
EXAMPLES

In the following, round brackets (·) are used for vectors and matrices in the “standard” basis, or simply when
we do not want to specify any basis.

1. Let A =

 1 0 1 1
1 1 1 1
2 1 2 2

 and V = {x = (x1, x2, x3, x4)t|Ax = 0}. Let us row-reduce A:

A ∼

 1 0 1 1
0 1 0 0
0 1 0 0

 ∼
 1 0 1 1

0 1 0 0
0 0 0 0

 .

Solution of the homogeneous system: x4 free, x3 free, x2 = 0, x1 = −x3 − x4, or:
−x3 − x4

0
x3

x4

 = x3


−1
0
1
0

+ x4


−1
0
0
1

 .

Hence B =

{
−1
0
1
0

 ,


−1
0
0
1

} is a basis for V .

2. To find a basis for the row space of A =

 1 0 1 1
1 1 1 1
2 1 2 2

, we row-reduce A to

 1 0 1 1
0 1 0 0
0 0 0 0

, whose first

two rows form a basis for the row space.

3. Let us find a basis for the column space of the matrix A =

 1 2 1
2 4 7
3 6 3

 composed of column vectors of A.

We will work on the row space of At =

 1 2 3
2 4 6
1 7 3

.

Let us row-reduce the matrix A, without switching rows:

At =

 1 2 3
2 4 6
1 7 3

 pick row 1: bt1 = ( 1 2 3 )

∼

 1 2 3
0 0 0
1 7 3

 drop row 2

∼

 1 2 3
0 0 0
0 5 0

 pick row 3: bt2 = ( 1 7 3 ) .

The required basis is composed of columns 1 and 3 of A (rows 1 and 3 of At). The rank of A is 2.



4. • Let {v1, . . . ,vn} be an orthogonal set of vectors and assume that
∑n
i=1 αivi = 0. Then, for any index k:

0 = 〈vk,
n∑
i=1

αivi〉 =
n∑
i=1

αi〈vk,vi〉 = αk‖vk‖2 ⇒ αk = 0.

• Let V be the vector space spanned by the functions sinx and cosx. Define

〈f, g〉 =
∫ π

0

f(x)g(x) dx.

Let f(x) = sinx+ cosx and g(x) = sinx− cosx. Then:

〈f, g〉 =
∫ π

0

(sinx+ cosx)(sin x− cosx) dx =
∫ π

0

(sin2 x− cos2 x) dx

= −
∫ π

0

cos 2xdx = −(sin 2x/2)|π0 = 0 (f(x) ⊥ g(x))

‖f‖2 =
∫ π

0

(sinx+ cosx)2 dx =
∫ π

0

(1 + sin 2x) dx = π

[d(f, g)]2 = ‖f(x)− g(x)‖2 = ‖2 cosx‖2 = 4‖ cosx‖2

= 4
∫ π

0

cosx · cosxdx = 4
∫ π

0

(1 + cos 2x)/2 dx = 2π.

5. Let V = R2 with inner product 〈u,v〉 = u1v1 + u2v2. the Cauchy-Schwarz inequality tells us that

|u1v1 + u2v2| ≤
√
u2

1 + u2
2

√
v2

1 + v2
2 .

Let u = ( 1 2 )t, v = ( 3 −4 )t and check that

5 = |〈u,v〉| ≤ ‖u‖ ‖v‖ =
√

5 · 5.

6.7. • Let b1 = ( cos θ sin θ )t and b2 = (− sin θ cos θ )t. Then B = {b1,b2} is an orthonormal basis for

R2. Hence the rotation matrix
(

cos θ − sin θ
sin θ cos θ

)
is an orthogonal matrix whose inverse is its transpose(

cos θ sin θ
− sin θ cos θ

)
. Any vector in R2 can be expressed with respect to the basis B. For example:

(
1
1

)
=

〈(
1
1

)
,

(
cos θ
sin θ

)〉(
cos θ
sin θ

)
+

〈(
1
1

)
,

(
− sin θ
cos θ

)〉(
− sin θ
cos θ

)
= (cos θ + sin θ)b1 + (− sin θ + cos θ)b2 =

[
cos θ + sin θ
− sin θ + cos θ

]
B

.

Now let W = lin {b′1,b′2}, where b′1 = ( 3/5 0 4/5 )t and b′2 = ( 4/5 0 −3/5 )t; B′ = {b′1,b′2} is an
orthonormal basis for the subspace W of R3. Let us compute the (orthogonal) projection p of v = ( 0 4 4 )t

onto W :

p =

〈 0
4
4

 ,

 3/5
0

4/5

〉 3/5
0

4/5

+

〈 0
4
4

 ,

 4/5
0
−3/5

〉 4/5
0
−3/5

 =
[

16/5
−12/5

]
B′

=

 0
0
4

 .

The orthogonal component of v with respect to W is ( 0 4 0 )t.



• Let us find p = ProjW (v), where v = (−1, 2, 6, 0)t and W = lin
{

( 0 1 0 1 )t , (−1 0 1 2 )t
}

=
{b1,b2}.
♥ first method: Since p ∈W we can write p = α1b1 + α2b2. Also: (v− p) ⊥W implies that

〈v− α1b1 − α2b2,b1〉 = 0
〈v− α1b1 − α2b2,b2〉 = 0.

Rearranging terms, we obtain the linear system:

α1‖b1‖2 + α2〈b1,b2〉 = 〈v,b1〉
α1〈b1,b2〉+ α2‖b2‖2 = 〈v,b2〉.

We have: ‖b1‖2 = 2, ‖b2‖2 = 6, 〈b1,b2〉 = 2, 〈v,b1〉 = 2 and 〈v,b2〉 = 7. The linear system is:

2α1 + 2α2 = 1
2α1 + 6α2 = 7.

Its solution is α1 = −1/4, α2 = 5/4. Finally: p = −1/4b1 + 5/4b2 = (−1/4) (−5 −1 5 9 )t.
♦ second method: Gram-Schmidtize {b1,b2} and use a well-known (!) formula. We easily obtain b′1 = 1√

2

b′1 =
1√
2


0
1
0
1

 b′2 = normalize



−1
0
1
2

−〈

−1
0
1
2

 ,
1√
2


0
1
0
1

〉 1√
2


0
1
0
1




= normalize



−1
0
1
2

−


0
1
0
1




= normalize



−1
−1
1
1


 =

1
2


−1
−1
1
1



p = 〈v,b′1〉b′1 + 〈v,b′2〉b′2 =
2√
2


0
1
0
1

+
5
2
· 1

2


−1
−1
1
1

 =


−5/4
−1/4
5/4
9/4

 .

The distance from v to W is the norm of the orthogonal component v − p:

distance = ‖v− p‖ = ‖ ( 1
4

9
4

19
4 − 9

4 )t ‖ =
1
4

√
12 + 92 + 192 + (−9)2 =

√
524
4

=
√

131.

• Let B = {b1,b2} = {1, x} be a basis for P1 and 〈f, g〉 =
∫ 1

0
f(t)g(t) dt. Let us orthogonalize B into

B′ = {b′1,b′2}:

‖b1‖2 =
∫ 1

0

1 · 1 dt = 1 and b′1 = b1

b′2 = normalize
{
x−

(∫ 1

0

t · 1 dt
)
· 1
}

= normalize {x− 1/2}

since ‖x− 1/2‖2 =
∫ 1

0

(t− 1/2)2 dt = 1/12

we have b′2 =
√

12 (x− 1/2).



8. Consider the two basis B =

{(
1
1

)
,

(
0
1

)}
and B′ =

{(
1
−1

)
,

(
1
0

)}
for R2. We have:

[v]B′ =

[(
1
1

)
B′

(
0
1

)
B′

]
[v]B =

[
−1 −1
2 1

]
B′

[v]B .

For example, if v =
(

3
7

)
=
[

3
4

]
B

, then

[v]B′ =
[
−1 −1
2 1

]
B→B′

[v]B =
[
−7
10

]
B′

=
[

3
7

]
I

.

9. Let P2 denote the vector space of second-order polynomials and let B = {1, x, x2} denote its standard basis.

Let B′ =
{(

1
1

)
,

(
1
0

)}
be a basis of R2. Consider the linear transformation from P2 into R2 defined as:

T (a0 + a1x+ a2x
2) =

(
a0 + 2a2

a0 + a1 + 3a2

)
. The columns of the transformation matrix AB→B′ are

T (1) =
(

1
1

)
=
[

1
0

]
B′

T (x)
(

0
1

)
=
[

1
−1

]
B′

T (x2) =
(

2
3

)
=
[

3
−1

]
B′
.

AB→B′ = [T (B)]B′ =
[

1 1 3
0 −1 −1

]
B→B′

.

Let v = a0 + a1x+ a2x
2 ∈ P2. In the basis B, v = [a0 a1 a2 ]B; T can be expressed matricially as:

[T (v)]B′ = A[v]B =
[

1 1 3
0 −1 −1

]
B→B′

 a0

a1

a2


B

=
[
a0 + a1 + 3a2

−a1 − a2

]
B′

=
[

a0 + 2a2

a0 + a1 + 3a2

]
I

where I denotes the standard basis of R2.

10. The kernel of the preceding transformation can be obtained by row-reducing the transformation matrix:

( a0 a1 a2

1 1 3 | 0
0 −1 −1 | 0

)
∼
( a0 a1 a2

1 0 2 | 0
0 1 1 | 0

)
.

The solution to this homogeneous system is: a2 = 0, a1 = −a2 and a0 = −2a2. Consequently, a solution can

be written as:

−2a2

−a2

a2


B

or a2

−2
−1
1


B

, and the polynomial v = −2− x+ x2 is a basis for the kernel of T .

You should try to change the target basis B′ (take the standard basis for instance) and check that the kernel
is still the same!



11. • The range of the preceding transformation T can be obtained by computing the column space of the

transformation matrix A =
[

1 1 3
0 −1 −1

]
B→B′

or, equivalently, the row space of At =

 1 0
1 −1
3 −1

. A basis

for the row space of At is
{[

1
0

]
B′
,

[
0
1

]
B′

}
=
{(

1
1

)
,

(
0
1

)}
. There are others.

♥ Let V T1−→ V1
T2−→ V2 and T = T2 ◦ T1. We can write:

rank (T ) = dim(T2 ◦ T1)(V ) ≤ dim(T1(V )) = rank (T1)

Also: v2 ∈ range (T )⇒ v2 = T2(v1) where v1 = T1(v) ⇒ v2 ∈ range (T2). Therefore: range (T ) ⊆ range (T2),
i.e. rank (T ) ≤ rank (T2). Putting all this together yields

rank (T ) ≤ min {rank (T1), rank (T2)}.

For matrix transformations, this yields the interesting result: rank (AB) ≤ min {rank (A), rank (B)}. If A =
( 1 −1 ) and B = ( 1 1 )t, then AB = (0) and 0 = rank (AB) ≤ min{rank (A), rank (B)} = min{1, 1} = 1.
Now let A be an m× n matrix with m > n. We have rank (A) ≤ n. Furthermore, AAt is a square matrix of
order m whose rank, by the preceding result, has to be less than n < m and we can conclude that A is not
invertible, without evaluating the product AAt!

12. In the transformation of 10.11.12., it is readily checked that

dim(ker(T )) + dim(range(T )) = 1 + 2 = 3 = dim(P2).

13. Let B =

{(
1
0

)
,

(
0
1

)}
and B′ =

{(
1
1

)
,

(
−1
1

)}
be two basis for R2. Consider the transformation from

R2 into itself defined by: [
T

([
x
y

]
B

)]
B

=
[

1 2
3 4

]
B

[
x
y

]
B

.

The transition matrix from B′ to B is P−1 =
[

1 −1
1 1

]
B

, and the transition matrix from B to B′ is its inverse

P = 1
2

[
1 1
−1 1

]
B′

. The transformation matrix with respect to the basis B′ is obtained by performing the

product:

A′ = PAP−1 =
[

5 1
2 0

]
B′
.

Consider the vector v =
[

1
1

]
B′

=
[

0
2

]
B

. We have:

[
T

([
0
2

]
B

)]
B

=
[

1 2
3 4

]
B

[
0
2

]
B

=
[

4
8

]
B

and[
T

([
1
1

]
B′

)]
B′

=
[

5 1
2 0

]
B′

[
1
1

]
B′

=
[

6
2

]
B′

=
[

4
8

]
B

, as expected.

14. Let A =
(

1 1
−2 4

)
and P =

(
2 −1
−1 1

)
. We have:

B = PAP−1 =
(

2 −1
−1 1

)(
1 1
−2 4

)(
1 1
1 2

)
=
(

2 0
0 3

)
.

The matrix B is similar to A and has a simpler (diagonal) form.



15. Let A =

 3 −2 0
−2 3 0
0 0 5

. Then: det(λI − A) =

∣∣∣∣∣∣
λ− 3 2 0

2 λ− 3 0
0 0 λ− 5

∣∣∣∣∣∣ = (λ − 1)(λ − 5)2. Let us find the

eigenspace corresponding to λ = 5, by solving the system A− λI = 0:


x1 x2 x3

2 2 0 | 0
2 2 0 | 0
0 0 0 | 0

 ∼
 1 1 0 | 0

0 0 0 | 0
0 0 0 | 0

⇒ x3 free , x2 free x1 = −x2

and the general solution can be written x2

−1
1
0

+x3

 0
0
1

. The set B5 =


−1

1
0

 ,

 0
0
1

 is a basis for

the eigenspace associated with λ = 5.
We repeat the process for λ = 1:

λI −A =

 2 −2 0
−2 2 0
0 0 4

 and


x1 x2 x3

2 −2 0 | 0
−2 2 0 | 0
0 0 4 | 0

 ∼
 1 −1 0 | 0

0 0 0 | 0
0 0 1 | 0

 .

The solution to the above system is: x3 = 0, x2 free and x1 = x2, and B1 =
{

( 1 1 0 )t
}

is a basis for the
eigenspace corresponding to the eigenvalue λ = 1.

16. • Let T

x1

x2

x3

 =

 3 −2 0
−2 3 0
0 0 5

x1

x2

x3

. Three independent eigenvectors are (see 15)

−1
1
0

,

 0
0
1

 and 1
1
0

. We have: P =

−1 0 1
1 0 1
0 1 0

, P−1 = 1
2

−1 1 0
0 0 2
1 1 0

 and P−1AP =

 5 0 0
0 5 0
0 0 1

.

Note that if we change the order of the eigenvalues, we have to change the order of the columns of P accordingly.

• Consider the matrix A =
(
−3 2
−2 1

)
whose characteristic polynomial is (λ + 1)2. Its only eigenvalue is

λ = −1 and the associated eigenspace is lin {( 1 1 )}, whose dimension is 1. The matrix does not have two
independent eigenvectors and cannot be diagonalized.

17. Consider the matrix A =

 3 −2 0
−2 3 0
0 0 5

 of example 15. Its eigenspaces have respective basis

B5 =


−1

1
0

 ,

 0
0
1

, B1 =


 1

1
0

 and their orthonormal counterparts are B′5 =


− 1√

2
1√
2

0

 ,

 0
0
1


and B′1 =


 1√

2
1√
2

0

. Let P =

− 1√
2

0 1√
2

1√
2

0 1√
2

0 1 0

 and check that

P tAP =

− 1√
2

1√
2

0
0 0 1
1√
2

1√
2

0

 3 −2 0
−2 3 0
0 0 5

− 1√
2

0 1√
2

1√
2

0 1√
2

0 1 0


=

− 1√
2

1√
2

0
0 0 1
1√
2

1√
2

0

− 5√
2

0 1√
2

5√
2

0 1√
2

0 5 0

 =

 5 0 0
0 5 0
0 0 1

 .



18.
y′1 = y1 + y2 y1(0) = 1
y′2 = 4y1 − 2y2 y2(0) = 6

Y ′ =
(

1 1
4 −2

)
Y = AY Y (0) = C =

(
1
6

)
We have: det(A − λI) =

∣∣∣∣ 1− λ 1
4 −2− λ

∣∣∣∣ = λ2 + λ − 6 = (λ + 3)(λ − 2). The eigenvector corresponding to

λ = −3 is (−1 4 )t and the eigenvector corresponding to λ = 2 is ( 1 1 )t. The matrix P =
(
−1 1
4 1

)
diagonalizes A. Indeed:

P−1AP =
1
5

(
−1 1
4 1

)(
1 1
4 −2

)(
−1 1
4 1

)
=
(
−3 0
0 2

)
.

We solve next the system u′1 = −3u1, u′2 = 2u2 whose general solution is u1 = d1e
−3x, u2 = d2e

2x, and:

Y (x) = PU(x) =
(
−1 1
4 1

)(
u1

u2

)
=
(
−d1e

−3x + d2e
2x

4d1e
−3x + d2e

2x

)
.

Finally, Y (0) =
(
−d1 + d2

4d1 + d2

)
=
(

1
6

)
implies that d1 = 1 and d2 = 2. The particular solution is

y1 = −e−3x + 2e2x

y2 = 4e−3x + 2e2x.

19. •
〈cos kx, cos lx〉 =

∫ 2π

0

cos kx cos lx dx =
1
2

∫ 2π

0

(cos(k + l)x+ cos(k − l)x) dx

=
[

1
2(k + l)

sin(k + l)x+
1

2(k − l) sin(k − l)x
]2π

0

= 0 if k 6= l

If k = l:

‖ coskx‖2 =
∫ 2π

0

cos2 kx dx =
∫ 2π

0

1 + cos(2kx)
2

dx = π.

Similar calculations show (exercise) that :

〈sin kx, sin lx〉 = 0 if k 6= l

‖ sinkx‖2 = π ∀k
〈cos kx, sin lx〉 = 0 ∀k, l.

• Let us approximate the function f(x) = x by a trigonometric polynomial of order k.

a0 =
1
π

∫ 2π

0

f(x) dx =
1
π

∫ 2π

0

xdx = 2π

ak =
1
π

∫ 2π

0

x sin kx dx =
1
π

∫ 2π

0

xd
sin kx
k

=
1
π
x

sin kx
k

∣∣∣∣2π
0

− 1
π

∫ 2π

0

sin kx
k

dx = 0

bk =
1
π

∫ 2π

0

x sin kx dx = − 1
π

∫ 2π

0

xd
cos kx
k

= − 1
π
x

cos kx
k

∣∣∣∣2π
0

+
1
π

∫ 2π

0

cos kx
k

dx = −2
k
.

For n = 2 one has: x ≈ π − (2/1) sinx− (2/2) sin 2x = π − 2 sinx− sin 2x.


