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Département d’informatique et de recherche opérationnelle (DIRO) and

Centre de recherches sur les transports (CRT)
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A Bilevel Modeling Approach to Pricing and Fare

Optimization in the Airline Industry

Abstract: The airline revenue management problem can be decomposed into four distinct

but related sub-problems that are usually treated separately: demand forecasting, overbook-

ing, capacity allocation and pricing. Over the last decades, much interest has been devoted

to the overbooking and capacity allocation issues and, today, most major airlines rely on

computerized tools to deal with these two sub-problems. Pricing, however, has received less

attention, which can be explained by the technical and theoretical difficulties inherent to the

implementation of a practical Pricing Decision Support System. In this paper, we present a

new modelling approach that allows for the joint solution of the capacity allocation and pric-

ing sub-problems faced by a major North American airline. Using predefined booking limits,

the resulting model can also applied be used in a “pure” pricing context. Our approach is

based on the bilevel programming paradigm, a special case of hierarchical mathematical op-

timization. This modelling technique makes it possible to take into account matters such as

customer segmentation, behavior with regard to fares and other product attributes, and the

interactions induced by overlapping routes, which are typical of modern air transportation

networks.

Keywords: Airline Industry, Revenue management, Yield Management, Pricing Decision

Support System, Bilevel programming, Integer programming.



A Bilevel Modelling Approach to Pricing and Fare

Optimization in the Airline Industry

1 Introduction

It is generally agreed (see for instance Kimes17) that airline revenue management can be

decomposed into four sub-problems: demand forecasting, overbooking policy determination,

capacity allocation (sometimes called seat inventory control) and pricing. These four interde-

pendent issues are the links that form the revenue optimization chain of an airline. While de-

mand forecasting remains a fundamentally statistical task, the determination of overbooking

and capacity allocation policies are usually addressed via optimization techniques. Indeed,

these issues have been the subject of several studies in the Operations Research or Manage-

ment Science literature, over the last thirty years. As a result, major airlines nowadays rely

on computerized tools for addressing the overbooking and seat allocation problems. On the

other hand, although experts agree that pricing/fare optimization is a vital ingredient of the

revenue management process (see Kretsch18 and Garvett and Michaels14), few papers deal

with this topic. The reasons for this situation is twofold. First, while a comprehensive pric-

ing model must involve stochastic, dynamic and game theoretic elements, there is no agreed

modelling approach within the revenue management community. Next, the gathering of data

required in a real-life application constitutes a daunting task. One must indeed track down

information about competitors’ fares, demand forecast, historical sales patterns, etc. Airlines

generally rely on computerized database systems to store such information. As these systems

seldom use compatible formats, one must extract, interpret and reformat the required data

in order to establish links between the various sources of information and develop a coherent

database. We refer to Kretsch18 for an overview of the difficulties surrounding the retrieval

and treatment of fare data.
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In this paper, we introduce a novel methodology for solving the pricing/fare optimiza-

tion problem. Our modelling approach is based on the bilevel mathematical programming

paradigm, a special case of hierarchical mathematical optimization. The resulting mathe-

matical model, which is both static and deterministic, distinguishes itself from alternative

approaches in important ways:

• Disaggregated and O&D-based representation of demand that allows for accurate cus-

tomer segmentation.

• Modelling of customer reaction to fares and flight attributes (duration, quality of ser-

vice, fidelity programs, week-end restrictions, etc.).

• Prices and capacity allocations set at fare basis code† level.

• Full accounting of the schedules and networks of the client airline and its competitors.

The decision variables of the mathematical model are divided into two subsets: product fares

and number of passengers buying a given product. Conceptually, the model does not require

any additional information and will generate not only optimal fare schedules, but also the

corresponding optimal seat allocation and booking class limits. If, however, booking limits

on some or all fare classes are imposed, then the model can be operated in ‘pure’ pricing

mode, complying with the booking class constraints. One must realize that these constraints

greatly restrict the model’s flexibility, and might lead to inferior revenues. Whenever this is

feasible, one should let the model decide by itself the optimal number of seats to allow to

each booking class. For a given booking class, this number is simply the sum of the number

of passengers buying fare products belonging to this class. As to the fare variables, they are

free, i.e., subject to no restrictions whatsoever.

†The fare basis code is a concise notational device used to label a published fare product and describe
its main attributes. There is no standard rule for composing fare basis codes, but airlines usually follow
generally agreed conventions. For instance, the first letter of a fare basis code denotes the booking class to
which the corresponding fare product belongs. Other characters and digits may represent advance booking
restrictions, Saturday-night stay-over, refundability, etc.
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The remaining of this paper is organized as follows. Section 2 gives a short overview of the

scientific literature on revenue management and pricing in the airline industry. Section 3

introduces the bilevel programming paradigm and states the model and provides an illustra-

tive example . Practical issues related to the use of our approach in a real-life context are

exposed in Section 4, while Section 5 proposes extensions to the current model.

2 Literature Review

A recent survey of revenue management can be found in the work of McGill and Van Ryzin.25

In the airline industry, it can be characterized in several ways. Weatherford and Bodily33

adopt the mathematical programming point of view and classify the various objectives to

be optimized (revenue, capacity utilization, customer utility), as well as the operational,

financial and marketing constraints. They propose a taxonomy of revenue management

models based on the objectives that are explicitly addressed and the constraints that must

be satisfied. However, a unified approach seeking to simultaneously deal with all aspects of

the problem has been judged intractable in practice by Smith, Leimkuhler and Darrow.28

Their paper, based on the experience acquired at a major American carrier, suggests that a

decomposition of the general problem into structurally simpler sub-problems is unavoidable,

given today’s theoretical and technological capabilities. Kimes17 suggests the decomposition

introduced earlier, i.e., demand forecasting, overbooking policy determination, seat allocation

and pricing.

Our work is primarily concerned with the joint seat allocation and pricing processes. Seat in-

ventory control can be traced back to the works of Littlewood.24 One can distinguish between

so-called“static”models, where bookings are taken sequentially, starting with the lowest class

and proceeding to the next class only when the current class is filled, and“dynamic”methods,

which make no assumption on the order of arrival of booking requests. There is a further
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distinction between leg-based methods, which ignore the interactions between flight legs, and

broader, network-based methods. Among articles dealing with static, leg-based approaches,

we cite Brumelle et al.7 and Belobaba.1–3 This last author has proposed heuristics usually

referred to as EMRSa and EMRSb that are often used in practice. Optimality conditions

for such static methods have been obtained by Curry,9 Brumelle and McGill,6 Wollmer34

and Robinson.27 Dynamic versions of the leg-based methods have been proposed, most of

them relying on dynamic programming for their solution. Examples of such approaches can

be found in Lee and Hersh,23 Lautenbacher, Stidham and Subramanian,29 Lautenbacher and

Stidham22 and Feng and Xiao.11 They are differentiated, in particular, by the consideration

(or not) of no-shows and cancellations.

Network-based seat inventory control methods can be divided into two broad categories.

Improved versions of leg-based methods that seek to exploit some of the network structure

through modelling devices such as virtual booking classes fall into the first category. The

main advantage of these approaches it that they fully exploit the network structure and,

since they rely on existing frameworks, require small investments. We refer to Belobaba3 and

Smith, Leimkuhler and Darrow28 for further details. The second category, which regroups

methods that are explicitly based on linear programming network formulations, includes the

works of Glover et al.,15 Curry9 and Wong, Koppelman and Daskin.35 In De Boer, Freling et

Piersma,10 deterministic and stochastic network formulations are compared, and numerical

results are presented. Surprisingly, these authors have found that simple deterministic models

based on expected demand generate better revenue than more sophisticated probabilistic

models. According to Belobaba,3 these methods can take into account the combinatorial

structure inherent to any real-life transportation system. However, they are not without

any drawbacks. First, the integration of dynamic and stochastic aspects within a network

formulation can only be achieved at the expense of a significant increase in complexity.

Second, the seat allocation schemes they produce are non-nested and highly “partitioned”,

i.e., the “optimal” number of seats allocated to a given booking class on a given itinerary
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may be too small to be of any practical use. Nevertheless, linear programming network

formulation are sometimes used as an auxiliary procedure in “bid price” methods. Talluri

and van Ryzin30 describe bid prices as threshold values set for each leg of a network such

that a product (which can be seen as an itinerary in the network) is sold only if its fare

exceeds the sum of the bid prices of the legs along its path. In other words, the bid price of

a leg represents the marginal contribution of this leg to the global network revenue. Those

familiar with linear programming will recognize that this is the classical interpretation of

dual multipliers of capacity constraints in a capacitated maximum-flow network formulation,

whence the use of such models in bid price methods. More details can be found in.3,26,30–32

The literature on airline pricing and fare optimization is much more limited. Gallego and Van

Ryzin12,13 and You36 model the pricing of multi-leg flights as a stochastic decision process,

and solve the resulting recurrence equations by dynamic programming techniques. They

underline the strong duality relationship between pricing and seat allocation and argue that

the latter can be derived from the former by allowing prices to become infinite on a given

booking class, which is tantamount to closing it. Recently, Kuyumcu and Garcia-Diaz19

claimed that their model jointly solved the pricing and seat allocation problems. We believe

this is an overstatement. The authors actually formulate and solve (exactly or heuristically)

an integer program model which, given a restricted number of fare structures, determines the

one that should be implemented, together with the number of seats to be allocated to each

class. Fares are therefore exogenous data, and not determined by the optimization process.
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3 A bilevel model of fare optimization

3.1 Bilevel Programming

Bilevel programming is a branch of hierarchical mathematical optimization in which an

agent, referred to as the “leader”, integrates within its optimization process the reaction of a

rational “follower” to his decisions. Once the leader has set its decision variables, the follower

solves an optimization problem, taking as exogenous the leader’s variables. Such a model is

relevant whenever the optimizer controls only indirectly the choices of agents affected by its

decisions, and is pervasive in a free market.

In this sequential framework, the leader has full knowledge of the follower’s optimization

problem. For a given leader vector x, the follower solves an optimization problem where

both its objective function f(x, y) and its feasible set may be dependent on x. The general

form of a nonlinear bilevel program is

max
x,y

F (x, y)

s.t. (x, y) ∈ X

y ∈ arg min
y′∈Y (x)

f(x, y′).

We will slightly abuse notation and present our model in the so-called vertical format

max
x,y

F (x, y)

s.t. (x, y) ∈ X

min
y

f(x, y)

s.t. y ∈ Y (x).

If, for given x, the reaction y(x) is unique and available in closed form, then the bilevel
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program can be rewritten as the single-level program

max
x

F (x, y(x))

s.t. (x, y(x)) ∈ X.

However, such reformulation hides the features of the lower level problems and is only ap-

plicable in problems of little practical interest.

In our case, the leader is the client airline. Its objective is to maximize the revenue raised on

the entire network over a given time horizon. Revenue is obtained by summing the products

of fares and number of passengers (or “flow”) buying the corresponding fare product. While

fares are under the direct control of the leader, the number of buyers in each fare class (lower

level) is dependent on fare structure, seat availability, flight duration, etc. At the lower level,

users minimize their own disutility of travel from their origin point to their destination point.

Decisions taken by the client airline at the upper level are parameters that are integrated in

the objective function and constraints of the customers.

In the model, the perceived travel disutilities (PTDs) are linear combinations of flight at-

tributes, which include fare and flight duration, of course, but also quality of service (cabin),

flight restrictions (max-stay, min-stay, Saturday night rule), etc. Distinct passengers may

have different valuations of the criteria, i.e., PTDs are not uniform throughout the popula-

tion. Actually, customers are partitioned into “user groups”, each group being endowed with

the same valuation of the products. For instance, in the simple situation where only two

criteria are considered (fare and duration, say), passengers within a group assign the same

value to one unit of travel time.
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3.2 Model background

This section introduces the concepts and assumptions underlying the model. Throughout

the paper, we use the term “flight” to denote either the journey completed by a traveller

from his origin to his final destination’. A flight is composed of one or several “legs”, which

are uninterrupted rides of an aircraft that take place between take-off and landing. A direct

flight is composed of a single leg, while a connecting flight has two or more legs separated

by sojourns at transit airports. The term “market” refers to a pair of cities (origin and

destination) for which a flight is sold.

It is assumed that demand for each user group and each market is available and that the fare

structure of all airlines, both the leader and the competition, can be accessed in real time. We

also make the conservative assumption that competing flights have unlimited capacity. This

hypothesis is common to most pricing models and is generally satisfied for most markets.

We may justify it by the high degree of competitiveness in the airline industry and, on the

pragmatic side, by the difficulty of obtaining accurate capacity data for each booking class;

if such data were available, this assumption could be lifted and capacity constraints readily

integrated in the model. Based on the above information, the model assigns demand to the

products of the leader and those of the competition, for each market and each user group.

The model is driven by parameters that fall into two distinct categories. The first category

consists of quantities that describe the purchasing behavior of each user group. As stated

previously, passengers base their travel decisions on the valuation of attributes that charac-

terize the products. The foremost criterion is the nominal value of an airline ticket. Other

criteria include flight duration, quality of service (which can be seen as the aggregation of a

product’s attributes, such as cabin, minimum sojourn time, maximal sojourn time, Saturday

sleep-over restrictions, refundable ticket, etc.), customer inertia (fidelity to a given airline

resulting from a rewards program), etc. The behavioral parameters allow us to quantify, in
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monetary units, the value of these criteria for the users of each group. They yield group

disutilities, which are weighted sums of a product’s attributes.

The second category of parameters is associated with commercial targets set by the leader

airline, such as revenue or market shares. As an example the leader, for marketing or visibility

reasons, may wish to increase its passenger share from 25% to 40% on some strategic market.

The model, through its bilevel structure, will then adjust its fare structure (most likely

downwards, but not necessarily) so as to induce a traffic increase on that market. It will

then find the best solution that meets the market share targets.

Furthermore, the model uses exogenous quantities related to physical constraints (aircraft

capacities) or rules set by regulatory agencies or by governments. For instance, lower bounds

on fares could be imposed to prevent predatory behavior from a dominant airline. Symmet-

rically, fares on small monopolistic regional markets may be subject to ceilings.

As mentioned earlier, the model has the capability of jointly solving the pricing and seat

allocation problems. Fares correspond to decision variables and constitute its primary output,

while booking limits can be computed by summing up the values of the flow variables over

all fare products belonging to a class. However, for technical and managerial reasons, our

approach is likely to find its use as a pure pricing tool; this implies that it must be able to deal

with exogenous, a priori booking limits, through their integration in the model formulation.

3.3 Notation and Mathematical Formulation

In this section, we state the bilevel formulation of the model, restricting ourselves to three

flight attributes: fare, duration and quality of service. Throughout, superscript “1” refers to

the leader airline, and superscript “2” to the aggregated competition. Sets are represent in

capital Latin letters. The sets and corresponding indices are:
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k: market index

f : flight index

s: leg index

p: fare product index

b: booking class index

g: user group index

K: set of all markets (origin-destination pairs)

F 1: set of flights offered by the leader

F 2: set of flights offered by the competition

F i(k): set of flights offered by agent i on market k: F i = ∪kF
i(k)

S: set of flight legs operated by the leader airline

S(f) ⊂ S: set of flight legs making flight f ∈ F 1

P (f): set of fare products (corresponding to fare basis codes) offered on flight f

B(f): set of booking classes open on flight f

G: set of user groups

b(p): booking class of the product p ∈ P (f).‡

Fares and flight attributes are:

t1p,f : fare of the leader airline for product p on flight f (decision variable)

t2p,f : fare of the competition for product p on flight f (exogenous data)

ti: fare vector

DURf : duration of flight f

QOSp,f : quality of service associated with product p on flight f .

‡Note that in practice such a function mapping fare products to booking classes would be trivial since
the class to which a product belongs is given by the first letter of its “fare basis code”.
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At the lower level, decision variables are passenger flows:

vi
p,f,g: number of passengers of group g ∈ G purchasing product p ∈ P (f) on flight

f ∈ F i.

Lowercase Greek letters denote the parameters of the model, which, as mentioned earlier,

either characterize user behaviour or are related to commercial goals. The behavioral pa-

rameters α and β denote, respectively, the valuation of one unit of duration and one unit of

quality of service. For instance, if a given flight has a duration of 140 minutes and passengers

of a given group have a valuation of time of α = 2.5 $/min. , then the contribution of the

duration criterion to the PTD is 140 min. × 2.5 $/min. = 350$. We set:

αg,k: monetary equivalent of one duration unit for passengers of group g on market

k

βg,k: monetary equivalent of one unit of disutility for passengers of group g on

market k

ci
p,f,g(α, β): perceived travel disutility:

ci
p,f,g(α, β) = tip,f + αg,k × DURf + βg,k × QOSp,f

σk: lower bound on targeted share of market k

σk: upper bound on targeted share of market k

ρ
k
: lower bound on targeted revenue share of market k

ρk: upper bound on targeted revenue share of market k.

Besides the parameters listed above, the model requires the following input:

dk: total demand on market k over the planning horizon

hg,k: fraction of demand dk belonging to group g

lb,f : number of seats available in class b on leader flight f (booking limit)

us: aircraft capacity of flight segment s.
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We now discuss each element of the mathematical formulation. At the upper level of the

bilevel program, the leader maximizes revenue over the entire network, i.e., by considering

all its flights. This yields the objective

max
t1,v1,v2

∑

f∈F 1

∑

p∈P (f)

∑
g∈G

t1p,f v1
p,f,g.

At the lower level, passengers meet their travel demand at least cost, i.e., they minimize their

individual PTD. Since there is no interrelation between passenger flows, this is tantamount

to minimizing the disutility of the entire population:

min
v1,v2

∑

f∈F 1

∑

p∈P (f)

∑
g∈G

c1
p,f,g(α, β) v1

p,f,g +
∑

f∈F 2

∑

p∈P (f)

∑
g∈G

c2
p,f,g(α, β) v2

p,f,g.

Flows produced by the model must respect targets set by the commercial parameters, as well

as physical booking limits. This yields the passenger and revenue share constraints

σk ≤
∑

f∈F 1(k)

∑

p∈P (f)

∑
g∈G

v1
p,f,g ≤ σk ∀k ∈ K

ρ
k
≤

∑

f∈F 1(k)

∑

p∈P (f)

∑
g∈G

v1
p,f,g t1p,f ≤ ρk ∀k ∈ K

∑

p∈P (f)|b(p)=b

∑
g∈G

v1
p,f,g ≤ lb,f ∀b ∈ B(f), ∀f ∈ F 1.

If the model is used to jointly solve the pricing and seat allocation subproblems, i.e., without

taking into account any a priori booking limits, then the capacity constraint takes the form

∑

f |s∈S(f)

∑

p∈P (f)

∑
g∈G

v1
p,f,g ≤ us ∀s ∈ S.

Note that, in this latter case, booking limits are obtained a posteriori through the summation

lb,f =
∑

p∈P (f)|
b(p)=b

∑
g∈G

v1
p,f,g ∀f ∈ F 1 ∀b ∈ B(f).
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Next, demand must be satisfied for each user group and each market:

∑

f∈F 1

∑

p∈P (f)

v1
p,f,g +

∑

f∈F 2

∑

p∈P (f)

v2
p,f,g = dk hg,k ∀g ∈ G, ∀k ∈ K.

In the model, one decision variable is assigned to each flight/fare product combination.

However, most fare filing systems allow only for the publication of fare basis codes on a per-

market basis, without associating them to a particular flight. As a consequence, an available

product, say unrestricted full economy fare, can be purchased on several flights scheduled on

a market, no matter what the actual itinerary is, i.e., whether the flights are direct or not.

The model can easily be adapted to the situation where, for managerial or technical reasons,

fare products of all flights serving a market must be identical. This is achieved through the

following variable substitution:

t1p = t1p,f ∀f ∈ F 1, ∀p ∈ P (f),

which ensures that a single price is published for each fare product, without regard to the

flight on which this product is bought. Obviously, this restricts the solution space and might

lead to lower revenue. We are now in position to display the bilevel program:
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max
T 1, v1, v2

∑

f∈F 1

∑

p∈P (f)

∑
g∈G

t1p,f v1
p,f,g

min
v1, v2

∑

f∈F 1

∑

p∈P (f)

∑
g∈G

c1
p,f,g(α, β) v1

p,f,g +
∑

f∈F 2

∑

p∈P (f)

∑
g∈G

c2
p,f,g(α, β) v2

p,f,g

s.t.
∑

f∈F 1(k)

∑

p∈P (f)

∑
g∈G

v1
p,f,g ≤ σk ∀k ∈ K

∑

f∈F 1(k)

∑

p∈P (f)

∑
g∈G

v1
p,f,g ≥ σk ∀k ∈ K

∑

f∈F 1(k)

∑

p∈P (f)

∑
g∈G

v1
p,f,g t1p,f ≤ ρk ∀k ∈ K

∑

f∈F 1(k)

∑

p∈P (f)

∑
g∈G

v1
p,f,g t1p,f ≥ ρ

k
∀k ∈ K

∑

p∈P (f)|
b(p)=b

∑
g∈G

v1
p,f,g ≤ lb,f ∀b ∈ B(f), ∀f ∈ F 1

∑

f∈F 1(k)

∑

p∈P (f)

v1
p,f,g +

∑

f∈F 2(k)

∑

p∈P (f)

v2
p,f,g = dk hg,k ∀g ∈ G, ∀k ∈ K

∑

f |s∈S(f)

∑

p∈P (f)

∑
g∈G

v1
p,f,g ≤ us ∀s ∈ S,

where

ci
p,f,g(α, β) = tip,f + αg,k × DURf + βg,k × QOSp,f

for i ∈ {1, 2}.

3.4 Illustrative example

Let us consider a two-market network (markets A-C and A-D) served by the leader airline

and by two flights from competitors (see Figure 3.4). The leader operates its flights through

a hub and uses three airplanes, one per leg. Leg capacities are equal to 200, 130 and 110 for

legs ‘a’, ‘b’ and ‘c’, respectively.
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Figure 1: Example network

Assuming a single fare product, each flight is characterized by two attributes: fare and

‘disutility’, which are displayed below.

Flight Market Segments Fare Disutility

1 (Leader) A-C a,b t11 50

2 (Leader) A-D a,c t12 60

1 (Competition) A-C d $1000 90

2 (Competition) A-D e $850 80

Demand is split into two groups endowed with their own disutility factor, that is, their

monetary perception of one unit of disutility. These values may vary between markets (see

table below).
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Group Market Demand Disutility Factor ($)

1 A-C 100 5

1 A-D 60 8

2 A-C 450 1

2 A-D 385 1

Dropping the fare product index p for clarity, the mathematical formulation of this instance

takes the form

max
t,v

t11v
1
1,1 + t11v

1
1,2 + t12v

1
2,1 + t12v

1
2,2

min
v

[t11 + (5× 50)]v1
1,1 + [1000 + (5× 90)]v2

1,1

+[t11 + (1× 50)]v1
1,2 + [1000 + (1× 50)]v2

1,2

+[t12 + (8× 60)]v1
2,1 + [850 + (8× 80)]v2

2,1

+[t12 + (1× 60)]v1
2,2 + [850 + (1× 800)]v2

2,2

s.t. v1
1,1 + v1

1,2 + v1
2,1 + v1

2,2 ≤ 200

v1
1,1 + v1

1,2 ≤ 130

v1
2,1 + v1

2,2 ≤ 110

v1
1,1 + v2

1,1 = 100

v1
1,2 + v2

1,2 = 450

v1
2,1 + v2

2,1 = 60

v1
2,2 + v2

2,2 = 385

v1
1,1, v

1
1,2, v

1
2,1, v

1
2,2, v

2
1,1, v

2
1,2, v

2
2,1, v

2
2,2 ≥ 0.

On this simple example, the model aims for the optimal mix of passengers, given the capacity

of the bottleneck leg ‘a’. The optimum fares are $t11 = 1200 and t21 = $870$. These values

make the leader’s A-C flight attractive to group 1 users, since their perceived cost of $1450
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($1200 + ($5 × 50)) is less or equal to that of the competition ($1000 + ($5 × 90)). On the

other hand, users of the second group will fly the competition between A and C. On market

A-D, the fare is attractive to both groups. Due to capacity constraints, only 40 users of the

second group are accommodated by the leader airline.

This solution achieves the best use of leg a’s limited capacity, with a total revenue of $207 000.

This is an increase of 9.2% over the strategy consisting in matching the competition’s fares.

The increase is equal to 5.6% over a market-based strategy that optimizes sequentially over

markets A-C and A-D, in that order, and to 1.7% when the sequence is reversed.

3.5 Solution Methods

Although this paper focuses on a model, we briefly discuss algorithmic issues. Currently,

algorithms for tackling bilevel models of the size proposed in this paper simply do not

exist. One possible strategy would be to replace the lower-level problem by its primal-dual

(KKT) optimality conditions, which are necessary and sufficient. This yields a single-level

nonlinear program of greater dimensionality than the original problem, and involves hard

complementarity constraints. This primal-dual problem can be reformulated as a mixed

linear integer program and solved by a commercial code. Since this approach is only practical

for small problem instances, we adopted ideas presented in Labbé et al.20,21 or Brotcorne

and al.4,5 In particular, we considered an inverse optimization procedure whereby an optimal

fare schedule corresponding to a given lower level solution can easily be recovered. We also

designed heuristics to generate ‘good’ lower level solutions, and implemented rules based

on the problem’s structure that allow to restrict the search space. This allowed to solve

medium-size instances for a near (1%) optimum within minutes of CPU time.
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3.6 Parameter Calibration

It goes without saying that a careful calibration of the behavioral parameters is essential to

ensure the quality and the reliability of the fares and capacity allocation schemes generated by

the model. The procedure we have developed in order to carry out this task is based on inverse

optimization, a well-known methodology in the physical sciences. A detailed exposition of

this method is beyond the scope of this paper, but its basic ideas are easy to grasp. One can,

with sufficiently accurate historical sales records, observe buying patterns and prices paid by

the customers. By making the assumption that this buying behavior actually depends on the

parameters one wishes to calibrate, one may run the mathematical model “backwards”, the

input being the historical records, and the output the model parameters. In particular, one

seeks parameter values for which the model, in its “forward” mode, generates an output that

matches historical prices as closely as possible. The challenging aspects of this procedure lie

in the formulation of the backward model and its numerical solution. It is remarkable that

the problem induced by the backward formulation possesses a bilevel structure similar to that

of the “forward” model, and can therefore be addressed by similar algorithmic techniques.

4 Practical Issues

4.1 Data Availability

Our model has been implemented and validated in close collaboration with a major North

American carrier. It relies on information that is generally available from information systems

used by airlines. One must not lose sight, however, that seat inventory control and fare

optimization are data-intensive processes. Significant amounts of data are required from our

model, including flight schedules, demand forecasts, fare description, etc. The parameter
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estimation procedure sketched above also requires historical sales data of sufficient detail

and breadth. Major airlines treat and archive this data using complex information systems

which, unfortunately, rarely use common data representation. A careful interpretation of the

data retrieved from the various databases is a prerequisite to the construction of a coherent

data model.

4.2 Dynamics

Our model is inherently static and does not take into account the dynamic aspects of the

airline fare optimization problem; it takes a static snapshot of the current situation and

suggest prices which are best for the leader, given the actual fares offered by the competition

and the behavior of the passengers. On the North American transborder market, for instance,

major carriers subscribe to a fare filing system known as ATPCo. By publishing their fares,

participating airlines can access, in real time, information about the fares and products

proposed by their competitors. This information is updated every four hours, so that fare

optimization must be performed several times a day if one wishes to take advantage of the

latest published fares of the competitors.

Thus, the model should run every time new fares are published. For each run, demand

estimates and available capacity must be updated so that the input data reflects the latest

bookings or any modification to the schedule and/or available capacity. Needless to say,

solution algorithms must be efficient enough to solve real-life instances within minutes of

computing time. In that perspective, it is appropriate to describe fare optimization, at least

on highly competitive markets, as a semi real-time process.
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4.3 Randomness

A key assumption underlying our approach is that it leaves aside demand randomness. Or

does it? Randomness may be confused with heterogeneity of demand, which is fully con-

sidered in the model, and which accounts for a large part of demand variability. In the

mid-term, we believe that demand estimates are fairly accurate. Of course, demand can be

stimulated by ticket sales or other marketing practices, but we believe that this should not

be the prime focus of a strategic pricing model. Hence the trade-off that we achieve in favor

of full network accounting versus the short-term, day-to-day variability of demand. On the

pragmatic side, the extension of our approach to a stochastic environment would require the

estimation of demand elasticities over the entire network, a hazardous task at best.

5 Conclusion

The aim of this paper was to propose a new modelling approach to pricing and fare opti-

mization in the airline industry. The use of bilevel programming allows to maximize revenue

while taking into account in a detailed fashion the behavior of the passengers, as well as the

complex topology of airline networks. This is in sharp contrast with models based on econo-

metric demand estimates, or stochastic models that focus on a single leg or a single market.

We believe that what we include in the model more than offsets the features we leave out,

i.e., the dynamics and variability of demand. In particular, it deals with the simultaneous

optimization of the two components of the revenue management process (pricing and seat

allocation) and could even address demand forecasting in a crude fashion by incorporating

a dummy “no-travel” alternative to passengers.

Of course, there is a price to pay for the features provided by the model. In particular,

booking limits of the competing airlines are not known, although estimates, as well as global
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capacities, were they available, could easily be incorporated into the model’s constraints.

Also, as mentioned earlier, demand variability is not addressed directly, although its impact

will be mitigated by running the model on a frequent basis, using updated demand estimates.
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[4] Brotcorne, L., Labbé, M., Marcotte, P., and Savard, G. A bilevel model

and solution algorithm for a freight tariff setting problem. Transportation Science 34

(2000), 317–324.
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