

k∈K
xk

a ∀a ∈ A1

fa =
∑

k∈K
yk

a ∀a ∈ A2

xk
a ≥ 0 ∀k ∈ K ∀a ∈ A1

yk
a ≥ 0 ∀k ∈ K ∀a ∈ A2.

In this formulation, arc prices are not required to be identical for all com-
modities. This opens room for discrimination of the users and would
make the problem entirely separable by commodity, hence trivial to
solve, were it not for the congestion effects.

Yield management in the airline industry
Yield management in the airline industry has been an area of active

research for the past few years (see [22]). It addresses four issues that
deeply impact the industry revenues: forecasting, overbooking, seat allo-
cation and pricing. Ideally, these four components should be part of an
integrated profit-maximizing model. However, the complexity and the
size of such a model would prevent the numerical resolution of problem
instances of any realistic size. At the present time, the four issues are
treated independently, even though the strong interaction between seat
allocation and pricing is widely acknowledged. Our model, which ad-
dresses jointly the issues of seat allocation and pricing, is distinguished
by three key features: its bilevel nature allows for an endogenous repre-
sentation of the price-demand relationship, network interactions among
the various carriers are explicitly considered, and the utility function
of each user takes into account three criteria: fare, time and quality of
service. Two parameters, α and β, translate time and quality of service
into cost units; these parameters are distributed across the population
according to a density φk(α, β) which may vary by origin-destination
pair k. This flexibility allows the model to assign a given user to a fare
class according to his personal preference.

Let T denote the fare vector and x (respectively y) denote the passen-
ger flow vector for the leader airline (respectively the competition), in-
dexed by booking classes b and flights f connecting the origin-destination
pair k. The revenue of the leader airline is

f(T, x, y) =
∑

k

∑

f∈C1

∑

b∈B(f)

T k
bf

∫

α

∫

β
xk

bf (α, β) dα dβ,
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where C1 is the set of flights of the leader company and B(f) is the
set of booking classes available on flight f . A passenger whose utility
parameters are α and β will select a flight that minimizes his generalized
cost

fare + (α × flight length) + (β × flight quality).

Hence, at the lower level, the passengers are assigned to the flights and
booking classes that minimize the objective

g(x, y) =
∑

k

{∑

f∈C1

∑

b∈B(f)

∫

α

∫

β
(T k

bf + αlf + βqbf )xk
bf (α, β) dα dβ +

∑

f∈C2

∑

b∈B(f)

∫

α

∫

β
(T k

bf + αlf + βqbf )yk
bf (α, β) dα dβ

}
,

where C2 is the set of flights of the competing firms, and lf and qbf the
respective length and quality parameters associated with flight f and
booking class b. The functions xk

bf (α, β) and yk
bf (α, β) are the the “user

group” (α, β). Their integrals represent the respective market shares of
the leader airline and the competition.

Let F1(k) (respectively F2(k)) denote the set of flights of the leader
(respectively the competition) available for an origin-destination k for
which the demand is dk. Let A(f) denote the set of legs that make up
flight f . Taking into account the flow conservation and capacity con-
straints, we can formulate the yield management model as bilevel pro-
gram involving both finite-dimensional (fares) and infinite-dimensional
(flow densities) decision variables:
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max
T,x,y

∑

k

∑

f∈C1

∑

b∈B(f)

T k
bf

∫

α

∫

β
xk

bf (α, β) dα dβ

subject to Tmin
bf ≤ Tbf ≤ Tmax

bf ∀f ∈ C1 ∀b ∈ B(f)

min
x,y

∑

k

{∑

f∈C1

∑

b∈B(f)

∫

α

∫

β
(T k

bf + αlf + βqbf )xk
bf (α, β) dα dβ

+
∑

f∈C2

∑

b∈B(f)

∫

α

∫

β
(T k

bf + αlf + βqbf )yk
bf (α, β) dα dβ

}

subject to xa =
∑

k

∑

f :a∈A(f)

∑

b∈B(f)

∫

α

∫

β
xk

bf (α, β) dα dβ ∀a ∈ A1

φk(α, β)dk =
∑

b∈B(f)

{ ∑

f∈F1(k)

xk
bf (α, β) +

∑

f∈F2(k)

yk
bf (α, β)

}

∀k ∈ K
xa ≤ xmax

a ∀a ∈ A1

xk
bf (α, β) ≥ 0 ∀k ∈ K ∀f ∈ C1 ∀b ∈ B(f)

yk
bf (α, β) ≥ 0 ∀k ∈ K ∀f ∈ C2 ∀b ∈ B(f).

Note that the above model is pessimistic in the sense that the compe-
tition’s capacity is assumed to be illimited; this assumption makes sense
only if the leader company’s market share is small.

Traffic management through link tolls
On a transportation network, Wardrop’s user principle states that,

at equilibrium, flows should be assigned to shortest routes with respect
to current travel delays. If the network is heavily congested, such an
assignment may lead to an inefficient use of the network capacity. This
situation can be remedied by adopting a marginal cost pricing scheme
which would induce the network users to behave in a socially optimal
fashion. However, this scheme is not alone to possess that property, and
one might prefer to implement a regulating policy that minimizes the
total amount of tolls raised from the users (see e.g. Hearn and Ramana
[11] and Larsson and Patriksson [15]). Denoting by xk the flow vector
associated with origin-destination k, x the vector of aggregate flows, x∗
the vector of system-optimal flows, Ca(x) the congestion delay along arc
a and {Xk}k∈K the sets of feasible flows per commodity, one looks for a
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tariff schedule that solves the MPEC

min
T≥0

∑

k∈K

∑

a∈A
Tax

k∗
a

subject to
∑

a∈A

(
Ca(

∑

l∈K

xl∗
a ) + Ta

)
(xk∗

a − xk
a) ≤ 0 ∀xk ∈ Xk ∀k ∈ K,

where Xk = {Bxk = bk, xk ≥ 0 }.

Algorithms
The price setting problem

The basic bilinear model can be solved as a linear bilevel program us-
ing reformulation (1.7). However, to preserve the structure of the prob-
lem, it is preferable to work directly on formulation (1.5), which can be
solved by a Branch-and-Bound procedure where branching is performed
with respect to the complementarity constraint, i.e., the alternative

(c2 − λA2)i = 0 or yi = 0.

Whenever the index set P of positive variables yj (j ∈ P ) in an optimal
solution is specified at a given node of the enumeration tree, an optimal
λ-vector can be recovered by solving the linear program:

max
λ

λb

subject to (λA2 − c2)j ≤ 0 ∀j /∈ P

(λA2 − c2)j = 0 ∀j ∈ P

λA1 ≤ c1,

whose dual

min
x,y

c1x + c2y

subject to A1x + A2y = b

x ≥ 0
yj unrestricted ∀j ∈ P

yj≥ 0 ∀j /∈ P

has a structure similar to that of the original lower level LP. If this “in-
verse optimization” procedure is carried out at each node of the implicit
enumeration tree, then the algorithm may heuristically be halted be-
fore termination and yet produce a solution of high quality. Actually,
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the dual vector λ derived from an optimal solution of the lower level
problem with T = 0 often yields a very good initial solution.

In practice, it is frequently the case that the size of the taxed flow
vector x is much smaller than the size of y. If this is the case, the knowl-
edge of the vector x (not only the index set of its positive components,
but also their values) allows to derive the values of y by solving the LP:

min
y

c2y

subject to A2y = b−A1x

y ≥ 0.

As before, an optimal tax vector corresponding to the vector y can easily
be recovered.

Another approach, which is better suited to the solution of large scale
problems, consists in penalizing the complementarity constraint of (1.5)
to obtain the bilinear program

min
x,y,λ

c1x + c2y − λb + M(c2 − λA2)y

subject to A1x + A2y = b

x, y ≥ 0 (1.9)
λA2 ≤ c2 .

For solving single-commodity instances of (1.9), variants of the Gauss-
Seidel iterative procedure, coupled to a clever update of the penalty
parameter M , performed very well.

Toll setting

In contrast with the basic model, the multicommodity network model
has three distinguished features: (i) its network structure, (ii) upper
bounds on the tolls and (iii) tolls that apply to total flow, not individual
commodity flows. The presence of a network structure and the fact
that congestion is not taken into account (the flow of a given origin-
destination pair will go through a unique path) allows for a mixed-integer
formulation that involves a relatively small number of integer variables,
i.e., one per toll arc and per commodity. We express the flow variables
as proportions of the demand nk associated with the origin-destination
couple k and the nodal demands are set to ek

i = sgn(bk
i ); this yields the

equivalent formulation:



14

max
T,x,y,λ

∑

k∈K

∑

a∈A1

nkT k
a

subject to
∑

a∈i+

(xk
a + yk

a)−
∑

a∈i−
(xk

a + yk
a) = ek

i ∀i ∈ N ∀k ∈ K

λk
i − λk

j ≤ c1a + Ta ∀a = (i, j) ∈ A1 ∀k ∈ K
λk

i − λk
j ≤ c2a ∀a ∈ A2 ∀k ∈ K∑

a∈A1

(c1a xk
a + T k

a ) +
∑

a∈A2

c2a yk
a = λk

o(k) − λk
d(k) ∀k ∈ K

−Mxk
a ≤ T k

a ≤ Mxk
a ∀k ∈ K ∀a ∈ A1

−M(1− xk
a) ≤ T k

a − Ta ≤ M(1− xk
a) ∀k ∈ K ∀a ∈ A1

xk
a ∈ {0, 1} ∀k ∈ K ∀a ∈ A1

yk
a ≥ 0 ∀k ∈ K ∀a ∈ A2

Ta ≤ Tmax
a ∀a ∈ A1.

The reformulation has been obtained by first replacing the lower level
problem of the original Toll Setting Problem by its optimality conditions.
Next we have introduced variables

T k
a = Tax

k
a

and exploited the fact that the xk
a’s are binary to linearize both the

complementarity constraints and the objective function. The fourth con-
straint of the above program ensures that complementarity slackness of
the lower level problem is satisfied, while the next two constraints en-
sure that the commodity toll T k

a is equal to the actual common toll Ta

whenever the commodity flow xk
a is positive.

This formulation allows to solve to optimality small instances of the
multicommodity toll problem by any integer programming code (see
Brotcorne [3] and Brotcorne et al [2]).

For large scale instances we adopt, again, a Gauss-Seidel approach.
However, while the treatment of upper bounds in the single-commodity
model constitutes a mere technicality, the presence of multiple commodi-
ties makes the resolution of (1.9) by a Gauss-Seidel strategy significantly
more complex. Specifically, the inverse optimization procedure described
earlier must now rely on the solution of a multicommodity flow problem
with upper bounds on arc flows. To avoid this difficulty, we propose
simply to replace the global toll vector T by commodity tolls T k that
must satisfy the compatibility constraint

Tk = T1 ∀k.
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By penalizing into the objective this constraint and the complementarity
constraints (expressed in the primal-dual equality form), one obtains the
bilinear-quadratic program

max
λ,x,y

∑

k∈K

[
λkbk − (c1x

k + c2y
k)−M1((c1 + T k)xk + c2y

k − λkbk)

−M2‖T k − T 1‖2
]

subject to A1x
k + A2y

k = bk ∀k ∈ K

xk, yk ≥ 0 ∀k ∈ K

λkA1 ≤ c1 + T k ∀k ∈ K

λkA2 ≤ c2 ∀k ∈ K.

Once the quadratic penalty term is linearized (à la Frank-Wolfe), the
Gauss-Seidel strategy may be applied to the resulting bilinear program.
Provided that the penalty parameters M1 and M2 are calibrated in a
suitable way, the coupling of the Gauss-Seidel and inverse optimization
strategies could uncover solutions of large-scale problems whose objec-
tive values were typically within one percent of the optimal values, when
these were known (see [2]).

Price setting of telecommunication networks

The algorithmic approaches presented for the multicommodity net-
work model can be extended to the nonlinear telecommunication model.
To see this, let us replace the lower level by its optimality conditions:

max
T,x,y,λ

∑

a∈A1

∑

k∈K
T k

a xk
a

subject to Ta ≤ Tmax
a ∀a ∈ A1

T k
a +

αaCa

γ(Ca − fa)2
− λk

j + λk
i − µk

a = 0 ∀a ∈ A1 ∀k ∈ K
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dk
a +

αaCa

γ(Ca − fa)2
− λk

j + λk
i − µk

a = 0 ∀a ∈ A2 ∀k ∈ K
∑

a∈i+

(xk
a + yk

a)−
∑

a∈i−
(xk

a + yk
a) = bk

i ∀i ∈ N ∀k ∈ K

fa =
∑

k∈K
xk

a ∀a ∈ A1

fa =
∑

k∈K
yk

a ∀a ∈ A2

µk
ax

k
a = 0, µk

a ≥ 0, xk
a ≥ 0 ∀k ∈ K ∀a ∈ A1

µk
ay

k
a = 0, µk

a ≥ 0, yk
a ≥ 0 ∀k ∈ K ∀a ∈ A2.

Using the same argument as the one developed for the general model,
we obtain, after straightforward albeit tedious calculations:

∑

a∈A1

∑

k∈K
T k

a xk
a =

∑

i∈N

∑

k∈K
λk

i b
k
i −

∑

a∈A1

αaCafa

γ(Ca − fa)2

−
∑

a∈A2

αaCafa

γ(Ca − fa)2
−

∑

a∈A2

∑

k∈K
dk

af
k
a .

Now we linearize both the congestion function (by a piecewise linear
curve) and the complementarity constraints (as previously and with the
help of the binary variables zk

a). If map corresponds to a breakpoint of
the piecewise linear curve, wap to the binary variable associated with
the pth segment of the curve, and tap the variable associated with the
convex combination of the pth segment, one obtains the mixed integer
linear program

max
T,x,y,w,z

∑

i∈N

∑

k∈K
λk

i b
k
i −

∑

a∈A1

n+1∑

p=1

αaCa

γ
taph(map)

−
∑

a∈A2

n+1∑

p=1

αaCa

γ
taph(map)

−
∑

a∈A2

∑

k∈K
dk

af
k
a
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subject to

Ta ≤ Tmax
a ∀a ∈ A1

λk
j − λk

i −
n+1∑

p=1

αaCa

γ
tapg(map) ≤ dk

a ∀k ∈ K ∀a ∈ A2

fa =
n+1∑

p=1

tapmap ∀a ∈ A

fa =
∑

k∈K
xk

a ∀a ∈ A1

fa =
∑

k∈K
yk

a ∀a ∈ A2

n+1∑

p=1

tap = 1 ∀a ∈ A

ta1 ≤ wa1 ta(n+1) ≤ wan ∀a ∈ A
tap ≤ wa(p−1) + wap p = 2, ..., n ∀a ∈ A

n∑

p=1

wap = 1 ∀a ∈ A
∑

a∈i+

(xk
a + yk

a)−
∑

a∈i−
(xk

a + yk
a) = ek

i ∀i ∈ N ∀k ∈ K

dk
a +

n+1∑

p=1

αaCa

γ
tapg(map)− λk

j + λk
i −Mzk

a ≤ 0 ∀a ∈ A2 ∀k ∈ K

fk
a ≤ M(1− zk

a) ∀a ∈ A2 ∀k ∈ K
fk

a ≥ 0 ∀a ∈ A ∀k ∈ K
wap ∈ {0, 1} p ∈ {1, 2, ..., n} ∀a ∈ A
tap ≥ 0 p ∈ {1, 2, . . . , n + 1} ∀a ∈ A
zk
a ∈ {0, 1} ∀a ∈ A2 ∀k ∈ K.

The above model can only be solved to optimality for small instances.
For larger instances, Julsain [13] implemented the following procedure:
for fixed price levels, an equilibrium flow solution of the lower level
problem traffic assignment problem is obtained; next, the optimal price
schedule corresponding to this flow is determined by solving a linear



18

inverse optimization problem. The process is iterated until no change
is observed, at which point the best solution obtained by the inverse
optimization procedure is retained.

Yield management in the airline industry

The yield management problem is by far the most ambitious model
presented in this survey, involving the solution of an infinite-dimensional
lower level problem. Working in infinite dimension could, surprisingly,
prove an asset from the computational point of view, since the contin-
uous distribution of the trade-off values α and β across the population
smoothes out the lower level reaction to the upper level fares and ensures,
under weak conditions, that the lower level solution is unique. It is then
conceivable to address the bilevel problem as a single-level differentiable
optimization problem, whose objective can be computed by tedious but
rather straightforward implicit derivation rules. Alternatively, one could
discretize the distribution functions and apply the algorithmic ideas pre-
sented for the other applications. A mixed continuous-discrete approach
based on both ideas is currently investigated.

Traffic management through link tolls

In contrast with the previous applications, the traffic management
problem is not a bona fide bilevel program but actually an inverse op-
timization problem that can be solved easily. Let us first analyze the
case of a single origin (single commodity), which can be expressed, using
obvious vector and matrix notation, as

min
T≥0

Tx∗

subject to 〈C(x∗) + T, x∗ − x〉 ≤ 0 ∀x ∈ X = {Bx = b, x ≥ 0}.

Since the solution of the lower level variational inequality is known to
be x∗, this vector is a solution of the primal-dual system

Bx∗ = b

x∗ ≥ 0 (1.10)
λB ≤ C(x∗) + T

〈C(x∗) + T − λB, x∗〉 = 0.

If x∗a is positive, the corresponding toll is set to Ta = (λB − C(x∗))a;
otherwise, the toll Ta can be set to any value that exceeds the maximum
equilibrium delay, which is known. To simplify the presentation, we



A Bilevel Programming approach to optimal price setting 19

assume that all components of the vector x∗ are positive. The traffic
management problem can then be reduced to the linear program

min
λ

〈λB − C(x∗), x∗〉
subject to λB − C(x∗) ≥ 0,

whose dual
max
x∈X

C(x∗)x

consists in finding a longest path tree in an acyclic network, and is
solvable by a greedy algorithm in polynomial time (Dial [5]).

In the multicommodity case, let xa denote the total flow on arc a.
The equivalent of (1.10) is

Bxk∗ = bk ∀k ∈ K
xk∗ ≥ 0 ∀k ∈ K
λkB ≤ C(x∗) + T ∀k ∈ K∑

k∈K

〈C(x∗) + T − λkB, xk∗〉 = 0.

The dual of the problem of minimizing Tx∗ subject to the last two
constraints is

max
x,α

〈C(x∗), αx∗ − z〉

subject to z =
∑

k∈K
zk

z ≤ (1 + α)x∗

Bzk = αbk, zk ≥ 0 ∀k ∈ K
which, after performing the scaling z = αx′, becomes

max
α

φ(α) := α max
x′∈Qk Xk

〈C(x∗), x∗ − x′〉

subject to x′ ≤ (1 + 1/α) x∗. (1.11)

The function φ is concave, increasing, piecewise linear, and its maximum
is achieved for any sufficiently large value of the variable α. For such
values of α, an optimal tax vector will be recovered from the dual vector λ
associated with the capacity constraint (1.11) of a linear multicommodity
flow problem. A slightly different multicommodity formulation involving
a nonnegativity constraint on the sum of commodity flows was derived
by Dial [6].
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While the multicommodity problem is considerably more difficult to
solve than finding a longest path tree in an acyclic network, it is nonethe-
less manageable, even for large scale networks. Actually, by penalizing
the upper bound constraints, an approximate solution can be computed
by solving a convex flow problem which is at least as easy to solve as the
traffic assignment problem which had to be solved in order to determine
the system-optimal flow vector x∗ in the first place.

If only a subset of arcs is subject to tolls, then it might be impossible
to induce a system-optimal flow pattern. If one adopts as maximiza-
tion criterion the social surplus, then the problem becomes an authentic
bilevel program that can be addressed by the techniques presented ear-
lier.

Conclusion
In this paper, we have presented a short survey of pricing situations

modeled as bilevel programs, as well as several avenues for their nu-
merical resolution. We firmly believe that this approach will gain in
popularity both in the economic and mathematical programming com-
munities, and that the day is not far where these models will be routinely
solved for near-optimal solutions.
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