
EXAMPLES

1.2.3. To find the point of intersection of the two lines 2x+ 3y = 6 and x− y = 1, we solve the system:
2x+3y=6
x− y=1.

Subtracting twice the second row from the first row yields the equation: 5y = 4. Therefore: y = 4/5.
Substituting in the second equation, we get: x = 1 + y = 1 + 4/5 = 9/5.

4.5.6. Solve the systems of linear equations:
x− y+2z=1

(i) 2x−2y+6z=0
x+2y+3z=1

and
x1+ x2+2x3+ x4=0

(ii) 2x1+2x2+3x3+4x4=2
x1+ x2+ x3− x4=2.

(i)


x y z

1 −1 2 | 1
2 −2 6 | 0
1 2 3 | 1

 R2←R2−2R1−→

 1 −1 2 | 1
0 0 2 | −2
1 2 3 | 1

 R3←R3−R1−→

 1 −1 2 | 1
0 0 2 | −2
0 3 1 | 0


R2↔R3−→

 1 −1 2 | 1
0 3 1 | 0
0 0 2 | −2

 R3← 1
2R3−→

 1 −1 2 | 1
0 3 1 | 0
0 0 1 | −1


Solution: z = −1

3y + z = 0⇒ y = 1/3
x− y + 2z = 1⇒ x = 1 + y − 2z = 10/3

(ii)


x1 x2 x3 x4

1 1 2 1 | 0
2 2 3 4 | 2
1 1 1 −1 | 2

 R2←R2−2R1−→
R3←R3−R1

 1 1 2 1 | 0
0 0 −1 2 | 2
0 0 −1 −2 | 2

 R3←R3−R2−→

 1 1 2 1 | 0
0 0 −1 2 | 2
0 0 0 0 | 0


Solution: x2, x3 free

−x3 + 2x4 = 1⇒ x3 = 2x4 − 1
x1 + x2 + 2x3 + x4 = 0⇒ x1 = −x2 − 2x3 − x4 = 2− x2 − 5x4

In the preceding example, replace the number 2 on the right-hand side of the third equation by 3 and check
that the corresponding system is inconsistant.

7. Pursue the reduction process on the preceding examples.

(i)

 1 −1 2 | 1
0 3 1 | 0
0 0 1 | −1

 R2←R2−R3−→

 1 −1 2 | 1
0 3 0 | 1
0 0 1 | −1

 R1←R1−2R3−→

 1 −1 0 | 3
0 3 0 | 1
0 0 1 | −1


R2← 1

3R2−→

 1 −1 0 | 3
0 1 0 | 1

3
0 0 1 | −1

 R1←R1+R2−→

 1 0 0 | 10
3

0 1 0 | 1
3

0 0 1 | −1


Solution: x = 10/3, y = 1/3, z = −1.

(ii)

 1 1 2 1 | 0
0 0 −1 2 | 2
0 0 0 0 | 0

 R1←R1+2R2−→

 1 1 0 5 | 2
0 0 −1 2 | 2
0 0 0 0 | 0


Solution: x2 and x4 free, x3 = 2x4 − 1, x1 = 2− x2 − 5x4.



8.9.

Let: A =
(

1 2 3
0 4 −1

)
B =

(
1 2
0 1

)
C =

(
1 1
−1 0

)
D =

(
1 −1
2 −2

)
E =

(
1 1
1 1

)
.

Then: AAt =
(

14 5
5 17

)
AtA =

 1 2 3
2 20 2
3 2 10

 BC =
(
−1 1
−1 0

)
6= CB =

(
1 3
1 −2

)
.

Remark. The matrices AAt and AtA are always symmetric.

Check that DE = 0, although D 6= 0 and E 6= 0. However: ED =
(

3 −3
3 −3

)
6= 0.

Remark. (A+B)2 = A2 +AB +BA+B2 6= A2 + 2AB +B2 unless AB = BA!

10. Let A =
(

1 2 −1
0 2 4

)
and B =

(
2
0

)
. The matrix equation AX = B is equivalent to the system:

x1+2x2− x3=2
2x2+4x3=0 where X =

x1

x2

x3

 .

11. Let A =
(

1 2 3
−1 1 0

)
. Solve the equation AX = 0.

( x1 x2 x3

1 2 3 | 0
−1 1 0 | 0

)
R2←R2+R1−→

(
1 2 3 | 0
0 3 3 | 0

)
Solution: x3 is free

3x2 + x3 = 0⇒ x2 = −x3

x1 + 2x2 + 3x3 = 0⇒ x1 = −2x2 − 3x3 = −x3

12. Let A =
(

1 2
3 4

)
and B = 1

2

(
−4 2
3 −1

)
. Since BA = I, B is a left inverse of A. Thus it should also be a

right inverse (check it). Also: A2 =
(

7 10
15 22

)
and (A2)−1 = (A−1)2 = B2 = 1

4

(
22 −10
−15 7

)
.

In 8.9. check that tr(BC) = −1 + 0 = tr(CB) = 1 + (−2) = −1.

13. Let us find the inverse of A =

 0 1 2
1 0 1
1 1 1

:

 0 1 2 | 1 0 0
1 0 1 | 0 1 0
1 1 1 | 0 0 1

 R1↔R2−→

 1 0 1 | 0 1 0
0 1 2 | 1 0 0
1 1 1 | 0 0 1

 R3←R3−R1−→

 1 0 1 | 0 1 0
0 1 2 | 1 0 0
0 1 0 | 0 −1 1


R3←R3−R2−→

 1 0 1 | 0 1 0
0 1 2 | 1 0 0
0 0 −2 | −1 −1 1

 R2←R2+R3−→

 1 0 1 | 0 1 0
0 1 0 | 0 −1 1
0 0 −2 | −1 −1 1



R3←− 1
2R3−→

 1 0 1 | 0 1 0
0 1 0 | 0 −1 1
0 0 1 | 1

2
1
2 − 1

2

 R1←R1−R3−→


I A−1

1 0 0 | − 1
2

1
2

1
2

0 1 0 | 0 −1 1
0 0 1 | 1

2
1
2 − 1

2





A−1 = E6E5E4E3E2E1

=

 1 0 −1
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 − 1

2

 1 0 0
0 1 1
0 0 1

 1 0 0
0 1 0
0 −1 1

 1 0 0
0 1 0
−1 0 1

 0 1 0
1 0 0
0 0 1


A = E−1

1 E−1
2 E−1

3 E−1
4 E−1

5 E−1
6

=

 0 1 0
1 0 0
0 0 1

 1 0 0
0 1 0
1 0 1

 1 0 0
0 1 0
0 1 1

 1 0 0
0 1 −1
0 0 1

 1 0 0
0 1 0
0 0 −2

 1 0 1
0 1 0
0 0 1


Now consider the equation AX = B with B = ( 1 0 2 )t. Its solution is:

X = A−1B =
1
2

−1 1 1
0 −2 2
1 1 −1

 1
0
−2

 =
1
2

−3
−4
3

 =

− 3
2
−2
3
2

 .

14. Let A =

a b c
d e f
g h i


number of signed el.

permutations switches parity products

123 0 + aei
132 1 − −afh
213 1 − −bdi
231 2 + bfg
312 2 + −cdh
321 1 − −ceg |A| = aei− afh− bdi+ bfg + cdh− ceg

If A =

 2 2 3
0 4 0
0 0 −2

 then |A| = 2 · 4 · (−2) = −16 (the matrix is invertible).

15. Evaluation of a determinant by row reduction to a triangular form:∣∣∣∣∣∣
0 2 3
4 0 4
2 3 1

∣∣∣∣∣∣ R2← 1
4R2

= 4

∣∣∣∣∣∣
0 2 3
1 0 1
2 3 1

∣∣∣∣∣∣ R2↔R1= −4

∣∣∣∣∣∣
1 0 1
0 2 3
2 3 1

∣∣∣∣∣∣
R3←R3−2R1= −4

∣∣∣∣∣∣
1 0 1
0 2 3
0 3 −1

∣∣∣∣∣∣ R2← 1
2R2

= −8

∣∣∣∣∣∣
1 0 1
0 1 3

2
0 3 −1

∣∣∣∣∣∣ R3←R3−3R2= −8

∣∣∣∣∣∣
1 0 1
0 1 3/2
0 0 − 11

2

∣∣∣∣∣∣
= −8× 1× 1× (−11

2
) = 44 6= 0 and the matrix is invertible (see 17.)

16.17.
∣∣∣∣ a− 3 −2
−2 a− 2

∣∣∣∣ = (a − 3)(a− 2)− 4 = a2 − 5a+ 2 = 0 ⇐⇒ a = (5±
√

17)/2. If a 6= (5±
√

17)/2, then the

matrix (call it A) is invertible and |A−1| = 1/|A| = 1/(a2 − 5a+ 2).



18. Let A =

 1+ 2− 3+

2− 0+ −1−

0+ −1− 4+

. The cofactor expansion of det(A) along row 2 yields:

|A| = −2
∣∣∣∣ 2 3
−1 4

∣∣∣∣+ 0− (−1)
∣∣∣∣ 1 2
0 −1

∣∣∣∣ = −22− 1 = −23.

The expansion along the second column yields:

|A| = −2
∣∣∣∣ 2 −1
0 4

∣∣∣∣+ 0− (−1)
∣∣∣∣ 1 3
2 −1

∣∣∣∣ = −16− 7 = −23.

An interesting strategy is to mix row reduction and cofactor expansion. For example:∣∣∣∣∣∣
1 2 3
2 0 −1
0 −1 4

∣∣∣∣∣∣ R2←R2−2R1=

∣∣∣∣∣∣
1 2 3
0 −4 −7
0 −1 4

∣∣∣∣∣∣ = 1
∣∣∣∣−4 −7
−1 4

∣∣∣∣ (expansion along column 1) = −23.

19. Let A =

 0 1 2
1 0 1
1 1 1

. Then: |A| R3←R3−R2=

∣∣∣∣∣∣
0 1 2
1 0 1
0 1 0

∣∣∣∣∣∣ = −1
∣∣∣∣ 1 2
1 0

∣∣∣∣ = 2 6= 0.

co(A) =


+
∣∣∣∣ 0 1
1 1

∣∣∣∣ − ∣∣∣∣ 1 1
1 1

∣∣∣∣ +
∣∣∣∣ 1 0
1 1

∣∣∣∣
−
∣∣∣∣ 1 2
1 1

∣∣∣∣ +
∣∣∣∣ 0 2
1 1

∣∣∣∣ − ∣∣∣∣ 0 1
1 1

∣∣∣∣
+
∣∣∣∣ 1 2
0 1

∣∣∣∣ − ∣∣∣∣ 0 2
1 1

∣∣∣∣ +
∣∣∣∣ 0 1
1 0

∣∣∣∣

 =

−1 0 1
1 −2 1
1 2 −1



adj(A) =

−1 1 1
0 −2 2
1 1 −1

 and A−1 =
1
2

−1 1 1
0 −2 2
1 1 −1


20.

x2+2x3=3
Let us solve, using Cramer’s rule: x1 + x3=3

x1+x2+ x3=2

The matrix of the system is A =

 0 1 2
1 0 1
1 1 1

 and its determinant is det(A) R3←R3−R2= =

∣∣∣∣∣∣
0 1 2
1 0 1
0 1 0

∣∣∣∣∣∣
= −

∣∣∣∣ 1 2
1 0

∣∣∣∣ = 2. Thus we have:

x1 =
1

det(A)

∣∣∣∣∣∣
3 1 2
3 0 1
2 1 1

∣∣∣∣∣∣ R3←R3−R1=
1
2

∣∣∣∣∣∣
3 1− 2
3 0+ 1
−1 0− −1

∣∣∣∣∣∣ = −1
2

∣∣∣∣ 3 1
−1 −1

∣∣∣∣ = 1

x2 =
1

det(A)

∣∣∣∣∣∣
0 3 2
1 3 1
1 2 1

∣∣∣∣∣∣ R3←R3−R2=
1
2

∣∣∣∣∣∣
0+ 3 2
1− 3 1
0+ −1 0

∣∣∣∣∣∣ = −1
2

∣∣∣∣ 3 2
−1 0

∣∣∣∣ = −1

x3 =
1

det(A)

∣∣∣∣∣∣
0 1 3
1 0 3
1 1 2

∣∣∣∣∣∣ R3←R3−R2=
1
2

∣∣∣∣∣∣
0+ 1 3
1− 0 3
0+ 1 −1

∣∣∣∣∣∣ = −1
2

∣∣∣∣ 1 3
1 −1

∣∣∣∣ = 2.



21. P = (1, 2,−1) Q = (2, 0, 3) v =
−→
PQ= (2− 1, 0− 2, 3− (−1)) = (1,−2, 4) − v = (−1, 2,−4)

22.

A = (1, 2, 3) B = (2,−1, 0) C = (3, 0, 4)

u =
−→
AB= (1,−3,−3) v =

−→
BC= (1, 1, 4) u + v =

−→
AB +

−→
BC= (1 + 1,−3 + 1,−3 + 4) = (2,−2, 1) =

−→
AC

−6u = −6(1,−3,−3) = (−6, 18, 18)

‖u‖ =
√

12 + (−3)2 + (−3)2 =
√

19 ‖v‖2 =
√

12 + 12 + 42 =
√

18
u · v = (1,−3,−3) · (1, 1, 4) = 1 · 1 + (−3) · 1 + (−3) · 4 = −14

cos(u,v) =
u · v
‖u‖ ‖v‖ =

−14√
19
√

18
≈ −.757

and the angle between the vectors
−→
AB and

−→
BC is approximately 139◦.

The dot product of the vectors (1, 2) and (4,−2) is zero. Hence they are orthogonal ((1, 2) ⊥ (4,−2)).

23. Let u = (1, 2,−2) and v = (3, 0, 4). Using cofactor expansion along the first row, we have:

u× v =

∣∣∣∣∣∣
i j k
1 2 −2
3 0 4

∣∣∣∣∣∣ = i(8)− j(4− (−6)) + k(0− 6) = (8,−10,−6).

| sin(u,v)| = ‖u× v‖
‖u‖ ‖v‖ =

√
64 + 100 + 36√

1 + 4 + 4
√

9 + 0 + 16
=

2
√

2
3

cos(u,v) =
u · v
‖u‖ ‖v‖ = −1

3

and check that sin2(u,v) + cos2(u,v) = 8/9 + 1/9 = 1

24. Let O′ = (−1, 2, 0) be the new origin. The point P = (11, 2, 3) in the old coordinate system xOy becomes
P = (11− (−1), 2− 2, 3− 0) = (12, 0, 3) in the new system x′O′y′.

25. ‖u + v‖2 = (u + v) · (u + v) = u · u + v · v + u · v + v · u = ‖u‖2 + ‖v‖2 + 2u · v.

26. Let u = (2,−1, 3) and v = (4,−1, 2). We have:

w1 =
u · v
‖v‖2 v =

15
21

(4,−1, 2) =
(

20
7
,−5

7
,
10
7

)
w2 = u−w1 =

(
−6

7
,−2

7
,
11
7

)
.



27.28. • The plane x+ 3y − z = 4 has the normal vector n = (1, 3,−1). The two unit normal vectors are n/‖n‖ =
(1, 3,−1)/

√
5 and (−1,−3, 1)/

√
5. This plane has the point-normal form (there are others):

1(x− 4) + 3(y − 0)− 1(z − 0) = 0.

• Let A = (1, 0, 1), B = (1, 2, 3) and C = (−1, 1, 0), and ax + by + cz + d = 0 be the equation of the plane
through A, B and C. We have:

a + c +d =0
a +2b +3c +d =0
−a + b +d =0.

Let us solve this homogeneous system:


a b c d

1 0 1 1 | 0
1 2 3 1 | 0
−1 1 0 1 | 0

 −→
 1 0 1 1 | 0

0 2 2 0 | 0
0 1 1 2 | 0

 −→
 1 0 1 1 | 0

0 1 1 0 | 0
0 0 0 2 | 0

 .

Its solution is: d = 0, c free, b = −c, a = −c. A particular solution is found by assigning the value 1 to c, and
the equation of the plane is:

−x− y + z = 0.

Alternatively, one could have found a vector normal to the plane: n =
−→
AB ×

−→
AC=

∣∣∣∣∣∣
i j k
0 2 2
−2 1 −1

∣∣∣∣∣∣ = (−4,−4, 4),

and a point-normal form (using point A) is:

−4(x− 1)− 4(y − 0) + 4(z − 1) = 0 i.e. x+ y − z = 0.

• Let P = (1, 0, 2) and v = (1, 2,−1). The line going through P and having the same direction as v has the
parametric equation:

x− 1 = t y − 0 = 2t z − 2 = −t.
Its symmetric equation is: x− 1 = y/2 = (z − 2)/(−1).
• To find the intersection of 2, 3 or more planes in 3D, we solve the corresponding system of equations which
can have 0, 1 or infinitely many solutions, depending on the relative positions of the planes.
(i)

x + y + z = 1
y − z = 0

2x + y = 2


x y z

1 1 1 | 1
0 1 −1 | 0
2 1 0 | 2

 −→
 1 1 1 | 1

0 1 −1 | 0
0 0 1 | 0


The intersection of the 3 planes occurs at the point (x, y, z) = (1, 0, 0).
(ii)

x + y − z = 1
x + y + z = 5

(x y z

1 1 −1 | 1
1 1 1 | 5

)
−→

(
1 1 −1 | 1
0 0 1 | 2

)
The solution is: z = 2, y free and x = 3 − y. The parametric equation of the line of intersection of the two
planes is: x = 3− t, y = t, z = 2.
(iii) Let us find the point of intersection of the plane x+ 2y − z = 2 and the line x = t, y = t+ 2, z = 2t− 1.
We insert the parametric equations into the plane equation to obtain:

t+ 2(t+ 2)− (2t− 1) = 2
t = 3

and the required point is (−3,−1,−7).



29. ∥∥∥∥ u
‖u‖

∥∥∥∥ =
1
‖u‖‖u‖ = 1.

‖u + v‖2 + ‖u− v‖2 = (u + v) · (u + v) + (u− v) · (u− v)
= 2u · u + 2v · v + u · v + v · u− u · v− v · u
= 2(‖u‖2 + ‖v‖2).

30. Examples of vector spaces: the set of real functions, the set of 2× 2 matrices of the form
(
a a+ b
0 a+ 3b

)
, a line

going through the origin.
Proof that k0 = 0:

0 + 0 = 0 (axiom 4)
⇒ k(0 + 0) = k0

⇒ k0 + k0 = k0 (axiom 7)
⇒ k0 + k0 + (−k0) = k0 + (−k0) (axiom 5)
⇒ k0 = 0 (axiom 5)

31. The first quadrant of R2: Q1 = {(x, y)|x ≥ 0, y ≥ 0} is not closed under scalar multiplication and therefore
not a vector space.
The union of Q1 and the third quadrant Q3 = {(x, y)|x ≤ 0, y ≤ 0} is closed under scalar multiplication but
not under addition.

32. • A set containing the zero vector is always dependent.
• The subset {(3,−1), (4, 5), (−4, 34)} of R2 is dependent since it contains more than two vectors.
• The set {(1, 2, 3), (−2,−4,−6)} is dependent since the second vector is a multiple of the first.

• The set {(1, 2), (3, 4)} is an independent set since α1

(
1
2

)
+ α2

(
3
4

)
=
(

0
0

)
implies that:

α1 + 3α2 = 0, 2α1 + 4α2 = 0, and the unique solution to this homogeneous system is the trivial solution.

33. Let z1 = 1− 5i and z2 = 3 + 4i. We have:

• |z1|2 = 12 + (−5)2 = 26

• z1z2 = 3− 20i2 + 4i− 15i = 23− 11i
• z2 = 3− 4i

• z1

z2
=

1− 5i
3 + 4i

=
(1− 5i)(3− 4i)

9 + 16
=

1
25

(−17− 19i)

• iz = 2− i ⇒ z = (2− i)/i =
2
i
− 1 =

2i
−1
− 1 = −1− 2i

34. Let z = 1 + i =
√

2
(

1√
2

+ i 1√
2

)
=
√

2(cosπ/4 + i sinπ/4). We have:

z3 = 2
√

2
(

cos
3π
4

+ i sin
3π
4

)
z

1
2 = 2

1
4

(
cos

π

8
+ i sin

π

8

)
or z

1
2 = 2

1
4

(
cos
(π

8
+ π

)
+ i sin

(π
8

+ π
))

= 2
1
4

(
cos
−3π

8
+ i sin

−3π
8

)

35. Let z = 3e−iπ. We have: z = 3(cosπ + i sinπ) = −3. Also: Re(z) = −3, Im(z) = 0 and |z| = 3.


