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Abstract. Recent technological advances in communication systems now allow
the exploitation of real-time information for dynamic vehicle routing and schedul-
ing. It is possible, in particular, to consider diverting a vehicle away from its
current destination in response to a new customer request. In this paper, a strat-
egy for assigning customer requests that includes diversion is proposed and various
issues related to it are presented. An empirical evaluation of the proposed approach
is performed within a previously reported tabu search heuristic. Simulations com-
pare the tabu search heuristic, with and without the new strategy, on a dynamic
problem motivated from a courier service application. The results demonstrate the
potential savings that can be obtained through the application of the proposed ap-
proach. In particular, a reduction in the objective value that ranges from 0.8 %

to 4.3 % is observed.



1 Introduction

In the past few years, there has been a rapid growth in communication and infor-
mation technologies (e.g., global positioning satellites, cellular phones, geographic
information systems, geosynchronous satellite-based systems, etc.). These recent
advances afford opportunities for using real-time information to enhance the per-
formance of decision systems in the area of vehicle routing. According to the
fraction of requests that are known in advance, vehicle routing problems may be
classified as static or dynamic. In the static case, all data are known before the
routes are constructed and do not change afterwards (e.g., location of transporta-
tion requests, demand, etc...). However, in the dynamic case, all or a fraction
of all requests are revealed as the routes are executed. Hence, dispatchers are
forced to react to events that occur in real time, such as new service requests,
unexpected delays, accidents, etc... Numerous examples of dynamic vehicle rout-
ing and dispatching problems may be found in practice, like ambulance or police
services, courier services, dial-a-ride problems (e.g., transportation-on-demand for
the handicapped) and many others.

Due to the new information technologies mentioned above, real-time informa-
tion is now available at lower costs. This explains the new interest that dynamic
vehicle routing problems have gained recently. However, there is still a lack of
methodologies that can efficiently solve dynamic vehicle routing problems through
a judicious integration of real-time information.

In dynamic vehicle routing problems, one potential use of real-time information
is to divert a vehicle away from its current destination to serve a request that
just occurred in the vicinity of its current position. In this work, we propose
an approach for the dynamic assignment of new requests that includes diversion
and we examine different ways of implementing it. An empirical evaluation is
performed within the tabu search heuristic reported in Gendreau et al. (96b).

The problem considered is motivated from a courier service application found in
the local operations of long-distance shipping services, where the mail is collected

at different customers’ locations and brought back to a central office for further



processing and shipping. This problem belongs to the class of pick up (or delivery)
only problems where a set of requests must be transported to (or from) a central
depot. The goal is to design a set of minimum cost routes, originating and ending at
the central depot, that satisfy the transportation requests. In a dynamic context,
each new request is inserted in real time in the current set of planned routes, where
a planned route is the sequence of requests that have been assigned to a vehicle
but have not been serviced yet.

The paper is organized as follows. Section 2 presents a brief literature review
dedicated to dynamic vehicle routing problems. Then, section 3 describes the
problem considered in this study. Section 4 briefly introduces the original tabu
search heuristic reported in (Gendreau et al. (96b)) that we subsequently modified
to explore the benefits of a new dynamic assignment strategy. Section 5 presents
and discusses several issues related to it. Section 6 explains how the original
tabu search heuristic was modified to include it. Section 7 reports computational
results based on different ways of implementing the proposed strategy within the

tabu search heuristic. Finally, section 8 summarizes our findings.



2 Literature review

The earliest papers in the literature on dynamic vehicle routing and dispatching
were presented in the seventies. Wilson was one of the first researchers interested
in dynamic vehicle problems and his studies were mostly application-oriented. In
1977, Wilson et al. (77) developed a system for allocating passengers to buses in
a dial-a-ride environment. A new incoming passenger was inserted at least cost
among all feasible insertion places in the bus routes. Daganzo (78) and Stein (78)
developed mathematic models to evaluate the performance of dynamic transporta-
tion systems and to provide analytic and parametric studies (without the need for
a simulation, which was very expensive at this time).

By the end of the eighties, dynamic vehicle routing gained an increasing atten-
tion. Two major factors explain this tendency : new developments in information
technologies and the need for decision systems that could exploit this information
to better represent the real world. Interesting survey articles on dynamic vehicle
routing can be found in Psaraftis (88, 95), Powell (95) and Lund (96).

Because real-time vehicle routing problems are NP-hard and quick response times
are required, exact algorithms are not yet capable of handling problems of real-
istic sizes (Psaraftis (80, 83, 85), Dial (95)). This justifies the use of heuristics
in real-time environments. According to how they deal with the dynamic aspect
of the problem, the problem solving approaches reported in the literature can be

classified in three major categories. They are reported in the following subsections.
2.1 Adaptation of static algorithms

This approach is based on the notion of a rolling horizon. As time unfolds, static
problems are solved repeatedly over events found within an horizon of length L
that extends from the current time ¢ to ¢+ L. Different strategies emerge when the
length L of the horizon is modified. If L is very small, a myopic near-term strategy
is observed. In some cases this strategy can provide near-optimal solutions (Bell
et al.(83), Dial(95), Psaraftis(85), Powell(88)). On the other hand, if L is very
large, the problem considered is richer but, as it contains long-term events, the

solution obtained is typically weaker unless a fast and powerful solution procedure



is used (Trudeau et al.(89), Gendreau et al.(96a), Gendreau et al. (96b)). Note

also that longer-term events may be postponed, since they are likely to lead to

useless calculations and updates.

Adaptation of static procedures to dynamic vehicle routing problems can be di-

vided in two classes :

(a)

(b)

A sophisticated static problem-solving procedure, which typically involves a
re-optimization of the routes, is applied each time an input update occurs.
Some researchers have used this approach to solve pick up (or delivery) only
problems (Bell et al.(83), Hill et al.(88), Brown et al.(87)), while others have
used it for mixed pick up and delivery problems (Psaraftis(80, 83, 85), Powell
et al.(88), Dial(95)).

The drawback of this approach is the amount of computation time resulting
from repeatedly executing the static algorithm. This disadvantage is more
dramatic when new events occur frequently and when the execution of the

static algorithm requires more time.

Fast local operations (e.g., insertion) are used for reacting to any input revi-
sion. Trudeau et al.(89) used this kind of methodology to solve an emergency
service problem. Wilson(77), Rousseau and Roy(88), Solonki et al.(91), Mad-
sen et al.(95) applied this strategy to dial-a-ride problems found in trans-
portation on demand systems for the elderly or handicapped. This approach
is easy to implement and is appropriate for a dynamic environment where
time pressure is important (e.g. Lund et al.(96)). However, it is myopic
since solutions are produced through consecutive insertions (while a com-
plete reordering of the routes may lead to better solutions). To overcome
this weakness, some authors combine local operations with re-optimization
procedures. This is often achieved by executing a set of successive insertions
followed by a local search (e.g., exchange procedures like 2-opt, see Lin(65)).
For different applications reported in the literature, see Rivard(81), Roy et
al.(85), Gendreau et al.(96a) and Gendreau et al.(96b).

It is worth noting that many of the studies mentioned above are motivated



by commercial projects. This can justify the frequent use of simple strategies

like insertion procedures.

All studies mentioned above ignore the potential benefits of considering the stochas-
tic aspects of the problems and trying to forecast the future. Stochastic methods

are aimed at overcoming this weakness.
2.2 Stochastic methods

Real-time dispatching problems have a stochastic nature (e.g., accidents, conges-
tion, unexpected changes in meteorological conditions, unpredictable cancelations,
unforeseen delays, etc...). Stochastic methods can be viewed as a "natural” way
to judiciously address these issues. The goal is to react properly to an event to
insure a good quality of service to the customers disturbed by these events, while
minimizing their undesirable impact on the whole system. Two major classes of
stochastic approaches are reported in the literature : stochastic programming and

Markov decision processes.

(a) Markov decision processes:

Bertsimas and Van Ryzin(91, 93) proposed and analyzed a Markov decision
model for the dynamic traveling repairman problem, while Minkoff(93) used
such a formulation to solve a dynamic vehicle dispatching problem where
customers have stochastic demands. Powell(88) presented a study of the
dynamic vehicle allocation problems in a truck-load carrier context. In this
problem, special attention is given to dispatching and repositioning trucks in
anticipation of forecasted future demands. The author proposed a Markov
decision model. Unfortunately, Markov decision processes are confronted

with the following limitations :

— The state space grows quickly with problem size.

— Simplifying assumptions are made to make the model more tractable.

These limitations often prevent Markov decision models from being applied

to complex real-world problems.



(b) Stochastic programming:

The only work that we are aware of in this category is the one done by
Powell(88) in his comparative review of dynamic vehicle allocation problems.
The author proposed a hybrid model that combines insights from Markov
decision processes and classical network formulations.

At this point, stochastic programming does not seem to be "mature” enough

to provide a strong background for dynamic vehicle routing studies.
2.3 Other methods

A new generation of approaches arises that try to replicate the dispatcher’s decision
making process. This is achieved by automating the decision procedure based on

previous decisions taken by a skilled dispatcher.

(a) Neural networks:

Shen and Potvin(95) proposed an expert consulting system for a dispatcher
working in a courier service company. The assignment of any new incoming
request is provided by a learning module based on a neural network. The
shortcomings of this approach are three-fold : (i) many parameters must be
adjusted during the learning phase (e.g., connection weights); (ii) there is
a need for a data base of decisions previously taken by an expert; (iii) the

decisions can only be as good as those made by the expert.

(b) Genetic programming:

This work was done by Benyahia and Potvin(95), again in a courier service
context. They defined a program as an utility function which evaluates a
vehicle based on different characteristics, such as the additional tardiness
resulting from the insertion of a new request in a planned route. The major
weakness of genetic programming is the difficulty to interpret the generated

program.
2.4 Diversion strategies

Apart from the study of Regan et al.(94, 95), all approaches that we are aware

of fix the current destination of each vehicle. However, diverting a vehicle away



from its current destination may be quite beneficial. Technically, diversion is now
possible due to recent advances in information technologies. Regan et al. (94, 95)
have proposed different diversion strategies in the context of a truck-load carrier.

These studies will be discussed in detail in section 5.



3 Problem definition

The problem considered is a dynamic pick up (or delivery) problem motivated
from courier service applications. The static version of the problem can be stated
as follows. Given a fixed size fleet of m identical vehicles and a set of requests
to be served, the goal is to find a set of minimum cost routes that service these

requests. More precisely:
e The vehicle routes must originate from and terminate at a fixed depot

e Each vehicle services one route and the service point of each request is visited

exactly once by exactly one vehicle;
e No capacity constraint is considered (since small items are transported);

e Each service point, (including the depot) has its own time window [e, ],
where e is the earliest service time and [ is the latest service time. Each
route must start and end within the time window associated with the depot.
Moreover, the service points have ”soft” time windows. Thereby, a vehicle
can arrive before the lower bound or after the upper bound: if the vehicle
arrives too early, it must wait to start its service; if the vehicle is too late, a

penalty for lateness is incurred in the objective function.

The objective is to minimize a weighted sum of total distance and total lateness
over all customers. In the dynamic version of the problem, a number of service
requests are not known completely ahead of time, but are rather dynamically
revealed as time goes by. As illustrated in figure 1, in a dynamic setting, a vehicle

route can be divided into three parts at any instant ¢ :

e completed movements which form the part of the route already executed.

Thereby, this part can not be modified anymore;
e current movement to reach the current destination;

e planned movements which constitute the portion of the routes not yet exe-

cuted by the vehicle (planned route).
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. Completed movements.
__ = Current movement.

~ Planned movements.

Figure 1: A vehicle route in a dynamic setting.

Given a new request at instant ¢, the problem is to assign this request to a partic-
ular vehicle and include it in its planned route at minimum cost.
In the following section, we briefly describe the original tabu search heuristic de-

veloped to tackle this problem.
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4 A parallel tabu search algorithm

At any instant ¢, a solution to our dynamic problem is a set of planned routes,
each beginning with the current destination of the associated vehicle. This current
destination is fixed in the procedure to be described and can not be modified (i.e.,
the vehicle must reach its current destination).

The algorithm developed in Gendreau et al. (96b) is a parallel tabu search heuristic
with an adaptive memory. Tabu search is an iterative local search technique that
starts from some initial solution. At each iteration, a neighborhood is generated
around the current solution and the best solution in this neighborhood becomes
the new current solution (even if it does not provide an improvement). By allowing
a degradation of the objective, it is possible to escape from bad local optima, as
opposed to pure descent methods. The interested reader will find more details
about this approach in Glover and Laguna (97).

The algorithm developed in Gendreau et al.(96b) can be described as follows :

e Construct [ different initial solutions with a stochastic insertion heuristic

(where the choice of the next customer to be inserted is randomized).

e Apply tabu search to each solution and store the resulting routes in the

adaptive memory.
e While a stopping criterion is not met do :
— Use the routes stored in the adaptive memory to construct the initial

solution.

— Decompose the problem into subproblems obtained through a decom-

position procedure.
— Apply tabu search to each subproblem.

— Add the routes of the resulting solution in the adaptive memory.

In the following, the main points of this algorithm are briefly introduced.
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Adaptive memory

An adaptive memory which stores previously found elite solutions, is used to gen-
erate new starting points for the tabu search. This is achieved by combining routes
taken from different solutions in memory (Rochat and Taillard (95)). Any new
solution produced by the tabu search is included in the memory if it is not filled
yet. Otherwise, the new solution replaces the worst solution in memory, if it is
better.

Neighborhood structure of tabu search

The procedure for generating the neighborhood is called the CROSS exchange.
Basically, two segments of variable lengths are taken from two different routes and
are swapped.

Parallel timplementation

To cope with real-time environments, the algorithm was implemented on a network
of workstations. The parallelization of the procedure was achieved at two different

levels :

(1) Different tabu search threads run in parallel, each of them starting from a

different initial solution.

(2) Within each search thread, many tabu searches run independently on sub-

problems obtained through a decomposition procedure.

Given the available platform, a master-slave scheme was chosen to implement the
procedure. The master process manages the adaptive memory and creates initial
solutions for the slave processes that run the tabu search.

A dynamic environment

Given the dynamic context, it is important to maintain the consistency of the
adaptive memory with the current environment. Also, the memory itself must be
consistent, that is, the current destination of each vehicle (which is fixed) must
be the same for all solutions in memory. Thus, whenever a new event occurs,
the search threads are first interrupted. Then, after an appropriate update of the
adaptive memory, it is possible to restart the search threads with new solutions

constructed from this updated memory. A new event may be of two types:
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e A vehicle has finished serving its current customer. In this case, its next
destination (i.e., the next customer to be serviced) has to be determined. The
best solution in memory is used for this purpose. The remaining solutions
in the adaptive memory are updated by removing this customer from its
current location and by inserting it in first position in the planned route of

the vehicle.

e A new service request has just occurred. In this case, the new request is
inserted in all solutions in adaptive memory. If there is no feasible insertion
position in any solution, the request is rejected. Otherwise, the request is
accepted and all solutions with no feasible insertion places are discarded
from memory. The best solution is then re-optimized using a local search
heuristic based on CROSS exchange in order to have at least one solution of

high quality that includes the new request.

Section 5 will now consider the case where the next destination of each vehicle
is not fixed. To address this issue, a dynamic assignment strategy that includes
diversion as a special case is proposed. Its implementation within the tabu search

heuristic presented here is reported in section 6.
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5 A new strategy for handling customer requests

5.1 Motivation

Apart from the study of Regan et al.(94, 95), all approaches that we are aware
of fix the current destination of each vehicle. However, diverting a vehicle away
from its current destination may be quite beneficial. This could be considered,
for example, when a new request occurs in the vicinity of the current position of
some vehicle, while the driver is on his way to his current destination. Technically,
diversion is now possible due to recent advances in communication technologies.
In the following, we present an approach that includes diversion as a special case.
We also investigate the trade-off between computation time and solution quality,
given that this strategy takes place in a context where time pressure is important
(vehicles are moving fast and diversion opportunities may be quickly lost).

In 1994, Regan et al.(94) have proposed different diversion strategies in the context
of a truck-load carrier. This problem is a combined pick up and delivery problem
with no consolidation (i.e. at any time, a vehicle is either empty or carrying a
single load). In our application, on the other hand, a vehicle may be used to carry
many loads concurrently. Also, in the context of a truck-load carrier, requests
are more distant from each other and the activities take place over a longer time
horizon (e.g., a few days). Finally, diversion was evaluated in a context where
simple local dispatching rules were used, thus resulting in myopic approaches.

In Regan et al.(94), the authors identify, under simple assumptions (i.e., one
vehicle, two customers only), the probability for diversion to be beneficial in terms
of reducing the total distance traveled. A diversion decision is based on the dis-
tance between the current position of the vehicle and the new pick up point. Since
there is no consolidation, diversion is allowed only if a vehicle is moving empty.
Numerical results show that diversion provides a gain of 1 to 7 % when compared
with the basic strategy that serves the requests in their order of occurrence. Their
procedure is also extended to 100 requests evaluated sequentially on a pairwise
basis (i.e., after serving a customer, a new demand appears and the procedure is

restarted). As compared to the basic strategy previously mentioned, a gain of 1.5
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Figure 2: Diversion.

to 12.5 % is observed.

Later, in Regan et al.(95), the authors have presented another study on diversion.
Once again, only one vehicle is considered and a queue of at most 5 requests is as-
sociated with the vehicle. Diversion is compared with a strategy that re-sequences
the requests in the queue whenever the vehicle reaches its next destination. The
goal is to minimize the total travel time. An acceptance rule is also introduced to
decide whether to accept or to reject a new request. Namely, if the ratio of empty
to loaded distance in the solution with the new load is greater than or equal to a
given threshold value, the load is rejected. It is reported that diversion performs

better than the basic strategy without diversion.
5.2 A broader view

Diversion consists of allowing a vehicle to be diverted away from its current desti-
nation to serve a request that just occurred in the vicinity of its current position.
Figure 2 shows an example for one vehicle route. We suppose that a new request
unfolds at point A at instant ¢, while vehicle 1 is at position D' on his way to
service point B. The only modification that can result from en-route diversion
is the modification of the current destination of one vehicle. This occurs if the

vehicle services the new request before its planned current destination B. In this
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Figure 3: A dynamic assignment strategy that includes diversion.

paper, we propose a broader approach where a change that occurs in the system
may lead to redirecting one or more vehicles.

Figure 3 illustrates this new strategy in a schematic way. We first assume that
the current destination of each vehicle is part of the planned route (and may thus
change). Whenever a new request occurs, this request and the current routes are
provided as input to some optimization procedure. The latter then produces a new
set of routes with the new request. The optimization procedure, may be anything

that we can think of, such as:

e A simple insertion procedure. Diversion then happen if the new request is

inserted just before the current destination of some vehicle.
e An insertion followed by some re-optimization procedure (e.g., tabu search).
e An exact algorithm (assuming that it is fast enough).

Depending on the optimization procedure, it may well happen that the cur-

rent destination of each vehicle remains the same after its application (although
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Figure 4: Time projection

the planned routes have changed). Conversely, the current destination of one or
more vehicles may change, but not necessary for servicing the new request (which
appears further away on a planned route). Thus, diversion is simply a particular

outcome of the dynamic assignment strategy presented here.
5.3 Solution quality versus computation time trade-off

Let us assume that a new request appears at point A at instant ¢ and that it is
possible to estimate the position D' of the vehicle (between the point D just served
and the current destination B), see Fig. 4.

Since new opportunities for including the new request are now offered through
the inclusion of the current destination in the planned route, the solution obtained
should be better. However, some amount of time 6t is required to apply the
optimization procedure. Hence, a decision based on the situation at instant ¢
when a new request appears, does not correspond to the state of the system at
(t+0t) when the decision becomes available (i.e. the vehicle will be at position D’
rather than D'). Consequently, the situation should be assessed at instant (¢ + dt)
rather than instant £. The goal is to provide a decision that will fit in the context
found at the end of the time allocated to the optimization procedure.

Clearly, this amount of time is a very important factor. In dynamic settings,
finding a value that achieves a good trade-off between execution time and solution
quality is very challenging. If 6t is too small, not enough time is available for

the optimization procedure. Therefore, the situation may be incorrectly assessed,
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resulting in a bad decision. On the other hand, if §t is too large, opportunities for
diversion may be lost.

In order to assess the benefits that can be gained from the application of
our dynamic assignment strategy, the parallel tabu search heuristic developed by
Gendreau et al. (96b) was used as the optimization procedure. The next section

shows how the original algorithm was modified to implement it.
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6 Implementation

6.1 Inclusion of the current destination

In the original implementation of the tabu search heuristic (Gendreau et al. (96b))
reported in Section 4, the current destination of each vehicle is a fixed node which
is not part of the planned route to be optimized. We thus included the current des-
tination of each vehicle in the planned route and use instead the current position
of the vehicle as the fixed node. With this modification, the re-optimization pro-
cedure based on CROSS exchanges can now move the current destination around

(as any other service point on the planned route).
6.2 Time projection

When a new request is received at time ¢, all solutions in the adaptive memory
are updated according to the state of the system at time (¢ + §t), where dt is the
amount of time allocated to the optimization procedure. The planned routes of
the best solution in adaptive memory are used for this purpose. A dummy point
F} ' ¢ 1s created for every vehicle route ¢ of every solution in the adaptive memory.
This dummy point F}, 5, represents the position of vehicle ¢ at time (¢ + §t) and is
the fixed node associated with route s.

Updating the solutions in the adaptive memory is illustrated in figure 5. In this
figure, a fleet of two vehicles is considered: a new request occurs at instant ¢ and 0t
is the amount of time allocated to the optimization procedure. In the best solution
S* at instant ¢+ 0t, vehicle 1 will have finished service at customer 1 and customer
3, while vehicle 2 will not have yet reached customer 2. Hence, before applying the
optimization procedure, customer 1 and customer 3 are removed from S* and the
dummy points are inserted at the beginning of the two routes. To update solution
S, customer 1 and customer 3 are first removed from it (since they are serviced).
Then the dummy fixed points are added at the beginning of the two routes. It is
worth noting that the customers that have not been serviced yet are found in the
same order on the planned routes before and after the update. Only the service

times are likely to change.
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Figure 5: Update of solutions in the adaptive memory

6.3 Handling newents

Suppose that a new event occurs at instant ¢t. The new events that
the time intetytal[6t] will not interrupt the search threads. Inste

events are handled as follows :

(a) When a vehicle has finished serving a customer, its next dest
termined by the best solution found in the adaptive memory. T
time intertvatll  §¢t], everything is "frozen” and we simply follow

solution in memory.

(b) When a new request occurs, we must decide whether to accep:
since the customer may be waiting for a prompt answer about t
handle his request (arequest isrejected if the end time of the j
exceeds the upper bound of the time window at the depot after i
Basically, the new request isinserted in all solutionsinacopy o

memory. Solutions with no feasible insertion places are discarc¢
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one feasible solution remains, the new request is accepted and is kept in a

list of pending requests. Otherwise, it is rejected.

At instant (¢ + 6t), all search threads are then interrupted. The adaptive

memory is updated using the best solution found by the optimization procedure

and the pending requests are handled one by one, as in the original algorithm

(Gendreau et al.(96b)). Finally, the search threads are restarted with new solutions

constructed from the adaptive memory.

6.4

Setting 4t

The amount of time allocated to the optimization procedure must be related to

the rate at which new events occur. When few events occur, a large evaluation

time can be allowed. Conversely, in case of a highly dynamic environment, the

evaluation must be done quickly. Based on these observations, three rules are

considered.

Rule 1:

Rule 2:

0t is chosen in such a way that the optimization procedure ends before any
vehicle begins its service at its current destination. Let us assume that a ser-
vice request is received at time ¢, and that service at the current destination
on route 7 begins at time ¢;. Then, choose dt such that : t+ §t < t;, Vi, that
is, 0t < min,(t;) — t.

By choosing 6t less than or equal to min;(t;)—t, we only need to add a dummy
fixed node at the beginning of each planned route, which corresponds to the
position of the vehicle at time ¢+ d¢. However, 0t is often very small as there
is typically one or more vehicles that are close to their current destination.

Consequently, this rule was not retained in our computational experiments.

The amount of time 4t is fixed a priori and is related to the average inter-
request time interval. This interval is proportional to a moving average of the
[ last inter-request intervals, that is 6t = ayT~, where «; is a constant and
T~ is the moving average. By relating 0t to the average request inter-arrival

times, our choice is based on the intensity of occurrence of new requests.
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Rule 3: In rule 2, the computation of 6t may take into account a service request that
is not so urgent (i.e., its time window is much later than the current time).
This is true, in particular, in contexts where the calls are received much
before the requested service times. Therefore, another rule is proposed. Let
X be the length of some time horizon and lx the number of requests on the
planned routes found within that horizon. Then the average time per request
is defined as X/lx and the interval 6t is such that 6t = s X/lx, where as is

a constant.

Rule 2 and rule 3 represent two different strategies. In rule 2, intensity is measured
using past events, since the moving average is calculated over the [ last request
inter-arrival times. In rule 3, intensity is assessed using events to come, since the
average time per request is evaluated over requests found on the planned routes.
Results obtained with these two strategies for setting 0t are reported in the next

section.
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7 Computational results

7.1 Simulation framework

Simulations were performed to assess the benefits of the proposed approach. Data
were taken from Solomon’s 100-customer Euclidean problems (Solomon(87)), as
in Gendreau et al. (96b). In the following, we describe the essential components
of the simulator. The interested reader will find more details about this simulator

in Gendreau et al.(96b).
e The customer locations are generated within a ([0, 100])? square.
e The travel times are proportional to the corresponding Euclidean distances.

e Six different sets of problems are defined, namely C;, Cy, Ry, Ry, RCy, and
RC5. The customers are uniformly distributed in the problems of type R,
clustered in groups in the problems of type C' and mixed in the problems of
type RC. In the problems of type 1, only a few customers can be serviced
on each route due to a narrow time window at the depot, as opposed to

problems of type 2 where each route may have many customers.

e The set of requests is divided into two subsets. The first subset contains
requests that are assumed to be known at the start of the day. They are
randomly selected among the entire set of requests with a bias in favor of
requests with early time windows. The second subset contains requests that
are received in real-time. In this case, the arrival time of each request is
adjusted to create two different types of scenarios : scenario 1 with half
of the requests known in advance and scenario 2 with only 25 % of the
requests known in advance. In the latter case, a higher degree of dynamism
is obtained, as there are more requests that occur in real-time within the

same time horizon.

e Using minutes as time units for time-related data in Solomon’s files, the time

horizon is set to 15 minutes. The intent is to have a realistic rate of new
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unfolding requests (about 3 requests per minute for scenario 1 and 5 requests

per minute for scenario 2).

7.2 Numerical results

The experiments reported in this section were performed on a network of 9 SUN
UltraSparc-ITi workstations (300 MHz). Each process was programmed in C++
and communication between the processes was handled by the Parallel Virtual
Machine Software. In these experiments, the objective function to minimize is
the sum of the total distance traveled and the total tardiness over all customer
locations. The fleet size was set to the number of routes in the best solution
reported in the literature for each problem (Gendreau et al. (96b)). The value
of the parameters found in the original algorithm were kept as in Gendreau et al.
(96b). Parameters related to our new dynamic assignment strategy are tested in

the following.

7.2.1 Preliminary tests

Scenario 1 (with half of the requests known in advance) was first considered for
the preliminary experiments. The new algorithm was tested under rule 2 (see
section 5) where the interval §t is computed as a multiple of a moving average T~
of inter-arrival times. That is, 0t = ayT , where «; is a multiplier. The moving
average is taken over [ loads, with [ = $; K, K is the number of requests that are
known in advance and (3; is a multiplier. Parameters a; and (; are determined
empirically.

Preliminary experiments were performed over 2 problems selected in each of
the six categories Cy, Cs, Ry, Re, RCy, and RC5. In these experiments, the values
0.10, 0.25, 0.50, 0.75 and 0.90 were tested for a; while the values 0.10 and 0.25
were tested for ;. The results obtained did not clearly show an improvement
over the original algorithm. Thus, more investigations were required, leading to
an important refinement in our algorithm.

As mentioned in section 6, a copy of the adaptive memory is used to decide

whether a new request should be accepted or rejected. This can lead to incon-
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sistencies with the true memory. In particular, two important problems were

identified:

e A new best solution that is received from a tabu search thread is not inserted
in the copy (only in the adaptive memory itself). Consequently, requests that
could have been inserted in the solutions found in the adaptive memory at

time t + 0t may have been wrongfully rejected.

e A new solution may be received from a tabu search thread, while the adap-
tive memory is full. In this case, the worst solution in adaptive memory is
replaced by the new one. At this point, there is an inconsistency with the

copy that still includes this worst solution.

To improve the implementation, both the adaptive memory and its copy are
updated whenever a new solution is received from a tabu search thread. Table 1
shows the kind of improvement that can be obtained with the refined implemen-
tation, using a; = 0.9 and B; = 0.25. The four numbers in each entry are the
average number of unserved customers, distance traveled, total lateness and objec-
tive value (sum of total distance traveled and total lateness), respectively, for each
problem set. The row ”Overall” contains averages taken over the entire set of 56
test problems. Note that when the number of unserved customers is maintained,
the objective value is improved. On the other hand, when the number of unserved
customers is reduced, this is achieved with only a slight increase in the objective

value.

7.2.2 Parameter values

To determine the best values for parameters a; and ; under rule 2, tests were
performed over a small sample of problems selected in each of the six categories
C1,Cs, Ry, Ry, RCy, and RC5. Several values had to be tested for every problem
in the sample. Thereby, a significant amount of computation time is required if
the size of the sample is too large. On the other hand, this size has to be large

enough to get a correct calibration. For these experiments, the size of the sample
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was set to 4. As scenario 1 and scenario 2 represent different degrees of dynamism
(requests occur more frequently in scenario 2), the experiments were conducted
separately for the two scenarios. Table 2 and table 3 report results obtained with
different combinations of values using scenario 1 and scenario 2, respectively. As
in Table 1, the four numbers in each entry are the average number of unserved
customers, distance traveled, total lateness and objective value, respectively, for
each problem set. Based on the results obtained, the values o; = 0.50, 5; = 0.15
for scenario 1 and a; = 0.50, B; = 0.10 for scenario 2 were finally selected.

Under rule 3, the interval ¢ is computed as a function of the length of some
rolling time horizon, that is, 6t = a2 X/lx, where as is a constant, [x is the number
of requests on the planned routes found within the horizon X; X = [;L, where
L is the length of the time horizon for the simulation and (5 is a multiplier. The
tests were conducted as for rule 2. Table 4 and table 5 report results obtained with
different combinations of values using scenario 1 and scenario 2, respectively. The
values ay = 0.50, B2 = 0.25 for scenario 1 and as = 0.25, B = 0.25 for scenario 2
were finally selected.

Note that under rule 2, §t is about 5 seconds for scenario 1, and 2.8 seconds for
scenario 2. Under rule 3, 6t is about 4 seconds for scenario 1 and 2 seconds for

scenario 2.

7.2.3 Assessing the new implementation

Tables 6 and 7 compare the new algorithm (with the best parameter values found
under rule 2 and rule 3) with the original algorithm reported in Gendreau et
al.(96b), for scenario 1 and scenario 2, respectively. Here, the tests were con-
ducted over all problems in each category. The results highlight the fact that the
new implementation performs well against the original algorithm for the two sce-
narios. More precisely:

Rule 2: For scenario 1, both the number of unserved customers and objective
value were improved with regard to the original algorithm (apart from subset Ry).
The reduction ranged from 33.3% to 100% for the number of unserved customers

and from 0.6% to 3.0% for the objective value. In the case of subset R,, the in-
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crease in the objective value was marginal when compared to the reduction in the
number of unserved customers : 0.3% against 60%. Note that the lowest reduction
observed in the objective value with the new strategy is still larger than the only
increase observed (0.7% against 0.3%).

For scenario 2, the results demonstrate that applying our approach under rule
2 reduces both the number of unserved customers and the objective value in all
categories. The reduction ranges from 11.2% to 67% for the number of unserved
customers, and from 1.0% to 2.7% for the objective value.

Rule 3: For scenario 1 and for categories C; and RC5, where the original algo-
rithm succeeds in serving all customers, the new algorithm under rule 3 improves
the objective value. This reduction ranges from 1.3% to 4.3%. In the case of
R, and (5, both the number of unserved customers and objective value were im-
proved. The reduction ranged from 66.8% to 100% for the number of unserved
customers, and from 2.6% to 2.7% for the objective value. For RC; and R,, the
number of unserved customers was improved under rule 3 at the cost of a small
increase in the objective value (i.e., 67% against 0.04% for RC; and 80% against
0.6% for Ry). Using rule 3 instead of rule 2 results in a small reduction of the ob-
jective value ranging from 0.5% to 2.0% when the number of unserved customers
is the same. Rule 3 succeeds in reducing the number of unserved customers, as
obtained by rule 2 for RC and Rj, at the cost of a small increase in the objective
value (i.e. 50% against 1.8%, and 51% against 0.2%).

For scenario 2, the comparison with the original algorithm indicates a reduction of
both the number of unserved customers and the objective value over all categories.
This reduction ranges from 16.8% to 100% for the number of unserved customers,
and from 2.0% to 4.3% for the objective value. The results also indicate that, apart
from RC and R,, rule 3 leads to the same number of unserved customers than
rule 2, but it reduces the objective value by 0.9% to 2.2%. For R, and RC;, when
compared with rule 2, rule 3 succeeds in reducing both the number of unserved
customers (i.e. 12% and 100% respectively), and the objective value (i.e. 0.6%
and 1.1% respectively).



Problem set

a; = 0.90, 5, = 0.25 new

a1 = 0.90, 3, = 0.25 old

Cy 0¢ 0
9 835.781 ° 838.784
problems 2.025 ¢ 1.403
837.807 ¢ 840.187
Ry 0.583 0.75
12 1183.00 1182.49
problems 51.125 52.55
1234.12 1235.04
RCY 0.375 0.25
8 1317.37 1316.12
problems 47.058 47.852
1364.43 1363.97
Cs 0 0.25
8 608.321 602.624
problems 0 0
608.321 602.624
R, 0.181 0.181
11 1058.76 1073.06
problems 57.20 66.64
1115.97 1139.70
RCy 0 0
8 1188.09 1244.00
problems 45.166 53.276
1233.26 1297.27
Overall 0.21 0.27
56 1040.62 1050.80
problems 35.69 39.02
1076.31 1089.82

2Nb. of unserved customers.

bTotal distance traveled.

¢Total lateness.

40bjective value.
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Table 1: Comparison of the refined implementation (new) with the old one using

scenario 1



Problem set || a; =0.90 || &y =0.90 | a; =1.20 || &y = 0.50 || @y = 0.50
B =015 | =025 || /=025 | 5, =0.10 || B, =0.15
Cy 0¢ 0 0 0 0
4 829.89 ° 832.35 828.535 852.31 828.94
problems 0c¢ 0 0 0.65 0
829.89 ¢ 832.35 828.535 852.96 828.94
Ry 0.25 0 0.25 0.25 0
4 1253.02 1284.25 1262.32 1266.03 1281.79
problems 63.435 38.307 43.90 47.12 45.385
1316.46 1322.56 1306.22 1313.15 1327.18
RCY 0.5 0.75 0.5 0.75 0.25
4 1334.86 1324.50 1310.76 1318.16 1330.19
problems 74.472 62.985 55.962 67.762 83.022
1409.33 1387.49 1366.72 1385.92 1413.22
Cs 0 0 0 0 0
4 642.978 625.628 612.602 616.238 627.51
problems 0 0 0 0 0
642.978 625.628 612.602 616.238 627.51
R, 0.5 0.25 0 0.75 0
4 1096.48 1106.52 1106.13 1126.82 1107.19
problems 24.182 30.155 19.337 53.782 14.645
1120.66 1136.67 1125.47 1180.60 1121.84
RCy 0 0 0 0 0
4 1226.10 1184.14 1188.22 1198.09 1180.53
problems 24.045 38.74 10.745 45.41 17.482
1250.14 1222.88 1198.96 1243.50 1198.01

®Nb. of unserved customers.

bTotal distance traveled.

¢Total lateness.

4Qbjective value.

Table 2: Searching for the best parameter values under rule 2 for scenario 1
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Problem set || a; = 0.50 || ¢y =0.50 || a; =1.20 || 3 = 0.90 || ;7 = 0.25
B =010 | =015 || =015 | B, =0.25 || B, =0.25
Cy 0¢ 0 0 0 0
4 882.42 0 871.055 908.478 925.06 881.658
problems 0.105 € 0 19.79 15.027 2.127
882.525 ¢ | 871.055 928.268 940.088 883.785
Ry 0.25 0 0.25 0 0.50
4 1296.70 1284.24 1303.97 1303.56 1296.28
problems 76.00 63.982 73.315 67.71 53.067
1372.70 1348.22 1377.28 1371.28 1349.35
RCY 0.25 0.75 0.5 1.00 1.00
4 1366.52 1349.24 1405.42 1402.88 1354.10
problems 54.99 80.737 77.917 61.32 64.82
1421.50 1429.98 1483.34 1464.20 1418.92
Cs 0 0.25 0 0 0
4 607.572 619.515 613.62 621.495 612.33
problems 0 0 0.002 0 0
607.572 619.515 613.622 621.495 612.33
Ry 0 0.75 0 0.25 0
4 1113.66 1093.96 1119.40 1140.72 1106.98
problems 17.63 93.605 23.73 14.032 22.36
1131.29 1187.56 1143.13 1154.76 1129.34
RCy 0 0 0 0 0
4 1207.95 1235.45 1213.50 1144.22 1218.88
problems 37.50 19.827 35.867 60.822 37.622
1245.45 1255.28 1249.37 1205.04 1256.50

®Nb. of unserved customers.

bTotal distance traveled.

¢Total lateness.

4Qbjective value.

Table 3: Searching for the best parameter values under rule 2 for scenario 2
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Problem set || ay = 0.50 || oy = 0.90 || ag = 1.20 | ap = 0.50 || ay = 0.25
Bo=0.15 | Bo=0.15 || Bo=0.15 || Bo=0.25 || B = 0.25
Cy 0¢ 0 0 0 0
4 829.26 ° 834.125 857.005 829.112 839.488
problems 0c¢ 0 0.375 0 0
829.26 ¢ 834.125 857.38 829.112 839.488
Ry 0.25 0.25 0.25 0.25 0.25
4 1272.71 1274.41 1267.60 1275.08 1265.19
problems 51.997 52.532 43.627 39.537 45.217
1324.71 1326.94 1311.23 1314.62 1310.41
RCY 0.75 0.75 1 0.75 0.75
4 1339.43 1344.64 1321.06 1325.66 1352.71
problems 62.587 74.707 71.185 60.04 64.92
1402.02 1419.34 1392.25 1385.70 1417.63
Cs 0 0 0.5 0 0
4 615.518 614.925 616.928 616.878 624.21
problems 0 0 0 0 0
615.518 614.925 616.928 616.878 624.21
Ry 0 0 0.5 0 0
4 1110.10 1095.61 1113.52 1091.81 1105.60
problems 60.165 61.09 46.065 56.442 64.455
1170.27 1156.70 1159.58 1148.25 1170.06
RCy 0 0 0 0 0
4 1186.05 1198.42 1172.54 1177.27 1198.94
problems 23.472 29.502 23.862 25.457 32.652
1209.52 1227.92 1196.40 1202.73 1231.60

®Nb. of unserved customers.

bTotal distance traveled.

¢Total lateness.

4Qbjective value.

Table 4: Searching for the best parameter values under rule 3 for scenario 1
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Problem set || ay = 0.25 || oy = 0.50 || ag = 0.90 || ap = 1.20 || oy = 0.50
Bo=10.25| Bo=0.25| Bo=0.15 || Bo=0.15 || B =0.15
Cy 0¢ 0 0 0 0
4 880.675° | 889.275 880.555 955.958 882.895
problems 1.977 ¢ 0 0.90 1.695 0
882.652 ¢ | 889.275 881.455 957.652 882.895
R, 0 0.25 0.25 0.25 0.25
4 1282.77 1302.15 1293.42 1282.50 1285.20
problems 46.415 51.71 60.865 58.432 56.23
1329.18 1353.86 1354.29 1340.93 1341.42
RCY 0 1.00 1.00 1.00 0.25
4 1366.24 1358.48 1380.77 1363.36 1334.95
problems 71.422 89.21 60.082 71.322 68.03
1437.66 1447.69 1440.86 1434.68 1402.98
Cs 0 0.25 0 0 0
4 601.972 650.912 612.018 630.335 603.122
problems 0 0 0 0 0
601.972 650.912 612.018 630.335 603.122
Ry 0 0.50 0 0.50 0.50
4 1089.10 1090.41 1083.09 1104.65 1101.28
problems 14.995 36.237 22.917 14.192 40.322
1104.09 1126.65 1106.00 1118.84 1141.60
RCy 0 0 0 0 0
4 1221.02 1207.80 1191.57 1207.86 1218.99
problems 35.692 28.942 40.562 46.522 27.662
1256.72 1236.75 1232.13 1254.38 1246.66

®Nb. of unserved customers.

bTotal distance traveled.

¢Total lateness.

4Qbjective value.

Table 5: Searching for the best parameter values under rule 3 for scenario 2
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Original algorithm New algorithm
rule2 ruled
Problem set a; = 0.50 || g = 0.50
Ch 0° 0 0
9 835.098 ° 830.024 829.628
problems 5.535 ¢ 3.341 0
840.633 ¢ 833.366 829.628
Ry 0.5 0.166 0.166
12 1219.42 1194.75 1178.54
problems 43.267 48.625 51.460
1262.69 1243.38 1230.00
RC, 0.375 0.25 0.125
8 1349.65 1304.58 1333.41
problems 44.22 64.955 60.965
1393.87 1369.53 1394.38
Cs 0.125 0 0
8 612.798 609.232 597.011
problems 0.326 0 0
613.124 609.232 597.011
R, 0.454 0.181 0.09
11 1028.34 1035.09 1020.55
problems 31.96 29.053 46.334
1060.30 1064.15 1066.88
RCs 0 0 0
8 1203.75 1175.87 1160.83
problems 30.811 22.108 20.672
1234.56 1197.98 1181.50
Overall 0.27 0.10 0.07
56 1049.83 1034.11 1027.95
problems 27.20 29.10 31.79
1077.03 1063.22 1059.74

°Nb. of unserved customers.

bTotal distance traveled.

¢Total lateness.

20bjective value.

Table 6: Comparison with the original algorithm for scenario 1
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Original algorithm New algorithm
rule2 ruled
Problem set || Without diversion | a; = 0.50 || ag = 0.25
B =010 | B2 =0.25
Ch 0° 0 0
9 877.332° 843.924 833.061
problems 10.455 ¢ 11.227 8.027
878.378 ¢ 855.152 841.089
Ry 0.4 0.333 0.333
12 1226.21 1203.99 1197.30
problems 55.431 67.167 49.121
1281.64 1271.16 1246.42
RCY 0.375 0.125 0
8 1400.50 1358.78 1346.98
problems 56.391 73.28 69.002
1456.89 1432.06 1415.98
Cs 0 0 0
8 610.775 600.796 595.635
problems 0 0 0
610.775 600.796 595.635
R, 0.818 0.727 0.636
11 1043.96 1043.43 1027.82
problems 216.696 193.885 207.639
1260.65 1237.32 1235.46
RCs 0 0 0
8 1222.22 1189.48 1184.77
problems 27.441 41.023 19.568
1249.66 1230.51 1204.34
Overall 0.30 0.23 0.19
56 1070.75 1048.45 1039.11
problems 68.10 70.61 65.25
1138.85 1119.06 1104.36

°Nb. of unserved customers.

bTotal distance traveled.

¢Total lateness.

20bjective value.

Table 7: Comparison with the original algorithm for scenario 2
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8 Conclusion

In this paper, a new strategy for the dynamic assignment of new requests that
includes diversion as a special case was proposed. Tests were conducted to assess
its benefits within a previously reported tabu search heuristic. Some issues related
to the proposed model were addressed and explored. Results show that a reduction
in the sum of total distance traveled and total lateness, as well as in the number of
unserved customers is observed when compared with the original heuristic, where
the current destination of each vehicle is fixed.

Future work will be aimed at considering additional sources of uncertainty like
congestion, accidents, vehicle breakdowns, and others. A taxonomy of such events

will be developed to help us in the task of determining appropriate responses.
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