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Abstract

In the dial-a-ride problem, users formulate requests for transportation from a specific

origin to a specific destination. Transportation is carried out by vehicles providing

a shared service. The problem consists of designing a set of minimum cost vehicle

routes satisfying capacity, duration, time window, pairing, precedence and ride time

constraints. This paper introduces a mixed-integer programming formulation of the

problem and a branch-and-cut algorithm. The algorithm uses new valid inequalities for

the dial-a-ride problem as well as known valid inequalities for the pickup and delivery

and the vehicle routing problems. Computational experiments performed on randomly

generated instances show that the proposed approach can be used to solve small to

medium size instances.

Subject classifications: Transportation: vehicle routing. Programming: cutting plane.

Area of review: Transportation.



1 Introduction

In the Dial-a-Ride Problem (DARP), users formulate requests for transportation from a
specific origin (or pick-up point) to a specific destination (or drop-off point). Transportation
is carried out by vehicles that provide a shared service in the sense that several users may
be in a vehicle at the same time. The aim is to design a minimum-cost set of vehicle
routes accommodating all requests under a number of side constraints. A common DARP
application arises in door-to-door transportation services for the elderly and the disabled.
In this context, users often formulate two requests per day: an outbound request from home
to a destination, and an inbound request for the return trip.

Most dial-a-ride services are characterized by the presence of two conflicting objectives:
minimizing operating costs and minimizing user inconvenience. Operating costs are mostly
related to fleet size and distance traveled while user inconvenience is often measured in terms
of deviations from desired pick-up and drop-off times and in terms of excess ride time (i.e.,
the difference between the actual ride time of a user and the minimum possible ride time).
One way to achieve a balance between these objectives is to treat cost minimization as the
primary objective and to impose service quality constraints.

As in the work of Jaw et al. (1986) and Cordeau and Laporte (2003b), we assume here
that the user specifies either a desired arrival time at destination (in the case of an outbound
request) or a desired departure time from the origin (in the case of an inbound request).
In both cases, a time window of a pre-specified width is constructed around the desired
time. In addition, an upper bound is imposed on the ride time of the user. This approach
seems to be in line with the current practice of several North-American transporters. For
example, in a system with 15-minute time windows and a maximum ride time of 60 minutes,
a user wishing to arrive at destination at 9h00 would be picked-up no earlier than 7h45 and
dropped-off between 8h45 and 9h00. It should be emphasized that imposing time windows
is not sufficient to accurately impose a maximum ride time. In the above example, a pick-up
at 7h45 and a drop-off at 9h would exceed the maximum ride time of 60 minutes. However,
constraining the pick-up to take place no earlier than 8h would be too restrictive because it
would, in particular, prohibit a pick-up at 7h45 and a drop-off at 8h45.

Dial-a-ride services may operate according to a static or to a dynamic mode. In the first case,
all requests are known beforehand while in the second case requests are gradually received
throughout the day and vehicle routes are adjusted in real-time to meet demand. In practice,
pure dynamic problems rarely exist since a large subset of requests is often known in advance.
This paper deals with the static variant of the problem.

Because it incorporates time windows and maximum ride time constraints, the DARP is a
difficult problem that generalizes the Vehicle Routing Problem with Pick-up and Delivery
(VRPPD). Finding a feasible solution for the DARP is itself NP-hard since it also generalizes
the Traveling Salesman Problem with Time Windows (TSPTW) (see, e.g., Savelsbergh,
1985). As a result most previous work has concentrated on the development of heuristics.
Nevertheless, when the problem is moderately constrained, exact solution approaches can be
devised to solve small to medium size instances.
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Our aim is to describe valid inequalities and a branch-and-cut algorithm for the DARP. This
algorithm uses adaptations of known valid inequalities for the VRP and VRPPD as well as
new inequalities that take advantage of the special structure of the problem.

The remainder of the article is organized as follows. The next section briefly reviews relevant
work on the DARP and closely related problems. Section 3 defines the DARP formally
and introduces a mixed-integer formulation. Section 4 introduces several families of valid
inequalities used in the branch-and-cut algorithm which is then described in Section 5, along
with preprocessing techniques. Computational experiments are reported in Section 6 and
the conclusion follows in Section 7.

2 Literature Review

Early research on the DARP was carried out by Psaraftis (1980, 1983) who developed
dynamic programming algorithms for the single-vehicle case. An improved labeling scheme
was later proposed by Desrosiers et al. (1986) who were able to solve instances with up
to 40 users. Ruland (1995) and Ruland and Rodin (1997) proposed a branch-and-cut
algorithm for a special case of the DARP in which there are no capacity or time window
constraints. In this case, if distances satisfy the triangle inequality, a single vehicle will serve
all users. As a result, the problem reduces to a TSP with the additional constraint that the
pick-up node of each user must precede his drop-off node in the vehicle route. These authors
provided an integer programming formulation of the problem based on an undirected graph
and described four families of valid inequalities: subtour elimination constraints, precedence
constraints, generalized order constraints and order matching constraints. These inequalities
are also valid for the more general problem studied in this paper and they will be discussed
in more depth in Section 4.

Most of the algorithms for the multiple-vehicle case are heuristics or meta-heuristics. An
insertion method capable of handling large-scale instances was described by Jaw et al.
(1986) while Bodin and Sexton (1986) developed an exchange heuristic that uses Benders
decomposition to optimize the individual vehicle routes. Dumas et al. (1989) later presented
a clustering and column generation method that can handle instances with several thousand
users. More recently, Madsen et al. (1995) proposed an insertion heuristic for the dynamic
case while Toth and Vigo (1996, 1997) used local search and a tabu-thresholding procedure
to address a real-life problem arising in Bologna. Finally, Cordeau and Laporte (2003b)
described a tabu search heuristic for the variant of the problem addressed in this paper.

Relevant work was also performed on the closely related VRPPD with time windows arising in
contexts such as urban courier services. For this problem, Dumas et al. (1991) presented an
exact column generation method using the dynamic programming algorithm of Desrosiers

et al. (1986) to solve the pricing subproblem. A similar approach was also described by
Savelsbergh and Sol (1998).

For recent overviews of the DARP and VRPPD, the reader is referred to the surveys of
Cordeau and Laporte (2003a) and Desaulniers et al. (2002), respectively.
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3 Formulation

Let n denote the number of users (or requests) to be served. The DARP may be defined on
a complete directed graph G = (N, A) where N = P ∪ D ∪ {0, 2n + 1}, P = {1, . . . , n} and
D = {n + 1, . . . , 2n}. Subsets P and D contain pick-up and drop-off nodes, respectively,
while nodes 0 and 2n + 1 represent the origin and destination depots. With each user i are
thus associated an origin node i and a destination node n + i. Let K be the set of vehicles.
Each vehicle k ∈ K has a capacity Qk and the total duration of its route cannot exceed Tk.
With each node i ∈ N are associated a load qi and a non-negative service duration di such
that q0 = q2n+1 = 0, qi = −qn+i (i = 1, . . . , n) and d0 = d2n+1 = 0. A time window [ei, li]
is also associated with node i ∈ N where ei and li represent the earliest and latest time,
respectively, at which service may begin at node i. With each arc (i, j) ∈ A are associated a
routing cost cij and a travel time tij . Finally, denote by L the maximum ride time of a user.

For each arc (i, j) ∈ A and each vehicle k ∈ K, let xk
ij = 1 if vehicle k travels from node i to

node j. For each node i ∈ N and each vehicle k ∈ K, let Bk
i be the time at which vehicle k

begins service at node i, and Qk
i be the load of vehicle k after visiting node i. Finally, for

each user i, let Lk
i be the ride time of user i on vehicle k. The formulation is as follows:

Min
∑

k∈K

∑

i∈N

∑

j∈N

ck
ijx

k
ij (1)

subject to
∑

k∈K

∑

j∈N

xk
ij = 1 ∀i ∈ P (2)

∑

j∈N

xk
ij −

∑

j∈N

xk
n+i,j = 0 ∀i ∈ P, k ∈ K (3)

∑

j∈N

xk
0j = 1 ∀k ∈ K (4)

∑

j∈N

xk
ji −

∑

j∈N

xk
ij = 0 ∀i ∈ P ∪ D, k ∈ K (5)

∑

i∈N

xk
i,2n+1 = 1 ∀k ∈ K (6)

Bk
j ≥ (Bk

i + di + tij)x
k
ij ∀i ∈ N, j ∈ N, k ∈ K (7)

Qk
j ≥ (Qk

i + qj)x
k
ij ∀i ∈ N, j ∈ N, k ∈ K (8)

Lk
i = Bk

n+i − (Bk
i + di) ∀i ∈ P, k ∈ K (9)

Bk
2n+1 − Bk

0 ≤ Tk ∀k ∈ K (10)

ei ≤ Bk
i ≤ li ∀i ∈ N, k ∈ K (11)

ti,n+i ≤ Lk
i ≤ L ∀i ∈ P, k ∈ K (12)

max{0, qi} ≤ Qk
i ≤ min{Qk, Qk + qi} ∀i ∈ N, k ∈ K (13)

xk
ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ K. (14)
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The objective function (1) minimizes the total routing cost. Constraints (2) and (3) ensure
that each request is served exactly once and that the origin and destination nodes are visited
by the same vehicle. Constraints (4)-(6) guarantee that the route of each vehicle k starts
at the origin depot and ends at the destination depot. Consistence of the time and load
variables is ensured by constraints (7) and (8). Equalities (9) define the ride time of each
user which is bounded by constraints (12). It is worth mentioning that the latter also act as
precedence constraints because the non-negativity of the Lk

i variables ensures that node i will
be visited before node n + i for every user i. Finally, inequalities (10) bound the duration of
each route while (11) and (13) impose time windows and capacity constraints, respectively.

This formulation is non-linear because of constraints (7) and (8). Introducing constants Mk
ij

and W k
ij, these constraints can, however, be linearized as follows:

Bk
j ≥ Bk

i + di + tij − Mk
ij(1 − xk

ij) ∀i ∈ N, j ∈ N, k ∈ K (15)

Qk
j ≥ Qk

i + qj − W k
ij(1 − xk

ij) ∀i ∈ N, j ∈ N, k ∈ K. (16)

The validity of these constraints is ensured by setting Mk
ij ≥ max{0, li + di + tij − ej} and

W k
ij ≥ min{Qk, Qk + qi}. These constraints are very similar to the Miller-Tucker-Zemlin

subtour elimination constraints for the TSP (Miller et al., 1960).

One can reduce the number of variables and constraints in model (1)-(14) by using aggregate
time variables Bi at every node except the origin depot 0 and the destination depot 2n + 1.
In this case, one replaces (7) and (9) with the constraints

Bj ≥ (Bk
0 + d0 + t0j)x

k
0j ∀j ∈ N, k ∈ K (17)

Bj ≥ (Bi + di + tij)
∑

k∈K

xk
ij ∀i ∈ N, j ∈ N (18)

Bk
2n+1 ≥ (Bi + di + ti,2n+1)x

k
i,2n+1 ∀i ∈ N, k ∈ K (19)

Li = Bn+i − (Bi + di) ∀i ∈ P, (20)

to which the same linearization process can be applied. Along the same lines, if the fleet of
vehicles is homogeneous in the sense that Qk = Q for every k ∈ K, one can replace (8) with

Qj ≥ (Qk
0 + qj)x

k
0j ∀j ∈ N, k ∈ K (21)

Qj ≥ (Qi + qj)
∑

k∈K

xk
ij ∀i ∈ N, j ∈ N (22)

Qk
2n+1 ≥ (Qi + q2n+1)x

k
i,2n+1 ∀i ∈ N, k ∈ K. (23)

Finally, as shown by Desrochers and Laporte (1991), the linearized form of constraints
(22) can be lifted as follows by taking the reverse arc (j, i) into account:

Qj ≥ Qi + qj − Wij(1 −
∑

k∈K

xk
ij) + (Wij − qi − qj)

∑

k∈K

xk
ji ∀i ∈ N, j ∈ N, k ∈ K. (24)

Observe that in our case an equivalent lifting cannot be performed with constraints (18)
because waiting will sometimes take place after the beginning of a time window (i.e., Bi > ei)
in order to reduce the ride time of a user.
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4 Valid Inequalities

We now describe several families of valid inequalities for the DARP. All of these inequalities
are of course redundant for model (1)-(14) but can strengthen its LP-relaxation. Because of
the structure of the model, analyzing whether these inequalities define facets of the DARP
polytope appears to be a rather challenging task. However, their usefulness is demonstrated
through computational experiments in the last section.

The following additional notation will be used to describe the valid inequalities. Given a
node set S ⊆ N , define δ(S) = δ+(S) ∪ δ−(S) where δ+(S) = {(i, j) ∈ A|i ∈ S, j 6∈ S} and
δ−(S) = {(i, j) ∈ A|i 6∈ S, j ∈ S}. For notational convenience, let xij =

∑

k∈K xk
ij denote

the total flow on arc (i, j) and define x(S) =
∑

i,j∈S xij . Similarly, let x(A′) =
∑

(i,j)∈A′ xij

for any arc set A′ ⊆ A.

4.1 Bounds on time and load variables

As first suggested by Desrochers and Laporte (1991) in the context of the TSP with
time windows, bounds on the time variables Bi can be strengthened as follows:

Bi ≥ ei +
∑

j∈N\{i}

max{0, ej − ei + dj + tij}xji (25)

Bi ≤ li −
∑

j∈N\{i}

max{0, li − lj + di + tij}xij . (26)

These inequalities were used, for example, for solving the Asymmetric Travelling Salesman
Problem with Time Windows by branch-and-cut (Ascheuer et al., 2001).

Similarly, bounds on load variables Qi can also be strengthened as follows:

Qi ≥ max{0, qi} +
∑

j∈N\{i}

max{0, qj}xji (27)

Qi ≤ min{Q, Q + qi} − (Q − max
j∈N\{i}

{qj} − qi)x0i −
∑

j∈N\{i}

max{0, qj}xij . (28)

4.2 Subtour elimination constraints

Consider the simple subtour elimination constraint x(S) ≤ |S| − 1 for S ⊆ P ∪ D. In the
case of the DARP, this inequality can be lifted in two different ways by taking into account
the fact that for each user i, node i must be visited before node n + i.

Proposition 1. Let S ⊆ P ∪ D and P+(S) = {i|i ∈ S ∩ P and n + i 6∈ S}. The following
inequality is valid for the DARP:

x(S) +
∑

i∈P+(S)

∑

j∈S

xn+i,j ≤ |S| − 1. (29)
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Proof. Because of precedence relationships, set S must be entered at least once before
using any of the lifted arcs. As a result, x(δ−(S)) ≥ 1 +

∑

i∈P+(S)

∑

j∈S xn+i,j. In addition,

x(δ+(S)) = x(δ−(S)) implies that x(δ+(S)) ≥ 1 +
∑

i∈P+(S)

∑

j∈S xn+i,j . Since 2x(S) +

x(δ+(S)) + x(δ−(S)) = 2|S|, one obtains 2x(S) + 2 + 2
∑

i∈P+(S)

∑

j∈S xn+i,j ≤ 2|S| and,

finally, x(S) +
∑

i∈P+(S)

∑

j∈S xn+i,j ≤ |S| − 1. �

Example. Consider the node set S = {i, j} ⊆ P . The resulting lifted subtour elimination
constraint is xij + xji + xn+i,j + xn+j,i ≤ 1. This example is illustrated in Figure 1. Observe
that variables xn+i,i and xn+j,j need not be introduced in the lifted inequality since the
corresponding arcs can be trivially removed from the graph.

i

j n+j

n+i

Figure 1: Lifted subtour elimination constraint for S = {i, j} ⊆ P

Proposition 2. Let S ⊆ P ∪ D and D−(S) = {i|n + i ∈ S ∩ D and i 6∈ S}. The following
inequality is valid for the DARP:

x(S) +
∑

i∈S

∑

j∈D−(S)

xij ≤ |S| − 1. (30)

Proof. The proof is similar to that of Proposition 1 by observing that because of precedence
relationships, set S must be exited at least once after using any of the lifted arcs and thus
x(δ+(S)) ≥ 1 +

∑

i∈S

∑

j∈D−(S) xij . �

Example. Consider the node set S = {n + i, n + j} ⊆ D. The resulting lifted subtour
elimination constraint is xn+i,n+j + xn+j,n+i + xn+i,j + xn+j,i ≤ 1. This is illustrated in
Figure 2.

j

in+i

n+j

Figure 2: Lifted subtour elimination constraint for S = {n + i, n + j} ⊆ D
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In the case of a directed formulation, one can also lift subtour elimination constraints by
taking into account the orientation of the arcs. For a set S = {i1, i2, . . . , ih} ⊆ N with
h ≥ 3 nodes, Grötschel and Padberg (1995) proposed the following inequalities for the
asymmetric TSP:

h−1
∑

j=1

xij ,ij+1
+ xih,i1 + 2

h−1
∑

j=2

xij ,i1 +
h−1
∑

j=3

j−1
∑

l=2

xij ,il ≤ h − 1 (31)

h−1
∑

j=1

xij ,ij+1
+ xih,i1 + 2

h
∑

j=3

xi1,ij +
h

∑

j=4

j−1
∑

l=3

xij ,il ≤ h − 1. (32)

Of course, different liftings are obtained by considering different orderings of the nodes in
set S. In the case of the DARP, these inequalities can be further lifted by taking precedence
relationships into account. This results in the following two propositions.

Proposition 3. Let S = {i1, i2, . . . , ih} ⊆ P ∪D and P+(S) = {i|i ∈ S ∩P and n + i 6∈ S}.
The following inequality is valid for the DARP:

h−1
∑

j=1

xij ,ij+1
+ xih,i1 + 2

h−1
∑

j=2

xij ,i1 +

h−1
∑

j=3

j−1
∑

l=2

xij ,il +
∑

ip∈P+(S)

xn+ip,i1 ≤ h − 1. (33)

Proof. Suppose that one arc of the form (n + ip, i1) with ip ∈ P+(S) is part of the solution.
Then all arcs of the form (ij , i1) with 2 ≤ j ≤ h − 1 cannot belong to the solution. As a
result, if the left-hand side of inequality (33) is larger than h−1, then there exists a subpath
linking the h nodes in set S. But because set S contains the origin node ip, this subpath
together with the arc (n + ip, i1) would violate the precedence constraint for user ip. �

Example. Consider the node set S = {i, j, k} ⊆ P . One possible lifted directed subtour
elimination constraint (obtained with i1 = i, i2 = j, i3 = k) is xij + xjk +xki +2xji +xn+j,i +
xn+k,i ≤ 2. This is illustrated in Figure 3.

n+j

i

j

kn+k

2

Figure 3: Lifted directed subtour elimination constraint for S = {i, j, k} ⊆ P

Proposition 4. Let S = {i1, i2, . . . , ih} ⊆ P ∪D and D−(S) = {i|n+ i ∈ S ∩D and i 6∈ S}.
The following inequality is valid for the DARP:

h−1
∑

j=1

xij ,ij+1
+ xih,i1 + 2

h
∑

j=3

xi1,ij +

h
∑

j=4

j−1
∑

l=3

xij ,il +
∑

ip∈D−(S)

xi1,ip ≤ h − 1. (34)
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Proof. The proof is similar to that of Proposition 3 by observing that if one arc of the
form (i1, ip) with ip ∈ D−(S) is part of the solution, then all arcs of the form (i1, ij) with
3 ≤ j ≤ h cannot belong to the solution. �

Example. Consider the node set S = {n + i, n + j, n + k} ⊆ D. One possible lifted
directed subtour elimination constraint (obtained with i1 = n + i, i2 = n + j, i3 = n + k) is
xn+i,n+j +xn+j,n+k +xn+k,n+i +2xn+i,n+k +xn+i,j +xn+i,k ≤ 2. This is illustrated in Figure 4.

j

k

n+i

n+j

n+k
2

Figure 4: Lifted directed subtour elimination constraint for S = {n + i, n + j, n + k} ⊆ D

4.3 Capacity constraints

For any subset S ⊆ P∪D, let R(S) denote the minimum number of vehicles needed to visit all
nodes in S. The constraint x(δ(S)) ≥ 2R(S) is then a valid inequality. Although computing
R(S) is difficult, a lower approximation is provided by ⌈q(S)/Q⌉ where q(S) =

∑

i∈S qi. The
resulting inequality is called a rounded capacity inequality in the context of the VRP.

While capacity inequalities play an important role in most branch-and-cut algorithms for
the VRP (see, e.g., Naddef and Rinaldi, 2002), they are not likely to be very strong for
the DARP because of the presence of both positive and negative qi values. In particular,
q(P ∪ D) = 0 by definition and, in the absence of time windows, all nodes can be visited
by the same vehicle. Useful inequalities can, however, be obtained by restricting S to be a
subset of either P or D and setting q(S) = |

∑

i∈S qi|. It should be emphasized that in our
context, the quantity ⌈q(S)/Q⌉ estimates the required number of vehicle passages in set S
rather than the number of vehicles per se. Indeed, by leaving and entering set S more than
once, the same vehicle may be able to visit all nodes in the set even though q(S) > Q.

4.4 Precedence constraints

Consider a node set S such that 0 ∈ S, i 6∈ S, n + i ∈ S and 2n + 1 6∈ S for at least one
user i. Because node i must be visited before node n + i, x(S) ≤ |S| − 2 and, equivalently,
x(δ(S)) ≥ 4. The same applies to node sets S such that 0 6∈ S, i ∈ S, n + i 6∈ S and
2n + 1 ∈ S for at least one user i. These inequalities, which are also valid for the DARP,
were introduced by Ruland and Rodin (1997) for the pickup and delivery problem.
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4.5 Generalized order constraints

Let U1, . . . , Um ⊂ N be mutually disjoint subsets and let i1, . . . , im ∈ P be users such that
0, 2n + 1 6∈ Ul and il, n + il+1 ∈ Ul for l = 1, . . . , m (where im+1 = i1). The following
inequality, introduced by Ruland and Rodin (1997), is also valid for the DARP:

m
∑

l=1

x(Ul) ≤
m

∑

l=1

|Ul| − m − 1. (35)

In the directed case, these inequalities can be lifted in two different ways, as shown by the
following propositions.

Proposition 5. The following inequality is valid for the DARP:

m
∑

l=1

x(Ul) +
m−1
∑

l=2

xi1,il +
m

∑

l=3

xi1,n+il ≤
m

∑

l=1

|Ul| − m − 1. (36)

Proof. First observe that in any feasible integer solution, at most one of the lifted arcs may
be part of the solution since they all belong to δ+(i1). To demonstrate the validity of the
lifting, we show that if any of the lifted arcs is part of the solution then there are at least
two subsets Ul for which x(Ul) ≤ |Ul| − 2. Since x(Ul) ≤ |Ul| − 1 for all other subsets, the
validity of the inequality follows directly. The details of the proof are given in the appendix.
�

Remark 1. The numbering of the sets U1, . . . , Um is arbitrary and leads, by symmetry, to
m! possibly different liftings.

Example. Consider the subsets U1 = {i, n + j}, U2 = {j, n + k} and U3 = {k, n + i} with
i1 = i, i2 = j and i3 = k. The lifted generalized order constraint is xi,n+j + xn+j,i + xj,n+k +
xn+k,j + xk,n+i + xn+i,k + xij + xi,n+k ≤ 2. This is illustrated in Figure 5.

i

n+j n+k

j k

n+i

Figure 5: Lifted generalized order constraint with m = 3 (first lifting)

Proposition 6. The following inequality is valid for the DARP:

m
∑

l=1

x(Ul) +

m−2
∑

l=2

xn+i1,il +

m−1
∑

l=2

xn+i1,n+il ≤

m
∑

l=1

|Ul| − m − 1. (37)
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Proof. The reasoning is similar to that of Proposition 5 and the details of the proof are
given in the appendix. �

Example. Consider the subsets U1 = {i, n + j}, U2 = {j, n + k} and U3 = {k, n + i} with
i1 = i, i2 = j and i3 = k. The lifted generalized order constraint is xi,n+j + xn+j,i + xj,n+k +
xn+k,j + xk,n+i + xn+i,k + xn+i,n+j ≤ 2. This is illustrated in Figure 6. Observe that in
inequality (37), the value of m must be larger than or equal to 4 for the second term of the
inequality to have any effect.

i

n+j n+k

j k

n+i

Figure 6: Lifted generalized order constraint with m = 3 (second lifting)

4.6 Order matching constraints

Consider two nodes i, j ∈ P and a subset H such that {i, j} ⊆ H ⊆ N \{0, n+i, n+j, 2n+1}.
The following inequality, introduced by Ruland and Rodin (1997), is also valid for the
DARP:

x(H) + x({i, n + i}) + x({j, n + j}) ≤ |H|. (38)

As suggested by Ruland (1995), this inequality can be lifted by introducing the term
x({h, n + h}) for every user h such that h ∈ H and n + h 6∈ H . In the directed case, order
matching constraints are in fact redundant because any arc of the form (n + h, h) can be
removed from the graph. As a result, all arcs in the left-hand side of (38) have their origin
node in set H . Hence, the sum of the flows on these arcs cannot exceed |H|, even in a
fractional solution.

Order matching constraints can, however, be generalized by replacing the arcs (h, n + h) by
node sets. This leads to the following proposition.

Proposition 7. Let i1, . . . , im be m users and let H ⊂ P ∪D and Th ⊂ P ∪D, h = 1, . . . , m
be node sets such that {ih, n+ ih} ⊆ Th and H ∩Th = {ih}. The following inequality is valid
for the DARP:

x(H) +

m
∑

h=1

x(Th) ≤ |H| +

m
∑

h=1

|Th| − 2m. (39)

Proof. First observe that x(H) ≤ |H| − 1 and x(Th) ≤ |Th| − 1 for h = 1, . . . , m. If
x(Th) = |Th|−1 for any given subset Th, then there exists a path connecting all nodes in Th,
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including ih and n+ih. However, this path cannot finish at node ih because of the precedence
constraint for user ih. Let α be the number of sets Th for which x(Th) = |Th| − 1. Then,
x(δ+(H)) ≥ α. Since x(δ+(H)) = x(δ−(H)) and 2x(H) + x(δ+(H)) + x(δ−(H)) = 2|H|, one
obtains that 2x(H) ≤ 2|H|−2α and thus x(H) ≤ |H|−α. Finally, because x(Th) ≤ |Th|−2
for the remaining m − α sets, one may conclude that x(H) +

∑m

h=1 x(Th) ≤ |H| − α +
∑m

h=1(|Th| − 1) − (m − α), which simplifies to expression (39). �

Example. Consider the sets H = {i, j}, T1 = {i, n + i, k} and T2 = {j, n + j, l} with i1 = i
and i2 = j. The resulting inequality is x(H)+x(T1)+x(T2) ≤ 4 and is illustrated in Figure 7.

n+i

n+j
l

k
i

j

Figure 7: Generalized order matching constraint with m = 2

Remark 2. Inequality (39) is stronger than the corresponding TSP comb constraint, defined
for m ≥ 3 and odd, and which is obtained from (39) by replacing the right-hand side with
|H| +

∑m

h=1 |Th| − (3m + 1)/2.

4.7 Infeasible path inequalities

Ride time constraints may give rise to paths that are infeasible in an integer solution but
nonetheless feasible in a fractional solution. Forbidding such paths can be accomplished
through the valid inequality introduced in the next proposition.

Proposition 8. For any directed path P = {i, k1, k2, . . . , kp, n + i} such that ti,k1
+ dk1

+
tk1,k2

+ dk2
+ · · · + tkp,n+i > L the following inequality is valid for the DARP:

xi,k1
+

p−1
∑

h=1

xkh,kh+1
+ xkp,n+i ≤ p − 1. (40)

Proof. Suppose that the value of the left-hand side of inequality (40) is equal to p in
a feasible integer solution. Then there is a single arc from path P not belonging to the
solution because the path contains p + 1 arcs. Since the solution is feasible, it must contain
a path from i to n + i in which the missing arc has been replaced by at least two other arcs.
But if the triangle inequality holds for travel times, the path from i to n + i has a larger
duration than that of P. As a result, its duration must exceed L, which contradicts the
assumption that the solution is feasible. �
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Remark 3. As will be shown in the next section, the case p = 1 can be handled directly
through the simple elimination of arcs in a preprocessing step.

5 Branch-and-Cut Algorithm

Branch-and-cut is a popular approach for solving combinatorial problems. It has been applied
successfully to several routing problems (see, e.g., Ascheuer et al., 2001; Gendreau et al.,
1998; Naddef and Rinaldi, 2002). This section describes the branch-and-cut algorithm
used for the DARP. It focuses on the preprocessing techniques developed to reduce problem
size and on the separation heuristics used to identify violated inequalities.

After applying the preprocessing steps presented in Section 5.1, the algorithm first solves
the LP relaxation of the problem. If the solution to the LP relaxation is integer, an optimal
solution has been identified. Otherwise, an enumeration tree is constructed and violated valid
inequalities are generated at some nodes of this tree by means of the separation heuristics
described in Section 5.2.

To control the branch-and-cut process, additional variables yk
i =

∑

j∈N xk
ij are introduced in

the formulation. At each node of the search tree, if the yk
i variables are all integer in the

current relaxation but there is at least one fractional xk
ij variable, the separation heuristics

are executed in the hope of identifying violated valid inequalities. If at least one of the
heuristics succeeds in finding one or more violated inequalities, the relaxation is solved with
all identified cuts and the heuristics are executed again. The cut generation process at a
node terminates when all heuristics fail to find any violated inequality. If the solution to
the relaxation is still fractional after the generation of cuts, branching is performed on a
fractional yk

i variable, if there is any, or on a fractional xk
ij variable, otherwise. The variable

selected for branching is that whose value is the farthest from the nearest integer.

Prior to the application of the branch-and-cut algorithm, an upper bound is computed by
using the tabu search heuristic of Cordeau and Laporte (2003b). This upper bound is
then used to prune the enumeration tree whenever the solution value at a given node exceeds
that of the upper bound.

Finally, an initial set of valid inequalities is added prior to solving the initial LP relaxation: all
bounds on time and load variables, lifted 2-node subtour elimination constraints, generalized
order constraints with m = 2 and |Ul| = 2, and precedence constraints with |S| = 3 are
introduced in a pool of cuts whose violations are checked at each node of the branch-and-
bound tree, including those where not all y variables take integer values.

5.1 Preprocessing

This section describes the time window tightening, arc elimination and variable fixing steps
that can be applied prior to the branch-and-cut algorithm.
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5.1.1 Time window tightening

Let T denote the end of the planning horizon. In the case of an outbound user, the time
window at the origin node can be tightened by setting ei = max{0, en+i − L − di} and li =
min{ln+i− ti,n+i−di, T}. In the case of an inbound user, the time window at the destination
node can be tightened by setting en+i = max{0, ei+di+ti,n+i} and ln+i = min{li+di+L, T}.

The time window on nodes 0 and 2n + 1 can also be tightened by setting e0 = e2n+1 =
mini∈P∪D{ei − t0i} and l0 = l2n+1 = maxi∈P∪D{li + di + ti,2n+1}.

5.1.2 Arc elimination

Formulation (1)-(14) is defined on a complete graph G. However, because of time windows,
pairing and ride time constraints, several arcs can in fact be removed from the graph as they
cannot belong to a feasible solution.

A simple analysis leads to the following observations:

• arcs (0, n + i), (i, 2n + 1) and (n + i, i) are infeasible for i ∈ P ;

• arc (i, j) with i, j ∈ N is infeasible if ei + di + tij > lj;

• arcs (i, j) and (j, n + i) with i ∈ P, j ∈ N are both infeasible if tij + dj + tj,n+i > L.

As first proposed by Dumas et al. (1991), combining time windows and pairing constraints
leads to even stronger elimination rules:

• arc (i, n + j) is infeasible if path P = {j, i, n + j, n + i} is infeasible;

• arc (n + i, j) is infeasible if path P = {i, n + i, j, n + j} is infeasible;

• arc (i, j) is infeasible if paths P1 = {i, j, n + i, n + j} and P2 = {i, j, n + j, n + i} are
both infeasible;

• arc (n+ i, n+j) is infeasible if paths P1 = {i, j, n+ i, n+j} and P2 = {j, i, n+ i, n+j}
are both infeasible.

In the presence of ride time constraints, further elimination can be performed by identifying
pairs of users that are incompatible (i.e., that cannot be assigned to the same vehicle) because
of the interaction between time windows and ride time constraints. Incompatible user pairs
{i, j} can be identified by checking the feasibility of the following paths: {i, j, n + i, n + j},
{i, j, n + j, n + i}, {j, i, n + i, n + j}, {j, i, n + j, n + i}, {i, n + i, j, n + j}, {j, n + j, i, n + i}.

If none of these six paths is feasible, then all eight arcs between {i, n + i} and {j, n + j}
can be eliminated. Because of ride time constraints, checking the feasibility of a path is
not always straightforward. In the case of the path {i, j, n + i, n + j}, for example, setting
Bi = ei may lead to the violation of the ride time constraint for user i in the event that
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unnecessary waiting time then occurs at node j. For this reason, the forward time slack
should be computed at node i so as to delay the beginning of service as much as possible
without violating any of the time windows. The same can be said about node j where
the beginning of service should be delayed as much as possible by taking into account the
additional constraint that the maximum ride time for user i should not be exceeded. In
general, the forward time slack Fi at node i in a path {i, i + 1, . . . , q} can be computed as
follows:

Fi = min
i≤j≤q

{

∑

i<p≤j

Wp + min {lj − Bj , L − Pj}

}

, (41)

where Wi denotes the waiting time at node i, Pi denotes the ride time of the user whose
destination node is i if n + 1 ≤ i ≤ 2n, and Pi = −∞, otherwise. This definition of the
forward time slack generalizes that of Savelsbergh (1992) for the TSP with time windows.

5.1.3 Variable fixing

The identification of incompatible user pairs can also be used to permanently assign users
to specific vehicles. If the fleet of vehicles is homogeneous, one can can create a graph
G′ = (N ′, E ′) where N ′ = {1, . . . , n} and E ′ contains an edge (i, j) if i and j are incompatible
users. Given a clique in G′, each user in the clique can be assigned to a different vehicle.
In addition, if user i is assigned to vehicle k, constraints can be added to the formulation
so as to forbid the assignment to vehicle k of users that are incompatible with i. Finding a
clique of maximum cardinality in G′ may be very time consuming when n is large. In our
implementation, we thus use a greedy heuristic described by Johnson (1974).

5.2 Separation Heuristics

This section describes the separation heuristics used to identify violated inequalities. When
all yk

i variables are integer but there is at least one fractional xk
ij variable, the following

heuristics are executed sequentially.

5.2.1 Subtour elimination constraints

The identification of violated inequalities of the form x(S) ≤ |S|−1 can be achieved by solving
a series of maximum flow problems between any node i and all other nodes j ∈ N \ {i}.
However, in addition to being time-consuming, this approach does not take the possible
liftings into account. For these reasons, we resort to a simple tabu search heuristic inspired
from that proposed by Augerat et al. (1999).

Using the fact that 2x(S) + x(δ(S)) = 2|S| in a feasible integer solution, violations of (29)
can be identified by finding node sets S such that

x(δ(S)) − 2
∑

i∈P+(S)

∑

j∈S

xn+i,j < 2. (42)
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The heuristic starts with an empty set S. At each iteration, it either adds or removes a
node from the set S so as to minimize the left-hand side of (42). Whenever a node is
removed from set S, its reinsertion is declared tabu for θ iterations. The heuristic runs for
a preset number of iterations (100 in our implementation) and may identify several violated
inequalities during a single execution. At each iteration, the current set S is also checked for
possible violations of inequality (33). To this purpose, the node with the largest outgoing
flow is numbered as i1 and the other nodes are numbered at random.

A similar heuristic is used to identify violations of inequalities (30) and (34). In the latter
case, the node with the largest incoming flow is numbered as i1.

5.2.2 Capacity constraints

Again, we use a tabu search heuristic to identify sets S such that q(S) > Q and x(δ(S)) < 4.
The heuristic starts either with a random subset S ⊆ P or with a random subset S ⊆ D. At
each iteration, a node is either removed or added to the set S so as to minimize the value of
x(δ(S)), with the constraint that q(S) > Q. Again, the heuristic runs for 100 iterations and
multiple violated inequalities may be identified during a single execution.

5.2.3 Precedence constraints

As explained by Ruland (1995), identifying violated precedence constraints can be done
by solving a multi-terminal maximum flow problem for each user. To check whether the
precedence constraint for user i is violated, one can compute the maximum flow from the
sources 0 and n + i to the sinks i and 2n + 1. If the value of this flow is less than 2, then
a precedence constraint x(S) ≤ |S| − 2 is violated for a set S such that 0, n + i ∈ S and
i, 2n + 1 6∈ S. The set S corresponds to one of the shores of the corresponding minimum
cut. We have implemented this approach and use the maximum flow algorithm provided in
the GTL library (see http://infosun.fmi.uni-passau.de/GTL).

5.2.4 Generalized order constraints

Ruland (1995) proposed an approach to identify violated generalized order constraints with
m = 2. This approach requires the computation of O(|N |2) maximum flows. Here, we use
instead three simple heuristics, the second and third of which take advantage of the lifted
forms (36) and (37).

The first heuristic attempts to identify violations of inequalities (35) for the special case
where m = 2 and |U1| = |U2| = 3. For each pair of users i, j ∈ P , we first form the subsets
U1 = {i, n + j} and U2 = {j, n + i}. We then identify nodes k1 and k2 such that x(U1) and
x(U2) are maximized, and check for a violation of the resulting inequality.

The second and third heuristics are aimed at finding violations of inequalities (36) and (37)
for the special case where m = 3 and |U1| = |U2| = |U3| = 2. The second heuristic finds, for
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each user i, a user j that maximizes xi,n+j + xn+j,i + xij . It then finds a user k such that
the left-hand side of (36) is maximized. Similarly, the third heuristic finds, for each user i, a
user j that maximizes xi,n+j + xn+j,i + xn+i,n+j and then finds a user k that maximizes the
left-hand side of (37).

5.2.5 Order matching constraints

To identify violated order matching constraints, Ruland (1995) has proposed an algorithm
requiring the solution of O(|N |2) maximum flow problems.

We again resort to a simpler heuristic that aims to identify violations of (39) for the special
case where m = 2, |H| = 3 and |T1| = |T2| = 3. For each pair of users i, j ∈ P , we first form
the subsets T1 = {i, n + i} and T2 = {j, n + j}. We then select the nodes k1 and k2 such
that x(T1) and x(T2) are maximized. Finally, we select the node k such x(H) is maximized
and check for a violation of the resulting inequality.

5.2.6 Infeasible path inequalities

Violated path inequalities are identified by means of a path-construction heuristic applied
to each user i ∈ P . The heuristic starts with node i and gradually constructs a path
Pi = {i, k1, k2, . . . } by iteratively moving from the current node kj to the node kl that
maximizes the value of xkjkl

. The process stops if a cycle is formed or if the heuristic reaches
either node n+ i or node 2n+1. If the path stops at node n+ i, it is checked for a violation
of inequality (40).

6 Computational Experiments

The branch-and-cut algorithm just described was implemented in C++ by using ILOG
Concert 1.3 and CPLEX 8.1. It was run on a 2.5 GHz Pentium 4 computer with 512Mb of
memory.

The algorithm was applied to two sets of randomly generated instances comprising up to 32
users. In an instance with n users, where n is even, users 1, . . . , n/2 are assumed to formulate
outbound requests while users n/2 + 1, . . . , n formulate inbound requests. In all instances,
the coordinates of pick-up and drop-off nodes are randomly and independently chosen in the
square [−10, 10]× [−10, 10] according to a uniform distribution, and the depot is located at
the center of this square. For every arc (vi, vj) ∈ A, the routing cost cij and travel time tij
are equal to the Euclidean distance between the two nodes.

A time window [ei, li] is also associated to each node. For an outbound user i, a time window
was generated by first choosing a number en+i in the interval [420, 1080] (i.e., between 7h00
and 18h00) and then setting ln+i = en+i +15. For an inbound user, the value of ei was chosen
in the interval [360, 1020] and the value of li was set equal to ei + 15. Time windows on the
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origin nodes of outbound requests and on the destination nodes of inbound requests are set
as explained in Section 5.1.1.

In the first set of instances, Q = 3 for every vehicle, qi = 1 for every user and the maximum
ride time L is equal to 30 minutes. In the second set, Q = 6 for every vehicle and the values
of qi are chosen randomly according to a uniform distribution on the set {1, . . . , Q}. The
maximum ride time is set equal to 60 minutes. In all cases, we assume that service time is
proportional to the number of passengers and di = qi. The maximum route duration is set
to 720 minutes. The first set of instances represents the context where cars are used for the
transportation of individuals whereas the second set reflects the situation of a transporter
using mini-busses for the transportation of individuals or groups of individuals.

Tables 1 and 2 provide the characteristics of these instances, the number of constraints and
variables in the resulting integer programming formulation, the value of the LP relaxation
and the cost of a heuristic solution. This solution was obtained by running the tabu search
algorithm of Cordeau and Laporte (2003b) for 1000 iterations.

In Tables 3 and 4 we indicate the best lower bounds reached by running the branch-and-
cut algorithm on each instance with a maximum CPU time limit of 60 minutes. Column
CPLEX indicates the bound obtained by running CPLEX itself with no user-cut generation
but after the application of the preprocessing steps of Section 5.1. The next columns report
the bounds obtained by generating the lifted bounds on time and load variables (Section 4.1)
with only one of the following: subtour eliminations constraints (SEC), capacity constraints
(CC), generalized order constraints (GOC), order matching constraints (OMC) and infeasible
path constraints (IPC). Average values reported on the last line of each table show that the
strength of the various inequalities varies from one set of instances to the other. Furthermore,
for the first set of instances, using any kind of inequality alone did not yield significantly

Table 1: Characteristics of the first set of instances

Instance m n Q L Cons Vars LP Heuristic
p2-16 2 16 3 30 855 733 270.25 298.00
p2-20 2 20 3 30 1134 1050 300.55 345.14
p2-24 2 24 3 30 1895 1679 304.10 375.15
p2-28 2 28 3 30 2610 2344 337.60 417.12
p2-32 2 32 3 30 3536 3098 350.15 466.53
p3-16 3 16 3 30 920 1020 197.39 258.10
p3-20 3 20 3 30 1520 1776 238.88 282.81
p3-24 3 24 3 30 1957 2311 312.90 374.18
p3-28 3 28 3 30 2609 3059 368.43 478.58
p3-32 3 32 3 30 3676 4593 291.22 423.08
p4-16 4 16 3 30 960 1299 229.12 294.82
p4-20 4 20 3 30 1502 2104 256.25 343.37
p4-24 4 24 3 30 2171 3188 254.20 334.41
p4-28 4 28 3 30 2911 4479 267.28 395.90
p4-32 4 32 3 30 3575 5564 376.65 491.82
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Table 2: Characteristics of the second set of instances

Instance m n Q L Cons Vars LP Heuristic
g2-16 2 16 6 60 666 600 223.14 269.98
g2-20 2 20 6 60 1232 1176 280.41 374.77
g2-24 2 24 6 60 1379 9379 307.64 429.90
g2-28 2 28 6 60 2448 2163 336.35 427.06
g2-32 2 32 6 60 2747 2395 400.81 544.95
g3-16 3 16 6 60 782 917 207.28 256.70
g3-20 3 20 6 60 1200 1459 251.37 301.41
g3-24 3 24 6 60 1796 2045 319.89 449.88
g3-28 3 28 6 60 2401 2807 325.37 451.09
g3-32 3 32 6 60 2625 3293 391.38 562.73
g4-16 4 16 6 60 875 1220 217.09 273.60
g4-20 4 20 6 60 1146 1642 257.69 363.75
g4-24 4 24 6 60 1753 2639 300.70 423.10
g4-28 4 28 6 60 2484 3399 261.27 363.70
g4-32 4 32 6 60 2880 4221 351.21 516.00

better bounds than using CPLEX directly, except for subtour elimination constraints. This
is explained by the fact that the additional CPU time used to identify violated inequalities
allows for the exploration of a reduced number of nodes in the search tree. We do not report
the results for the generation of precedence constraints since these were significantly worse
than the direct CPLEX implementation.

Table 3: Best lower bounds - first set of instances

Instance CPLEX SEC CC GOC OMC IPC
p2-16 298.00 298.00 298.00 298.00 298.00 298.00
p2-20 345.14 345.14 345.14 245.14 345.14 345.14
p2-24 375.15 375.15 375.15 375.15 375.15 375.15
p2-28 403.92 417.05 402.75 417.05 410.24 405.66
p2-32 426.62 441.46 426.31 427.54 427.73 430.53
p3-16 258.10 258.10 258.10 258.10 258.10 258.10
p3-20 282.81 282.81 282.81 282.81 282.81 282.81
p3-24 374.07 374.07 374.07 374.07 374.07 374.07
p3-28 440.69 448.35 433.47 442.73 432.49 442.31
p3-32 343.03 337.49 333.87 333.60 335.11 331.88
p4-16 294.82 294.82 294.82 294.82 294.82 294.82
p4-20 318.89 325.78 316.60 320.27 317.79 316.64
p4-24 291.53 292.54 293.02 295.12 291.07 294.02
p4-28 322.17 320.34 317.51 318.47 320.13 318.99
p4-32 399.74 401.34 401.76 400.73 401.92 402.00
Avg. 344.98 347.50 343.56 338.91 344.30 344.67
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Table 4: Best lower bounds - second set of instances

Instance CPLEX SEC CC GOC OMC IPC
g2-16 268.36 268.36 268.36 268.36 268.36 268.36
g2-20 370.77 370.77 370.77 370.77 370.77 370.77
g2-24 397.60 429.27 426.05 429.27 415.52 413.46
g2-28 409.30 418.95 424.27 416.53 418.02 417.29
g2-32 502.84 528.20 523.01 516.85 508.62 510.84
g3-16 255.18 255.18 255.18 255.18 255.18 255.18
g3-20 300.45 300.45 300.45 300.45 300.45 300.45
g3-24 382.67 402.90 411.80 399.11 395.84 393.96
g3-28 375.30 383.36 382.60 381.95 377.08 382.27
g3-32 443.54 453.94 462.18 456.98 452.35 451.84
g4-16 270.24 270.24 270.24 270.24 270.24 270.24
g4-20 346.42 361.56 361.56 361.35 361.56 361.56
g4-24 349.38 360.96 359.82 357.07 358.03 356.16
g4-28 285.90 293.76 295.17 295.42 291.11 294.37
g4-32 390.11 405.24 414.47 411.68 406.33 405.04
Avg. 356.54 366.88 368.40 366.08 363.30 363.45

Combining the different types of inequalities does, however, yield important improvements
over the basic version of CPLEX. Tables 5 and 6 reports the results obtained by using the
basic version of CPLEX and by using the five types of inequalities concurrently. In both
cases, a maximum of 12 hours of CPU time was allowed for the solution of each instance. We

Table 5: Comparisons with CPLEX - first set of instances

CPLEX Branch-and-cut
Instance Bound CPU Nodes Bound CPU Nodes Cuts
p2-16 *298.00 0.01 54 *298.00 0.03 36 27
p2-20 *345.14 0.11 628 *345.14 0.12 160 77
p2-24 *375.15 5.96 21,844 *375.15 3.12 5,368 203
p2-28 *417.05 188.57 472,114 *417.05 8.59 12,516 359
p2-32 448.70 720.00 909,500 *466.53 142.51 148,501 545
p3-16 *258.10 0.05 288 *258.10 0.07 218 36
p3-20 *282.81 1.37 5,118 *282.81 1.33 3,420 85
p3-24 *374.07 2.04 6,042 *374.07 1.12 1,785 108
p3-28 *462.80 379.36 802,594 *462.80 153.56 240,402 269
p3-32 354.45 720.00 446,400 354.71 720.00 377,030 802
p4-16 *294.82 3.45 22,233 *294.82 1.35 5,764 74
p4-20 *341.93 524.59 1,403,353 *341.93 308.97 765,146 181
p4-24 309.73 720.00 711,000 *332.96 685.54 451,915 1203
p4-28 337.34 720.00 584,900 341.00 720.00 433,158 390
p4-32 412.11 720.00 263,100 418.71 720.00 267,975 471
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report the best bound obtained, the CPU time used and the number of nodes explored in the
branch-and-bound tree. For the branch-and-cut algorithm, we also indicate the total number
of user cuts generated. An asterisk preceding a lower bound indicates that the instance was
solved to optimality.

One can observe that the branch-and-cut algorithm is significantly faster than using CPLEX
alone. For the 19 instances solved to optimality by both approaches within the time limit,
the average CPU time was 118.60 minutes for CPLEX compared with 33.02 minutes for the
branch-and-cut algorithm. The average number of nodes explored went down from 351,623
to 61,584. For the eight instances that could not be solved optimally by any of the two
approaches, the average lower bound reached by CPLEX was 377.12 compared with 393.36
for the branch-and-cut algorithm. Finally, the branch-and-cut algorithm solved three more
instances to optimality.

The small number of cuts generated with respect to the number of nodes explored in the
branch-and-bound tree is explained by the fact that the separation procedures are executed
only when all yk

i variables are integer. For most instances, this occurs at approximately
5% of the nodes. Experiments performed with the generation of cuts at every node of the
tree have produced slightly worse results because of the extra time spent by the separation
procedures. It is likely that a larger number of cuts could be generated by using exact or
more sophisticated heuristic separation procedures. The development of such procedures is
by itself an important area of research that will be addressed in future work.

Table 6: Comparisons with CPLEX - second set of instances

CPLEX Branch-and-cut
Instance Bound CPU Nodes Bound CPU Nodes Cuts
g2-16 *268.36 0.05 483 *268.36 0.08 200 118
g2-20 *370.77 6.95 50,483 *370.77 4.57 6,170 880
g2-24 *429.27 157.16 777,836 *429.27 27.18 36,220 871
g2-28 *424.27 215.48 557,624 *424.27 86.65 40,925 1973
g2-32 *544.86 577.92 1,777,740 *544.86 18.48 20,775 727
g3-16 *255.18 3.26 35,456 *255.18 1.07 4,512 156
g3-20 *300.45 31.70 133,174 *300.45 2.22 4,464 243
g3-24 408.43 720.00 1,356,000 *449.11 205.08 251,378 437
g3-28 390.48 720.00 839,900 413.00 720.00 344,902 1936
g3-32 458.96 720.00 505,300 487.33 720.00 260,305 1853
g4-16 *270.24 28.04 167,427 *270.24 3.64 12,014 167
g4-20 *361.56 127.42 446,344 *361,56 5.21 9,996 145
g4-24 366.52 720.00 929,700 386.89 720.00 652,610 379
g4-28 296.19 720.00 513,100 310.66 720.00 315,316 935
g4-32 400.94 720.00 408,600 434.57 720.00 201,539 1212
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7 Conclusion

We have introduced several new valid inequalities and a branch-and-cut algorithm for the
dial-a-ride problem. Although no polyhedral analysis was carried out, the usefulness of
these inequalities has been demonstrated through computational experiments. A comparison
with version 8.1 of CPLEX shows that the branch-and-cut algorithm proposed here reduces
both the CPU time and the number of nodes explored in the branch-and-bound tree. The
methodology proposed in this paper obviously cannot be used to solve large-scale instances
containing hundreds or thousands of users as it is sometimes the case in large cities. It is,
however, fast enough to be used as a post-processor to optimize individual routes or small
subsets of routes produced by a meta-heuristic. In the presence of ride time constraints,
using dynamic programming would be difficult since the states of the dynamic programming
algorithm would have to take into account the individual ride time of each user. Future work
will concentrate on the development of more refined separation procedures for the various
types of inequalities introduced in this paper.

Appendix

Details of the proof of Proposition 5.

There are two cases to distinguish.

Case 1. An arc (i1, il) with 2 ≤ l ≤ m − 1 is part of the solution.

First, we show that there is at least one subset Uk with 1 ≤ k ≤ l − 1 for which x(Uk) ≤
|Uk| − 2. Suppose this is not true. Then, for every k, there is a path in Uk connecting ik and
n+ ik+1. Since the arc (i1, il) is in the solution, the path for U1 must visit node n+ i2 before
visiting node i1. In addition, this path must appear immediately before the arc (i1, il) in
the solution. Now, for k = 2, . . . , l − 1, the path for Uk must appear before that for Uk−1 in
the solution to avoid violating the precedence constraint for user ik. But for k = l − 1, this
implies that node n + il appears before node il, which is a contradiction.

Next, we show that there is at least one subset Uk with l ≤ k ≤ m for which x(Uk) ≤ |Uk|−2.
Suppose this is not true. Then, for every k, there is a path in Uk connecting ik and n+ ik+1.
Since the arc (i1, il) is in the solution, the path for Ul must visit node il before visiting node
n+ il+1. In addition, this path must appear immediately after the arc (i1, il) in the solution.
Now, for k = l + 1, . . . , m, the path for Uk must appear before that for Uk−1 in the solution
to avoid violating the precedence constraint for user ik. But for k = m, this implies that
node n + i1 appears before node i1, which is a contradiction.

Case 2. An arc (i1, n + il) with 3 ≤ l ≤ m is part of the solution.

First, we show that there is at least one subset Uk with 1 ≤ k ≤ l − 1 for which x(Uk) ≤
|Uk| − 2. Suppose this is not true. Since the arc (i1, n + il) is in the solution, the path
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for U1 must visit node n + i2 before visiting node i1. In addition, this path must appear
immediately before the arc (i1, n + il) in the solution. Now, for k = 2, . . . , l − 1, the path
for Uk must appear before that for Uk−1 in the solution to avoid violating the precedence
constraint for user ik. But for k = l − 1, this implies that node n + il appears before node
i1, which is a contradiction since the arc (i1, n + il) is part of the solution.

Next, we show that for there is at least one subset Uk with l ≤ k ≤ m for which x(Uk) ≤
|Uk| − 2. Suppose this is not true. Since the arc (i1, n + il) is in the solution, then for
k = l, . . . , m, the path for Uk must appear before the arc (i1, n + il) in the solution to avoid
violating the precedence constraint for user ik. But for k = m, this implies that the path
connecting im and n + i1 appears before node i1, which is a contradiction. �

Details of the proof of Proposition 6.

Again, there are two cases to distinguish.

Case 1. An arc (n + i1, il) with 2 ≤ l ≤ m − 2 is part of the solution.

For k = l−1, . . . , 1, the path connecting ik and n+ ik+1 must appear after the arc (n+ i1, il)
in the solution to avoid violating the precedence constraint for user ik+1. But for k = 1 this
implies that the path connecting i1 and n + i2 appears after the arc (n + i1, il), which is a
contradiction.

Since the arc (n+ i1, il) is in the solution, the subpath for Ul must visit node il before visiting
node n + il+1. For k = l + 1, . . . , m, the path for Uk must appear before that for Uk−1 to
avoid violating the precedence constraint for user ik. But for k = m, this implies that the
path connecting im and n + i1 appears before the path for at least one other subset Uh with
l + 1 ≤ h ≤ m − 1, and thus node n + i1 appears in two different places in the solution.

Case 2. An arc (n + i1, n + il) with 2 ≤ l ≤ m − 1 is part of the solution.

For k = 1, . . . , l−1, the path connecting ik and n+ik+1 must appear after the arc (n+i1, n+il).
But for k = 1, this implies that node i1 appears after node n + i1, which is a contradiction.

The path for Ul must appear before the arc (n + i1, n + iL) and, for k = l + 1, . . . , m − 1,
the path for Uk must appear before that for Uk−1. But for k = m, this implies that the
path connecting im and n + i1 appears before the path for at least one other subset Uh with
l ≤ h ≤ m − 1, and thus node n + i1 appears in two different places in the solution. �
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