TRANSPORTATION
RESEARCH
PART B

PERGAMON Transportation Research Part B 37 (2003) 579-594

www.elsevier.com/locate/trb

A tabu search heuristic for the static multi-vehicle
dial-a-ride problem

Jean-Frangois Cordeau, Gilbert Laporte *

Canada Research Chair in Distribution Management and GERAD, HEC Montréal,
3000 chemin de la Cote-Sainte-Catherine, Montreal, Canada H3T 2A7

Received 30 May 2002; received in revised form 29 August 2002; accepted 16 September 2002

Abstract

This article describes a tabu search heuristic for the dial-a-ride problem with the following characteristics.
Users specify transportation requests between origins and destinations. They may provide a time window
on their desired departure or arrival time. Transportation is supplied by a fleet of vehicles based at a
common depot. The aim is to design a set of least cost vehicle routes capable of accommodating all re-
quests. Side constraints relate to vehicle capacity, route duration and the maximum ride time of any user.
Extensive computational results are reported on randomly generated and real-life data sets.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords.: Dial-a-ride problem; Door-to-door transportation; Tabu search heuristic

1. Introduction

In the dial-a-ride problem (DARP), n users specify transportation requests between given ori-
gins and destinations. Users may provide a time window on their desired departure or arrival
time, or on both. Transportation is supplied by a fleet of m vehicles based at a common depot. The
aim is to design a set of least cost vehicle routes capable of accommodating all requests, under a
set of constraints. The most common constraints relate to vehicle capacity, route duration and
maximum ride time, i.e., the time spent by a user in the vehicle. In several applications, users
specify two requests per day: an outbound request from home to a destination, and an inbound

*Corresponding author. Address: Universite de Montreal, Centre de recherche transports, CP 6128, Montreal,
Quebec H3C 3J7, Canada. Tel.: +1-514-343-6143; fax: +1-514-343-7121.
E-mail address: gilbert@crt.umontreal.ca (G. Laporte).

0191-2615/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0191-2615(02)00045-0

mail to: gilbert@crt.umontreal.ca

580 J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594

request for the return trip. A common DARP application arises in door-to-door transportation
services for the elderly and the disabled.

Dial-a-ride services may operate according to one of two modes. In the static mode, all
transportation requests are known in advance, which makes it possible to plan all vehicle routes
ahead of time. In the dynamic mode, transportation requests are gradually revealed throughout
the day, as users call, so that vehicle routes are constructed in real-time. Even when the dynamic
mode is used, a static problem is usually solved on a set of initial requests to obtain a starting
solution that will later be modified as new requests are received. This study is concerned with the
static DARP.

The DARP belongs to the generic class of vehicle routing and scheduling problems which have
been extensively studied over the past 40 years (see, e.g., Toth and Vigo, 2002). What makes the
DARP different and somewhat more difficult than most other routing problems is that trans-
portation cost and user inconvenience must be weighed against each other when designing a
solution. At one extreme, designing vehicle routes without sufficient consideration for users may
cause some people to spend undue amounts of time traveling. At the other extreme, letting users
impose overly tight constraints on their pick-up and drop-off times can increase transportation
costs drastically. Most of the scientific literature on the DARP assumes that users first specify
desired pick-up and drop-off times and the transporter then designs routes that minimize devia-
tions from these desired times or ensure that deviations fall within a pre-specified tolerance. This is
not, in our view, the best way to model the problem, at least from the transporter’s point of view.
As in the work of Jaw et al. (1986), we follow a different approach in line with the current practice
of several transporters.

A more realistic way to model the DARP is to let users impose a time window of a pre-specified
width on the arrival time of their outbound trip and, similarly, a window on the departure time of
their inbound trip. An upper bound L is imposed on the ride time of any user. Under these
constraints, the transporter determines the most suitable pick-up and drop-off times for the
outbound and inbound trip, respectively. Our purpose is to present a tabu search heuristic for this
version of the DARP.

The remainder of this article is organized as follows. In the next section, we briefly review the
operational research literature for the DARP. This is followed by a description of our algorithm,
by computational results, and by the conclusion.

2. Literature review

Several versions of the DARP have been studied over the past 30 years. While none is identical
to ours, it helps reviewing them to put our contribution into perspective. Since the definition of the
DARP varies from one author to the next, we only consider cases where time window constraints
are imposed. In the absence of time windows, the problem only contains precedence relationships
on pick-up and drop-off, which do not fully capture the true nature of the DARP.

While some early consultancy studies (Wilson et al., 1971; Wilson and Weissberg, 1976; Wilson
and Colvin, 1976) sought real-time solutions to the dynamic DARP, it seems that thereafter most
work has concentrated on the static version. The single-vehicle problem has been widely studied.
Psaraftis (1980, 1983) developed an exact dynamic programming algorithm for the case where

J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594 581

time windows are imposed on each pick-up and drop-off. User inconvenience is controlled
through a “maximum position shift” constraint limiting the difference between the position of a
user in the list of requests and its position in the vehicle route. Only very small instances (r < 10)
can be handled through this algorithm. Sexton and Bodin (1985a,b) have later proposed a heu-
ristic for a similar version of the problem where user inconvenience is measured this time as a
weighted sum of two terms. The first measures the excess ride time, i.e., the actual travel time
minus the direct travel time. The second computes, for each customer, the difference between his
desired drop-off time and his actual drop-off time, under the assumption that late drop-offs never
occur. The heuristic applies Benders decomposition to a mathematical formulation of the problem
and attempts to improve an initial solution by adjusting the vehicle route through user reinser-
tions. Results are reported on several data sets from Baltimore and Gaithersburgh involving
between 7 and 20 users. Finally, an exact column generation based algorithm was proposed by
Desrosiers et al. (1986) for the same problem. It was applied to the solution of instances con-
taining up to 40 users.

Fewer studies have addressed the multi-vehicle version of the DARP. Jaw et al. (1986) have
analyzed a version of the problem where windows are imposed on the pick-up time of inbound
requests and on the drop-off time of outbound requests. A maximum ride time expressed as a
linear function of the minimum ride time is also specified. The quality of a solution is measured
through a non-linear objective incorporating several types of disutility. The problem is solved by
sequentially inserting users into vehicle routes so as to yield the least possible increase in the
objective function value. Computational results are provided on artificial instances involving 250
users and on a real-life dataset with 2617 users and 28 vehicles. The heuristic developed by
Madsen et al. (1995) applies to the dynamic DARP with multiple vehicle capacities and multiple
objectives. It is based on the insertion heuristic proposed by Jaw et al. (1986) and was applied to a
real-life instance containing 24 vehicles and 300 users. Bodin and Sexton (1986) have developed a
cluster first, route second heuristic for the problem, employing a sequential insertion heuristic to
form the clusters of users. An improvement to this two-phase approach is presented by Dumas
et al. (1989) who incorporate part of the clustering phase into the routing phase. Desrosiers et al.
(1991) further improve upon this methodology by performing the insertions in parallel, while
Ioachim et al. (1995) use a mathematical programming technique to form the clusters. Tests
were carried out on instances involving almost 3000 users. Dumas et al. (1991) have extended
their single-vehicle exact algorithm to the multiple-vehicle case and applied it to instances with
n<55.

A real-life problem arising in Bologna was tackled by Toth and Vigo (1996). Users specify
requests with a time window on their origin and destination. A limit proportional to direct dis-
tance is imposed on the time spent by a user in the vehicle. Transportation is supplied by a fleet of
capacitated minibuses and by the occasional use of taxis. The objective is to minimize the total
cost of service. The problem is solved by a heuristic consisting of first assigning requests to routes
by means of a parallel insertion procedure, and then performing intra-route and inter-route ex-
changes. Results were reported on instances involving between 276 and 312 requests. Toth and
Vigo (1997) have also proposed a tabu thresholding procedure to improve the initial solution
obtained by the insertion algorithm. In addition, Borndorfer et al. (1997) report the results of a
study related to the transportation of handicapped in Berlin. The method applies branch-and-cut
to solve two set partitioning formulations of the problem: one for creating clusters and another

582 J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594

one for chaining these clusters into vehicle routes. Results are reported for real-life instances
involving between 859 and 1765 transportation requests per day.

Finally, we mention a study by Fu (2002) relevant in the context of the DARP. Its emphasis is
on determining a solution in a context where travel times throughout the day are time-dependent
and stochastic. For further details on DARP algorithms and applications, the reader is referred to
Cordeau and Laporte (2002) and Desaulniers et al. (2002).

3. Formulation

The DARP is defined on a complete graph G = (V,4), where V' = {vy, vy, ..., vs,} is the vertex
set and 4 = {(v;,v;) : v;,v; € V,i # j} is the arc set. Vertex v, represents a depot at which is based
a fleet of m vehicles, and the remaining 2n vertices represent origins and destinations for the
transportation requests. Each vertex pair (v;, v;y,) represents a request for transportation from
origin v; to destination v;,,. With each vertex v; € V' are associated a load ¢; (with go = 0), a non-
negative service duration d; (with dy = 0) and a time window [e;, /;], where ¢; and /; are non-
negative. The load is equal to 1 for vertices vy, ...,v, and to —1 for vertices v,,, ..., U,. Service
duration corresponds to the time needed to let the user get on or off the vehicle. Let 7' denote the
end of the planning horizon. In the case of an outbound request, it is assumed that ¢, = 0 and
l; = T. Similarly, e;;, = 0 and /;;, = T for an inbound request. Each arc (v;, v;) has an associated
non-negative routing cost ¢;; and a non-negative travel time ¢;. Finally, let L denote the maximum
ride time of a user. The DARP consists of designing m vehicle routes on G such that

(1) every route starts and ends at the depot;
(i) for every request i, vertices v; and v;,, belong to the same route and vertex v;,, is visited later
than vertex v;;
(iii) the load of vehicle £ does not exceed at any time a preset bound Qy;
(iv) the total duration of route k£ does not exceed a preset bound 7j;
(v) the service at vertex v; begins in the interval [e;, [;], and every vehicle leaves the depot and
returns to the depot in the interval [eo, /y];
(vi) the ride time of any user does not exceed L;
(vii) the total routing cost of all vehicles is minimized.

We denote by 4; the arrival time of a vehicle at vertex v;, by B; > max{e;, 4;} the beginning of
service at vertex v;, and by D; = B; + d; the departure time from vertex v;, We assume here that
waiting at any vertex v; is allowed before service starts but is not allowed after service has finished.
The time window constraint at vertex v; is violated if B; > [,. Arrival before ¢; is, however, allowed
and the vehicle then incurs a waiting time W, = B; — A;. The ride time associated with request i is
computed as L; = B;,, — D;. Ride time thus corresponds to the elapsed time between the end of
service at vertex v; and the beginning of service at vertex v;,,. If there were no ride time con-
straints, it would always be optimal to set B; = max{e;, 4;}. However, it may sometimes be
profitable to delay the beginning of service at vertex v; so as to reduce the unnecessary waiting
time at vertex v;,, (or at any other vertex visited between v; and v;,,) and thus, the ride time
associated with request i.

J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594 583

4. Solution methodology

We propose a tabu search algorithm for the DARP. Starting from an initial solution sy, the
algorithm moves at iteration ¢ from s, to the best solution in a neighbourhood N (s,) of s,. To avoid
cycling, solutions possessing some attributes of recently visited solutions are declared forbidden,
or tabu, for a number of iterations, unless they constitute a new incumbent. As is common in such
algorithms, a continuous diversification mechanism is put in place in order to reduce the likeli-
hood of being trapped in a local optimum. Tabu search was proposed by Glover (1986) and has
quickly become one of the most widespread heuristic methods for combinatorial optimization
(see, e.g., Glover and Laguna, 1997).

Tabu search has been applied to the closely related pick-up and delivery problem with time
windows by Nanry and Barnes (2000). These authors have considered three types of move. The
first removes a vertex pair (v;, v;1,) from its current route and reinserts it in a different route. The
second swaps two pairs of vertices between two distinct routes while the last consists of moving a
vertex within its current route. As in our implementation, solutions that violate time window and
vehicle capacity constraints are allowed during the search. However, the variant addressed by
Nanry and Barnes does not include ride time constraints or route duration constraints. As we
explain in Section 4.7, these two constraints considerably complicate the evaluation of the
neighbourhood.

4.1. Relaxation mechanism

An important feature of our approach is the possibility of exploring infeasible solutions during
the search. Let S denote the set of solutions that satisfy constraints (i) and (ii) defined in Section 3.
Each solution s € § is represented by a set of m routes (starting and ending at the depot) such that
every request is assigned to exactly one route and the two vertices associated with that request are
visited in the appropriate order. This solution may, however, violate the maximum load and
duration constraints associated with the vehicles, the time window constraints associated with the
vertices, or the ride time constraints associated with the requests.

For a solution s € S, let ¢(s) denote the total routing cost of the vehicles, and let g(s), d(s), w(s)
and #(s) denote the total violation of load, duration, time window and ride time constraints, re-
spectively. The routing cost of a vehicle £ corresponds to the sum of the costs ¢;; associated with
the arcs (v;,v;) traversed by this vehicle. The total violation of load and duration constraints is
computed on a route basis with respect to O, and T, whereas the total violation of time window
constraints is equal to 3> (B; — 1;)*, where x* = max{0,x}. Similarly, the total violation of ride
time constraints is equal to >_r (L, — L)".

Solutions are evaluated using a cost function f(s) = ¢(s) + ag(s) + pd(s) + yw(s) + t(s), where
a, 3, y and 7 are self-adjusting positive parameters. By dynamically adjusting the values of the four
parameters during the search, this relaxation mechanism facilitates the exploration of the solution
space and is particularly useful for tightly constrained instances. It also encourages the use of
simple exchange operators because the complex modification of a feasible solution into another
feasible solution can then be achieved by a series of simpler modifications through intermediate
infeasible solutions.

584 J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594

4.2. Neighbourhood structure

Another important ingredient of our method is the definition of attributes to characterize
the solutions of S. With each solution s € S is associated an attribute set U(s) =
{(i, k) : request i is assigned to vehicle k}. The neighbourhood N(s) of a solution s is composed
of all solutions that can be obtained from s by applying a simple operator that removes an at-
tribute (i, k) from U(s) and replaces it with another attribute (i, '), where £ # k’. When attribute
(i, k) is removed from the solution, vertices v; and v;,, are removed from route £ which is recon-
nected by linking the respective predecessor and successor of each deleted vertex. Insertion of
vertices v; and v;,, in route £’ is then performed so as to minimize the total increase in f(s) by
using simple insertions (i.e., the ordering of the vertices already in route £’ remains unchanged).

Attributes are also used to a large extent to control tabu tenures and implement a diversifi-
cation strategy. When request i is removed from route %, its reinsertion in that route is forbidden
for the next 0 iteration by assigning a tabu status to the attribute (i, k). Through an aspiration
criterion, the tabu status of an attribute can, however, be revoked if that would allow the search
process to reach a solution of smaller cost than that of the best known solution having that
attribute.

4.3. Diversification strategy

To diversify the search, any solution s € N(s) such that f(s) > f(s) is penalized by a factor
proportional to the frequency of addition of its distinguishing attributes and of a scaling factor.
More precisely, let p,, be the number of times attribute (i, k) has been added to the solution during
the search. If (i, k) denotes the attribute that must be added to the current solution s in order to
obtain the new solution 5, a penalty

p(3) = 2c(3)v/nmpy

is thus added to f(5) when evaluating the cost of 5. The scaling factor ¢(s)\/nm introduces a
correction that adjusts the penalties with respect to the total solution cost and the problem size as
measured by the number of possible attributes. The more attributes there are, the higher a fre-
quently added attribute should be penalized. This type of scaling factor was proposed by Taillard
(1993) and has been used successfully in several other applications of tabu search to vehicle
routing problems (see, e.g., Gendreau et al., 1994; Cordeau et al., 1997). Finally, the parameter A
is used to control the intensity of the diversification. These penalties have the effect of driving the
search process toward less explored regions of the solution space whenever a local optimum is
reached.

4.4. Construction of an initial solution

An initial solution s, is constructed by assigning every request i to a randomly selected vehicle
and inserting the associated vertices v; and v;,,, sequentially at the end of the partially constructed
routes. This procedure ensures that constraints (i) and (ii) are satisfied. All other constraints may,
however, be violated by the initial solution.

J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594 585

4.5. Tabu search iterations

The tabu search algorithm starts from the initial solution sy and chooses, at iteration ¢, the best
non-tabu solution in N(s,) with respect to the objective function f(s) + p(s). After each iteration,
the values of the parameters «, 5, y and t are modified by a factor 1+ 6, where 6 > 0. If the
current solution is feasible with respect to load constraints, the value of o is divided by 1 + 6;
otherwise, it is multiplied by 1 + . The same rule applies to f5, y and t with respect to duration,
time window and ride time constraints, respectively. This process is repeated for 7 iterations and
the best feasible solution s* identified during the search becomes the final solution.

4.6. Route optimization

Every « iterations, intra-route exchanges are performed. Every vertex vy,..., vy, is then se-
quentially removed from its current route and reinserted in the best position so as to minimize the
value of f'(s). Intra-route exchanges are also performed whenever a new best solution is identified
during the search so as to provide some form of intensification.

4.7. Neighbourhood evaluation

Removing the two vertices associated with request i from route k& and inserting them in route &/
may affect the maximum load and total duration of both routes involved in the exchange as well
as the feasibility of time window and ride time constraints for all requests assigned to these routes.
As a result, evaluating the impact on f(s) of removing attribute (i, k) from U(s) and replacing it
with attribute (i, k") involves substantial computations.

Consider a particular ordered route k = (v, ...,v;,...,v,), where vy and v, both represent the
depot. It is clear that sequentially setting Dy = ¢, and B; = max{e;,4;} fori =1,...,q is optimal
in terms of minimizing time window violations because the vehicle leaves the depot as early as
possible and the service at each vertex also begins as early as possible. However, because of route
duration and ride time constraints, a solution that is infeasible if Dy = ey and B; = max{4,, ¢;} for
every vertex v; can in fact be feasible (or less infeasible) if the departure from the depot as well as
the beginning of service at some vertices are voluntarily delayed. Of course, a simple adjustment
that will reduce route duration is obtained by setting Dy = max{ey, e; — #);}, where v; denotes the
first vertex visited after leaving the depot. However, it may sometimes be possible to further delay
the departure from the depot, especially when the time window associated with vertex v; is wide.

Assuming d; = 0 (and hence D; = B;), Savelsbergh (1992), defines the forward time slack F; of
vertex v; as

E:irgl}lélq{lj_ (Bi‘f'i;pqtpwl)}' "

Using the fact that

Bi=Bit+ Y it Y W, (2)

i<p<j i<p<j

586 J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594

one can rewrite (1) as

F, = min {l_,- - (B,» -2 W) } (3)
= igigq{ S W+ —Bj)}- 4)

i<p<j

The latter form emphasizes the fact that the slack at vertex v; is the cumulative waiting time up
to vertex v;, plus the difference between the end of the time window and the beginning of service at
vertex v;. It also generalizes directly to the case of non-zero service times.

When feasibility must be maintained through exchanges, the forward time slack is the largest
increase in the beginning of service at vertex v; that will not cause any time window violation. In
our case, since infeasible solutions are allowed during the search, the notion of forward time slack
must be slightly modified to represent the largest increase in the beginning of service at vertex v
that will not cause any increase in time window violations. Hence, the term (/; — B;) should be
replaced with (/; — B;)" in (4) because even if the time window for vertex v; cannot be satisfied in
the current route, one can nevertheless increase the beginning of service at vertex v; by as much as
> icp<; W, without increasing the violation of the time window constraint at vertex v;.

When computing the forward time slack of a vertex v; # vy, care must also be taken not to
increase the violation of ride time constraints. Indeed, by delaying the beginning of service at
vertex v;, one may increase the ride time for a request whose origin vertex is before v; and whose
destination vertex is at or after v;. As a result, Eq. (4) becomes

F; = min { > %+(min{lj—Bj,L—1’j})+}, (5)

iI<j<q iSp<j
XU

where P; denotes the ride time of the user whose destination vertex is v; if n +1<j<2n, and P, =
0 otherwise.

Setting Dy = ¢y + Fy instead of Dy = ¢y will thus yield a modified route of minimal total du-
ration with equal violations of time window constraints and equal or smaller violations of ride
time constraints. Observe that delaying the departure time from the depot by > ,_,_ ¥, does not
affect the arrival time 4, at the end of the route whereas delaying the departure by more would
simply increase 4, by as much. As a result, the minimal route duration that does not increase
constraint violations is given by

A, - <eo+min {Fo > %})
0<p<q

The notion of forward time slack can also be used to delay the beginning of service B; (and thus
the departure time D;) at the origin vertex v; of a request i in the hope of reducing the ride time
associated with this request. This might not only improve the feasibility of a route but also the
quality of service as measured by the average ride time of users. Since the forward time slack is
computed in such a way as to never increase the violation of time window or ride time constraints,
delaying the beginning of service at an origin node can only help improve feasibility.

J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594 587

The impact of deleting vertices v; and v;,, from route k£ and inserting them at pre-specified
locations in route £’ can thus be assessed by performing the desired insertions and deletions and
then applying the following procedure to each of the routes involved in the exchange:

. Set D() = €.
. Compute 4;, W;, B; and D; and for each vertex v; in the route.
. Compute Fy.
Set Dy :=ey+ min{Fo, Zo<p<q VVP}
Update A4;, W, B; and D; for each vertex v; in the route.
. Compute L; for each request assigned to the route.
. For every vertex v; that corresponds to the origin of a request j
(a) Compute F;.
(b) Set B, := B, + min{F},>_,_ . W,}; D;:= B; +d,.
(c) Update 4;, W;, B; and D;, for each vertex v; that comes after v; in the route.
(d) Update the ride time L; for each request i whose destination vertex is after vertex v;.
8. Compute changes in violations of vehicle load, route duration, time window and ride time
constraints.

This procedure first minimizes time window constraints violations in steps (1) and (2). It then
minimizes route duration without increasing time window constraints violations in steps (3)—(6).
Finally, in step (7), it sequentially minimizes ride times by delaying the beginning of service at each
origin node as much as possible without increasing route duration, time window or ride time
constraints violations. When applied to a route for which time windows can be satisfied, the
procedure will yield departure and arrival times that minimize route duration and then minimize
the total violations of ride time constraints. Since minimizing route duration can only help reduce
ride times, it is not suboptimal to perform these two steps sequentially. In addition, treating re-
quests sequentially in step (7) is optimal for minimizing the violation of ride time constraints
because delaying the beginning of service at a given vertex will never increase the violation of ride
time constraints. It could, however, increase the ride time of a request for which the constraint is
satisfied.

It is worth mentioning that although this procedure yields optimal departure and arrival times
for the hierarchical objective of first minimizing w(s) followed by d(s) and #(s) for a given solution
s, it does not necessarily minimize the value of f(s). Finding an optimal solution to this problem
would require taking into account the tradeoffs between the different types of violation as well as
the relative weights f3, y and 7. This could be achieved by solving a linear program in the variables
A;, W;, B;, D; and L; but computational efficiency would worsen considerably as a result.

4.8. Neighbourhood reduction

A vertex v; is called critical if ¢; # 0 or /; # T. Given our previous assumptions, there is at most
one critical vertex for every pair of vertices (v;, v;,,) associated with request i. If no time window is
specified by the user, then any of the two vertices can be designated as critical. To reduce the size
of the neighbourhood considered at every iteration of the tabu search algorithm, the following

588 J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594

rule is used to evaluate the impact of inserting vertices v; and v;,, in route k. First, the best in-
sertion position is determined for the critical vertex. Then, holding the critical vertex in its best
position, the best insertion position is determined for the non-critical vertex. This rule has a
dramatic effect on computing times as it reduces the maximum number of possible exchanges
involving request i from O(r?) to O(r), where r is the number of vertices in route k.

Of course, insertion and deletion costs need not be fully recomputed at every iteration. Since
each exchange involves only two routes, insertion and deletion costs for all remaining routes are
still valid after performing the exchange. Since only a small portion of the total information needs
to be recomputed at each iteration when the number of vehicles is large, it would not be useful to
perform a partial evaluation of the neighbourhood. With 20 vehicles, for example, selecting only
10% of the requests and computing everything from scratch at every iteration is equivalent in
terms of computation time to evaluating the complete neighbourhood and updating 10% of the
information after each iteration.

5. Computational experiments

To our knowledge, no test instances are available in the literature for the version of the DARP
studied in this paper. To analyze the behaviour of the tabu search heuristic, we have thus gen-
erated a set of 20 instances according to realistic assumptions. Information regarding time win-
dow widths, vehicle capacity, route duration and maximum ride time was provided by the
Montreal Transit Commission (MTC). We have also tested our approach on six real-life datasets
provided by a Danish transporter.

The randomly generated instances contain between 24 and 144 requests. For an »n request in-
stance, requests 1,...,n/2 are assumed to be outbound while requests n/2 4 1,...,n are assumed
to be inbound. For each instance, origin and destination locations were generated by using a
procedure, previously described by Cordeau et al. (1997), that creates clusters of vertices around a
certain number of seed points. For an instance with n requests, 2n vertices are generated in the
square [—10, 10> with this procedure. For i = 1,...,n, vertex v; is the origin of request i while
vertex v,,; is its destination. For each vertex, the service time d; is equal to 10 and the load
g; 1s equal either to 1 or —1 depending on whether the vertex corresponds to the origin or
the destination of a request. The location of the depot is equal to the average location of the
seed points used to generate origin and destination locations. For every arc (v;,v;) € 4, the routing
cost ¢;; and travel time #; are equal to the Euclidean distance between the two ver-tices.

A time window [e;, [;] is also associated to each vertex. As mentioned in Section 4, origin
vertices of outbound requests and destination vertices of inbound requests have trivial time
windows [0, T], where T denotes the end of the planning horizon (equal to 24 x 60 = 1440 in our
experiments). Two groups of instances were created by using different parameters for generating
time windows. In the first group (a), narrow time windows were generated by first choosing a
uniform random number ¢; in the interval [60, 480] and then choosing a uniform random number
[; in the interval [e; 4+ 15, e; + 45]. In the second group (b), wider time windows were created by
choosing the random numbers ¢; and /; in the intervals [60, 480] and [e; + 30, ¢; + 90], respectively.
In all instances, maximum route duration is set to 480 while the capacity of a vehicle is equal to 6.
Finally, the maximum ride time L is equal to 90.

J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594 589

Table 1
Comparison of procedures for neighbourhood evaluation

Size Steps (1)-(2) Steps (1)—(6) Full procedure

n m Cost CPU? Cost CPU Cost CPU
Rla 24 3 204.85 0.37 193.63 0.63 190.79 1.90
R2a 48 5 321.65 1.35 314.46 2.25 303.60 8.06
R3a 72 7 561.06 2.75 556.28 4.46 541.25 17.18
R4a 96 9 642.09 4.76 614.51 8.45 596.94 28.77
R5a 120 11 692.56 6.81 664.62 10.99 663.10 46.24
Ré6a 144 13 870.85 9.35 841.03 17.36 823.52 53.87
R7a 36 4 306.26 0.79 295.07 1.26 294.77 4.39
R8a 72 6 531.63 3.34 515.75 5.62 495.71 20.44
R9a 108 8 717.59 7.41 699.56 12.66 683.15 50.51
R10a 144 10 934.18 12.63 919.15 24.38 884.10 87.53
R1b 24 3 172.34 0.38 167.14 0.63 164.98 1.93
R2b 48 5 318.64 1.54 312.93 2.52 302.91 8.29
R3b 72 7 525.35 3.14 510.09 4.99 501.17 18.54
R4b 96 9 580.01 5.15 560.24 7.81 557.93 31.18
R5b 120 11 615.99 8.36 601.58 12.70 591.60 54.33
R6b 144 13 813.15 10.51 787.70 16.65 775.24 73.70
R7b 36 4 258.10 0.85 256.36 1.33 250.88 4.23
R8b 72 6 514.45 3.53 482.73 5.78 472.69 22.86
R9b 108 8 657.28 7.48 633.43 12.43 607.85 51.28
R10b 144 10 866.97 12.68 826.09 21.36 831.10 92.41
Avg. 555.25 5.16 537.62 8.71 526.66 33.88

#CPU times are in minutes on a Pentium 4, 2 GHz computer.

Table 1 provides the number of requests n and the number of vehicles m in each of the 20
randomly generated instances. For instances R1a—R6a and R1b-R6b, the number of vehicles was
set so as to yield moderately full routes whereas instances R7a-R10a and R7b—R10b are more
tightly constrained and are probably infeasible with fewer vehicles. All test instances are available
from the Internet at http: //www. crt. umontreal. ca/~cordeau/data.

Following sensitivity analyses performed previously with a similar solution methodology
(Cordeau et al., 2001) we first set 6 := 0.5, A = 0.015 and 0 := 7.5log,, n. Although these values
seemed to provide a proper diversification effect during the search, we noticed that periods of
intensification sometimes allowed the identification of even better solutions. As a result, we chose
to update the values of these three parameters in a random fashion during the search. Every 10
iterations, the values of 9, 4 and 6 are chosen randomly according to uniform distributions in the
intervals [0, 0.5], [0, 0.015] and [0, 7.51og,, n], respectively. This mechanism produces alternate
periods of diversification and intensification during the search. The value of x, which controls the
frequency of intra-route reoptimizations, was also set to 10 iterations.

We performed initial experiments to assess the benefits of applying the procedure described in
Section 4.7 in comparison with more simple procedures for evaluating candidate solutions in the
neighbourhood N(s). More specifically, we compared three approaches:

http://www.crt.umontreal.ca/~cordeau/data

590 J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594

P1: perform steps (1) and (2) only but set Dy = max{e, e; — t;}, where v; is the first vertex visited
by the vehicle;

P2: perform steps (1)-(6) so as to minimize route duration;

P3: apply the full procedure so as to minimize both route duration and ride times.

The results obtained for one execution with # = 10* iterations are reported in Table 1. CPU
times are in minutes on a Pentium 4, 2 GHz computer. As expected, these results show that
procedures P1 and P2 are faster but produce solutions of lower quality than the application of the
full procedure. In particular, procedure P1 is approximately 6 times faster than P3 but yields
solutions whose average cost is 5.4% higher. Procedure P2 is only slightly slower than P1 but
generates much better solutions. These solutions have an average cost approximately 2% higher
than the average for P3. These results show that when using the simpler procedures, the tabu
search heuristic often treats as infeasible some solutions that can be made feasible by adjusting the
departure time from the depot and the beginning of service at the origin vertices of the requests.

Using procedure P3 for neighbourhood evaluation, we then executed the algorithm once on every
instance with n = 10° iterations. The cost of the best solution found after 103, 10* and 10° iterations
is reported in Table 2. In another set of experiments, we executed the algorithm 10 times for 10*
iterations on each instance with different randomly generated initial solutions. The cost of the best
solutions identified during these experiments is reported in column 10 x 10*. Next to the solution
costs, we also indicate in parentheses the percentage deviation from the cost of the best solution
identified during all experiments. For each instance, the latter value is indicated in the last column.

Table 2
Best solutions identified
n m 10° 10* 10° 10 x 10* Best
Rla 24 3 191.05 (0.54) 190.79 (0.41) 190.02 (0.00) 190.02 (0.00) 190.02
R2a 48 5 304.04 (0.65) 303.87 (0.59) 302.08 (0.00) 302.44 (0.12) 302.08
R3a 72 7 550.48 (3.46) 535.60 (0.66) 532.08 (0.00) 534.95 (0.54) 532.08
R4a 96 9 597.32 (4.28) 587.95 (2.65) 576.87 (0.71) 572.78 (0.00) 572.78
R5a 120 11 691.55 (8.57) 652.73 (2.47) 636.97 (0.00) 644.15 (1.13) 636.97
Ro6a 144 13 870.66 (8.64) 828.45 (3.38) 801.40 (0.00) 803.20 (0.22) 801.40
R7a 36 4 292.80 (0.37) 292.80 (0.37) 291.86 (0.05) 291.71 (0.00) 291.71
R8a 72 6 506.62 (2.37) 497.62 (0.55) 495.74 (0.17) 494.89 (0.00) 494.89
R9a 108 8 732.12 (8.88) 689.89 (2.60) 672.44 (0.00) 678.09 (0.84) 672.44
R10a 144 10 933.22 (6.20) 894.73 (1.82) 878.76 (0.00) 880.25 (0.17) 878.76
R1b 24 3 165.31 (0.52) 164.72 (0.16) 164.46 (0.00) 164.58 (0.07) 164.46
R2b 48 5 304.73 (2.93) 301.28 (1.76) 296.06 (0.00) 299.55 (1.18) 296.06
R3b 72 7 510.86 (3.56) 498.20 (0.99) 494.58 (0.26) 493.30 (0.00) 493.30
R4b 96 9 563.24 (5.10) 548.89 (2.42) 540.48 (0.85) 535.90 (0.00) 535.90
R5b 120 11 615.36 (4.34) 592.65 (0.49) 589.74 (0.00) 591.60 (0.32) 589.74
R6b 144 13 810.65 (9.02) 766.55 (3.09) 743.60 (0.00) 754.71 (1.49) 743.60
R7b 36 4 253.04 (1.95) 248.46 (0.10) 248.21 (0.00) 248.47 (0.10) 248.21
R8b 72 6 495.31 (7.05) 471.31 (1.86) 467.79 (1.10) 462.69 (0.00) 462.69
R9b 108 8 657.96 (9.30) 611.43 (1.57) 601.96 (0.00) 607.85 (0.98) 601.96
R10b 144 10 909.58 (13.89) 820.18 (2.70) 798.63 (0.00) 820.16 (2.70) 798.63

Avg. 547.80 (5.08) 52491 (1.53) 516.19 (0.16) 518.56 (0.49) 515.38

J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594 591

Since optimal solutions to these problems are unknown, evaluating the performance of the
heuristic is difficult. However, when using the best known solution as a benchmark, it seems that
solutions of very good quality are obtained by performing 10* iterations. On the 20 test problems,
the average deviation from the best known solution was slightly more than 1.5%. For this number
of iterations, one can see from Table 1 that the CPU time varies between 2 and 90 min ap-
proximately. The latter figure is reasonable for a problem that needs to be solved daily. Since the
time needed to compute an initial solution is negligible, total CPU time is directly proportional to
the number of iterations performed. The results reported in Table 2 also show that for the same
computing time, performing 10° iterations from a single initial solution yields better solutions, on
average, than performing 10* iterations on each of 10 different initial solutions. The average
deviation from the best known solution is 0.16% in the former case compared with 0.49% in the
latter case.

We finally tested our solution methodology on a set of six real-life instances from a door-to-
door transport service in Denmark. Two basic instances were considered (D1 and D2). Instance
D1 contains 200 requests and D2 (a superset of D1) contains 295 requests. For each instance,
three scenarios (a, b and c¢) corresponding to different time window widths were considered. All
time windows are centered around a desired visit time specified by the user. Time window width is
30 min in scenario a, 60 min in scenario b and 90 min in scenario c. As before, outbound requests
have a time window on the arrival time whereas inbound requests have a time window on the
departure time.

In these instances, distances and travel times do not correspond to the Euclidean distance
between the points but were instead computed by a geographical information system. Service
times d; are 3 min for every vertex and the maximal duration of a route is set to 12 h. The capacity
of each vehicle is 8. Most users use only one unit of capacity but a few must be transported alone,
i.e., they use the whole vehicle capacity. This was handled by setting ¢; = 8 and ¢;,,, = —8 for each
such request i. There are 30 such requests in instance D1 and 40 in instance D2. The maximum
ride time is 60 min for regular requests and 120 min for requests with ¢g; = 8.

Table 3 presents the size of each instance and the results obtained by executing the algorithm
once with 10* iterations. Again, CPU times are in minutes of a Pentium 4, 2 GHz computer. As in
previous experiments, we observe that the full procedure produces better solutions than P1 and

Table 3
Comparisons of routing cost on real-life instances
Size Procedure P1 Procedure P2 Procedure P3
n m Cost CPU* Cost CPU Cost CPU
Dla 200 15 4084.95 13.21 4014.87 21.57 3935.06 104.48
DI1b 200 15 3610.05 17.43 3650.10 22.21 3499.91 115.53
Dlc 200 15 3436.40 14.95 3361.72 23.81 3301.47 105.02
D2a 295 20 7566.20 24.09 7074.79 44.52 6999.85 192.12
D2b 295 20 6104.40 27.83 5902.58 46.87 5938.35 211.73
D2c 295 20 5967.30 28.40 5735.99 49.69 5564.40 267.82
Avg. 5128.22 20.99 4956.68 34.78 4873.17 166.12

#CPU times are in minutes on a Pentium 4, 2 GHz computer.

592 J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594

Table 4
Comparisons of duration, waiting time and ride time on real-life instances
Procedure P1 Procedure P2 Procedure P3
Tiot Wiot Lot Tiot Wiot Lot Tiot Wiot Lot
Dla 8087.38 3243.25 5401.00 7658.05 2882.85 4695.63 7598.03 2903.65 4499.00
DIlb 8210.72 3781.98 5061.80 7342.43 2893.25 4844.50 7153.88 2833.68 4703.48
Dlc 8179.12 391470 5434.98 6947.02 2753.98 4830.38 6907.22 2747.92 4375.98
D2a 13486.65 5102.85 7743.25 13487.57 5520.82 7950.55 13553.28 5630.40 7799.48
D2b 12956.87 5803.42 8163.35 12904.07 5922.35 8117.77 12982.58 5985.63 8021.43
D2c 13151.68 6149.80 8598.78 12646.42 5831.12 7654.42 12773.67 610585 7722.42
Avg. 10678.74 4666.00 6733.86 10164.26 4300.73 6348.88 10161.44 4367.86 6186.97

P2. CPU times are, however, rather large, especially for instances D2a—D2c. One can also notice
that the width of the time windows has an important impact on solution cost.

Finally, Table 4 reports additional statistics related to solution quality for the results obtained
on instances D1a—-D2c. In this table, columns 7i,;, W and L, refer to the total duration of all
routes, total waiting time at all vertices and total ride time of all users, respectively. The latter
results show that by purposely delaying the departure from the depot, one can often decrease the
total waiting time and duration of the routes while also decreasing the routing cost. However, the
greatest benefit to the users comes from the reduction in ride times. An added benefit obtained by
applying procedure P3 is that waiting time tends to be concentrated at origins, before users get on
the vehicle, and rarely occurs at destinations where users have to wait aboard the vehicle. Similar
results were obtained on instances R1a—R10b.

It is worth mentioning that procedure P1 sometimes produces solutions that exhibit smaller
total durations or total ride times than those produced by procedure P3. While this may seem
surprising at first sight, one must remember that the primary objective of the heuristic is to
minimize routing cost. Minimizing route duration and ride times thus helps finding feasible so-
lutions with small cost but is not part of the objective function per se. On instance D2a, for
example, the total waiting time was smaller with procedure P1 but the cost of the solution was
almost 10% higher, as can be seen from Table 3.

6. Conclusion

We have described a tabu search heuristic for the static multi-vehicle DARP and we have
proposed a procedure for neighbourhood evaluation that adjusts the visit time of the vertices on
the routes so as to minimize route duration and ride times. The procedure not only facilitates the
identification of feasible solutions but also helps improve the overall quality of the solutions
produced. The solution methodology is flexible and can easily be adapted to handle multiple
depots or multiple vehicle types, by following the general framework used by Cordeau et al. (2001)
for various vehicle routing problems with time windows. In addition, because route duration,
waiting times and ride times are computed explicitly when evaluating the neighbourhood of a
solution, the approach can easily be adapted to deal with more sophisticated objective functions
incorporating these performance measures.

J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594 593

Acknowledgements

This work was partly supported by a Strategic research grant provided by HEC Montréal, by
the Quebec Government FCAR research program under grant 2002-GR-73080, and by the Ca-
nadian Natural Sciences and Engineering Research Council under grants 227837-00 and
OGP0039682. This support is gratefully acknowledged. Thanks are also due to two anonymous
referees for their valuable comments.

References

Bodin, L.D., Sexton, T., 1986. The multi-vehicle subscriber dial-a-ride problem. TIMS Studies in Management Science
26, 73-86.

Borndorfer, R., Grotschel, M., Klostermeier F., Kiittner, C., 1997. Telebus Berlin: Vehicle scheduling in a dial-a-ride
system. Technical Report SC 97-23, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin.

Cordeau, J.-F., Gendreau, M., Laporte, G., 1997. A tabu search heuristic for periodic and multi-depot vehicle routing
problems. Networks 30, 105-119.

Cordeau, J.-F., Laporte, G., 2002. The dial-a-ride problem: Variants, modeling issues and algorithms. Quarterly
Journal of the Belgian, French and Italian Operations Research Societies, forthcoming.

Cordeau, J.-F., Laporte, G., Mercier, A., 2001. A unified tabu search heuristic for vehicle routing problems with time
windows. Journal of the Operational Research Society 52, 928-936.

Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M.M., Soumis, F., 2002. VRP with pickup and delivery. In:
Toth, P., Vigo, D. (Eds.), The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and
Applications, Philadelphia.

Desrosiers, J., Dumas, Y., Soumis, F., 1986. A dynamic programming solution of the large-scale single-vehicle
dial-a-ride problem with time windows. American Journal of Mathematical and Management Sciences 6, 301—
325.

Desrosiers, J., Dumas, Y., Soumis, F., Taillefer, S., Villeneuve, D., 1991. An algorithm for mini-clustering in
handicapped transport. Cahier du GERAD G-91-22, Ecole des Hautes Etudes Commerciales, Montreal.

Dumas, Y., Desrosiers, J., Soumis, F., 1989. Large scale multi-vehicle dial-a-ride problems. Cahier du GERAD G-89-
30, Ecole des Hautes Etudes Commerciales, Montreal.

Dumas, Y., Desrosiers, J., Soumis, F., 1991. The pickup and delivery problem with time windows. European Journal of
Operational Research 54, 7-22.

Fu, L., 2002. Scheduling dial-a-ride paratransit under time-varying, stochastic congestion. Transportation Research B
36, 485-506.

Gendreau, M., Hertz, A., Laporte, G., 1994. A tabu search heuristic for the vehicle routing problem. Management
Science 40, 1276-1290.

Glover, F., 1986. Future paths for integer programming and links to artificial intelligence. Computers and Operations
Research 13, 533-549.

Glover, F., Laguna, M., 1997. Tabu Search. Kluwer, Boston.

Ioachim, I., Desrosiers, J., Dumas, Y., Solomon, M.M., 1995. A request clustering algorithm for door-to-door
handicapped transportation. Transportation Science 29, 63-78.

Jaw, J., Odoni, A.R., Psaraftis, H.N., Wilson, N.H.M., 1986. A heuristic algorithm for the multi-vehicle advance-
request dial-a-ride problem with time windows. Transportation Research B 20, 243-257.

Madsen, O.B.G., Ravn, H.F., Rygaard, J.M., 1995. A heuristic algorithm for the a dial-a-ride problem with time
windows, multiple capacities, and multiple objectives. Annals of Operations Research 60, 193-208.

Nanry, W.P., Barnes, J.W., 2000. Solving the pickup and delivery problem with time windows using reactive tabu
search. Transportation Research B 34, 107-121.

Psaraftis, H.N., 1980. A dynamic programming approach to the single-vehicle, many-to-many immediate request dial-
a-ride problem. Transportation Science 14, 130-154.

594 J.-F. Cordeau, G. Laporte | Transportation Research Part B 37 (2003) 579-594

Psaraftis, H.N., 1983. An exact algorithm for the single-vehicle many-to-many dial-a-ride problem with time windows.
Transportation Science 17, 351-357.

Savelsbergh, M.W.P., 1992. The vehicle routing problem with time windows: Minimizing route duration. ORSA
Journal on Computing 4, 146-154.

Sexton, T., Bodin, L.D., 1985a. Optimizing single vehicle many-to-many operations with desired delivery times: 1.
Scheduling. Transportation Science 19, 378-410.

Sexton, T., Bodin, L.D., 1985b. Optimizing single vehicle many-to-many operations with desired delivery times: II.
Routing. Transportation Science 19, 411-435.

Taillard, E.D., 1993. Parallel iterative search methods for vehicle routing problems. Networks 23, 661-673.

Toth, P., Vigo, D., 1996. Fast local search algorithms for the handicapped persons transportation problem. In: Osman,
I.H., Kelly, J.P. (Eds.), Meta-Heuristics: Theory and Applications. Kluwer, Boston, pp. 677-690.

Toth, P., Vigo, D., 1997. Heuristic algorithms for the handicapped persons transportation problem. Transportation
Science 31, 60-71.

Toth, P., Vigo, D., 2002. The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications,
Philadelphia.

Wilson, N.H.M., Colvin, N., 1976. Computer control of the Rochester dial-a-ride system. Technical Report R77-31,
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA.

Wilson, N.H.M., Sussman, J., Wong, H., Higonnet, B., 1971. Scheduling Algorithms for dial-a-ride systems. Technical
Report USL TR-70-13, Urban Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA.
Wilson, N.H.M., Weissberg, H., 1976. Advanced dial-a-ride algorithms research project: Final report. Technical Report

R76-20, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA.

	A tabu search heuristic for the static multi-vehicle dial-a-ride problem
	Introduction
	Literature review
	Formulation
	Solution methodology
	Relaxation mechanism
	Neighbourhood structure
	Diversification strategy
	Construction of an initial solution
	Tabu search iterations
	Route optimization
	Neighbourhood evaluation
	Neighbourhood reduction

	Computational experiments
	Conclusion
	Acknowledgements
	References

