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Abstract. Most of the models for vehicle routing reported in the literature as-

sume constant travel times. Clearly, ignoring the fact that the travel time between

two locations does not depend only on the distance traveled, but on many other

factors including the time of the day, impact the application of these models to

real-world problems. In this paper, we present a model based on time-dependent

travel speeds which satis�es the \�rst-in-�rst-out" property. An experimental eval-

uation of the proposed model is performed in a static and a dynamic setting, using

a parallel tabu search heuristic. It is shown that the time-dependent model pro-

vides substantial improvements over a model based on �xed travel times.
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1 Introduction

The routing and scheduling of a eet of vehicles to service customers plays an

important role in the distribution chain. This research domain has thus been

widely studied in the literature (see for example, the survey in Ball et al. (95)).

However, there is still a lack of modeling approaches that more closely represent

real-life conditions. One practical aspect that has seldom been addressed is the

time dependency of travel times on the time of the day. Many available models

assume that the travel times are constant throughout the day or exploit simple

procedures to adjust them, like multiplier factors associated with di�erent periods

of the day. Unfortunately, these assumptions are weak approximations of the real-

world conditions where travel times are subject to more subtle variations over

time. These variations may result from predictable events (e.g., congestion during

peak hours) or from unpredictable events like accidents, vehicle breakdowns, and

others. Therefore, the optimal solution to a formulation of the problem that

assumes constant travel times may be suboptimal or even infeasible for the time-

dependent problem (e.g., if time windows are considered).

Time-dependent vehicle routing problems have seldom been addressed because

they are harder to model and to solve. These problems can be stated as follows.

Let assume that a �xed size eet of m identical vehicles of �xed capacity is avail-

able to service customers (nodes) with �xed demand and that the time horizon is

partitioned into p time intervals T1; T2; :::Tp. Given a network of n nodes, a nxn

time-dependent matrix C(Tk)k=1;2;:::p = [cij(Tk)] contains the travel times between

each pair of nodes (i; j) when the vehicle departs from node i within time interval

Tk. The goal is to �nd a set of minimum cost vehicle routes that service every

customer, such that :

� Each vehicle route originates from and terminates at a �xed depot;

� Each vehicle services one route and the service point of each request is visited

once by exactly one vehicle;

� The capacity of each vehicle is not exceeded and the demand of each customer

is satis�ed;
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Furthermore, each service point i (including the depot) may have its own time

window [ei; li], where ei is the earliest service time and li is the latest service time.

When the service points have "soft" time windows, a vehicle can arrive before the

lower bound or after the upper bound. If the vehicle is too early, it must wait to

start its service; if the vehicle is too late, a penalty for lateness is incurred in the

objective function.

The problem considered here is motivated from a courier service application

found in the local operations of long-distance shipping services, where parcels and

envelopes are collected at di�erent customers' locations and brought back to a

central oÆce for further processing and shipping. In this case, the service points

have "soft" time windows, but each route must start and end within the time

window associated with the depot. Also, no capacity constraint is enforced since

only small items are transported. The cost to be minimized is a weighted sum of

the total travel time over all routes, plus the total lateness over all customers. A

time-dependent model for predictable variations in travel times is proposed and

analyzed in this context. It is implemented in a static environment where the

customer requests are known in advance (i.e., before the routes are constructed),

and in a dynamic environment where new customer requests are unveiled as the

routes are executed.

The paper is organized as follows. Section 2 presents a brief literature review

dedicated to time-dependent vehicle routing and two other problems closely related

to it, the time-dependent shortest path and the path choice problems. Section

3 presents our time-dependent model and discusses several issues related to it.

Section 4 briey introduces a tabu search heuristic developed by Taillard et al.

(97) for a version of the problem with �xed travel times and explains how it was

modi�ed to account for time-dependency. Section 5 reports experimental results

obtained with the new algorithm in a static context. Section 6 addresses the

dynamic version of the problem. Finally, section 7 concludes and proposes future

avenues of research.
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2 Literature review

The only papers that we are aware of in the literature of time-dependent vehicle

routing are the ones of Malandraki (89), Malandraki and Daskin (92), Hill and

Benton (92) and Malandraki and Dial (96). Malandraki and Daskin (89, 92)

examine both the time-dependent vehicle routing problem (TDVRP), and the

time-dependent traveling salesman problem (TDTSP) which is a special case of

the TDVRP when the eet size is equal to one. They provide mixed integer

linear programming formulations which include time windows, capacities and allow

for waiting at a customer location. The travel times are computed using step

functions. Nearest-neighbor (greedy) heuristics for the TDTSP and the TDVRP

without time windows are proposed, as well as a branch-and-cut algorithm for

solving small problems with 10 to 25 nodes. In Malandraki and Dial (96), a

dynamic programming algorithm is proposed to solve the TDTSP. Although it

is argued that many di�erent types of travel time functions can be handled by

this algorithm, results are only reported for step functions like those found in

Malandraki (89) and Malandraki and Daskin (92).

Hill and Benton (92) consider a time-dependent vehicle routing problem (with-

out time windows) and propose a model based on time-dependent travel speeds.

Computational results are reported on a small example with a single vehicle and

�ve locations. The authors also mention the implementation of a simple greedy

heuristic for the multi-vehicle traveling salesman problem with capacity constraints

and no time windows for a city with 210 locations. A validation of the model

within a commercial courier scheduling package is also mentioned, but no details

are provided.

The major weakness of the above models is that they do not satisfy the "�rst in

�rst out" (FIFO) property. The FIFO property guarantees that if a vehicle leaves

a node i for a node j at a given time, any identical vehicle leaving node i for node

j at a later time will arrive later at node j (which is common sense). This will be

discussed in section 3.

Time-dependency has seldom been addressed in the literature on vehicle rout-
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ing. However, it has been widely studied in three related problems: the time-

dependent traveling salesman problem, the shortest path problem and the path

choice problem. They are briey described below.

Time-dependent shortest path problem

The earliest models which account for time-dependency were developed by the end

of the �fties for solving shortest path problems (Ford and Fulkerson (58), Cooke

and Halsey (66), Dreyfus (69)). Since then, these problems have been the most

widely studied. The goal is to �nd minimum cost paths from origin nodes to desti-

nation nodes, through a network where travel times and costs are time-dependent.

Time-dependent path choice problem

The path choice problem is part of traÆc equilibrium models. Here, many trav-

elers "compete" on a transportation network to get to their destination. These

travelers are typically distributed among several paths, besides the shortest ones,

based on route choice models which simulate user behavior. The earliest work that

we are aware about time-dependent path choice problems is the one by Marguier

and Ceder (84) for common bus stops with overlapping routes.

Time-dependent traveling salesman problem (TDTSP)

The earliest papers in the literature related to time-dependent vehicle routing prob-

lems appeared in the sixties and were dedicated to the time-dependent traveling

salesman problem (Miller et al. (60) and Hadley (64)). The TDTSP constructs a

Hamiltonian tour of minimum travel cost over n cities, where the travel cost from

city i to city j depends on the time of the day.

According to the properties of the travel time and cost functions, the work

related to time-dependent problems can be classi�ed in four main categories. They

are briey presented in the following subsections.

2.1 Models based on "simple" travel time and cost functions

Many researchers have used simple rules to integrate time-dependency components

in their models. In their decision support system for dispatching and processing

customer orders for gasoline, Brown et al. (87) �rst produce a solution where

travel time uctuations are ignored. Then, the loads for each truck are resequenced
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"manually" to take into account various factors such as traÆc congestion during

rush hours, road and weather conditions, etc. Other researchers use multiplier

factors to represent variations in travel times (Fisher et al. (82), Hill et al. (88),

Rousseau and Roy (88), Shen and Potvin (95)). Clearly, this is just a rough

approximation of actual conditions.

2.2 Models based on discrete travel time and cost functions

In this kind of formulation, the horizon of interest is "discretized" into small time

intervals. The travel time and cost functions for each link are assumed to be step

functions of the starting time at the origin node. This scheme is widely used

in many time-dependent transportation problems. However, the assumption that

travel times vary in discrete jumps is just an approximation of real-world conditions

since travel times change continuously over time.

Many researchers used this kind of model to solve time-dependent shortest path

problems (Cooke and Halsey (66), Dreyfus (69), Ziliaskopoulos and Mahmassani

(93), Ziliaskopoulos (94) and Chabini (96, 97)). This framework was also used

to formulate time-dependent traveling salesman problems (Picard and Queyranne

(78), Fox et al. (80), Malandraki (89) and Malandraki and Daskin (92)). Finally,

Natchigall (93) used discrete transit functions to model a time-dependent path

choice problem in a railway context.

The major drawback of using models that are based on discrete travel time

and cost functions is that the FIFO property does not hold (see section 3).

2.3 Models based on continuous travel time and cost functions

In real-life, travel times vary continuously over time. The work reported in this

section is thus aimed at modeling the reality more accurately. In their formulations

of time-dependent shortest path problems, Halpen (77) and De Palma et al. (90)

calculate the travel times using nonnegative and piecewise linear functions while

Orda and Rom (90) assume that the travel times are arbitrary. In their models

dedicated to time-dependent path choice problems, Hall (86), Hickman and Wilson

(95), and Hickman and Bernstein (97) assume that the travel times are stochastic
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and time-dependent. Finally, Marguier and Ceder (84) study the same problem

for common bus stops with overlapping routes. Time-dependent distributions are

used to represent passengers' waiting times.

Continuous travel time functions seem to be more appropriate to model real-

world conditions. Unfortunately, models based on such functions are confronted

with the following limitations: (i) simplifying assumptions are often made to ob-

tain a more tractable model (e.g., di�erentiability, piecewise linearity, etc...); (ii)

they are still an approximation of what is observed in the real world; (iii) in the

case of the path choice problem, using continuous time-dependent distributions to

represent travel time or waiting time functions results in complicated integrations

that are diÆcult to solve analytically. Furthermore, this kind of formulation often

suggests that passengers make their boarding decision using a fairly complicated

logic (Hickman and Bernstein (97)).

2.4 Models based on Markovian formulations of travel time

and cost functions

The only work that we are aware of in this category is the one of Psaraftis and

Tsitsiklis (93). The authors investigate the shortest path problem in a stochastic

and time-dependent setting. The cost of each arc (i; j) is a known function fij(e
i)

of the state ei of some environment variable at node i at the time of departure from

node i to node j. Environment variables are mutually independent and governed

by a �nite state Markov process where state transitions occur in discrete time.

The goal is to seek a policy that minimizes the expected total cost on a path

between two speci�c nodes. A dynamic programming algorithm is proposed to

solve the problem. However, given that its complexity depends on the number of

Markov states at each node, the state space grows quickly with problem size, thus

preventing the model from being applied to realistic problem instances.

In section 3, we propose and analyze a model that focuses on travel speed

variations from one time period to the next.



7

3 A time-dependent travel speed model

3.1 Motivation

As mentioned previously, the literature related to time-dependent vehicle routing

problems is very scarce. In fact, the only papers that we are aware of in this

category are those of Malandraki (89), Malandraki and Daskin (92) and Hill and

Benton (92). They were briey discussed in section 2. The major shortcoming of

Malandraki's model, which represents the travel time as a step function of time,

is that the FIFO assumption does not hold. To illustrate this, consider �gure 1

which represents a travel time function on a link (i; j) of length 1.

Time line
1 2 3

1

2

T
ravel tim

e

3

Figure 1: Travel time function on a link.

If the vehicle leaves node i at instant t1 = 1, it will reach node j at instant t
0

1 = 4;

but it will arrive at instant t
0

2 = 3 (< t
0

1) if it leaves node i at instant t2 = 2

(> t1). To overcome this weakness, Malandraki and Daskin (89, 92) suggested

to allow vehicles to wait at a node to smooth the travel time function. However,

this suggestion concerns decreasing step functions only and induces useless waiting

at nodes. In real-life applications (e.g., distribution of industrial products) it is

hard to convince a dispatcher that it is advantageous to force a driver to wait at



8
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Figure 2: Travel speed function at a node.

a customer location even if he is ready to depart.

We recall that Hill and Benton (92) developed the only model that we are

aware of based on time-dependent travel speeds. In this formulation, the travel

time on a given link (i; j), starting during time period T , is

dij=rijT , with rijT = (riT + rjT )=2; (1)

where dij is the distance between locations i and j, and riT is the average speed

associated with the "area" around location i during time period T . Thus, rijT

is an average travel speed for a trip from i to j starting during time period T .

But, since the speed along a given link (i; j) is an average speed based on a single

period, the FIFO assumption is not necessarily satis�ed either. To illustrate this,

consider the arrival time at node j from node i when all nodes have the same speed

value riT for a given time period T . Figure 2 illustrates the travel speed function

for a node.

Assuming a link (i; j) of length 1, we have the following. If the vehicle leaves

node i at instant t1 = 1, it will arrive at node j at instant t
0

1 = 1+1 = 2. However,

if it departs from node i at instant t2 = 1:25 (> t1), it will reach node j at instant

t
0

2 = 1:25 + 0:5 = 1:75 (< t
0

1).
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In fact, associating a time-dependent travel speed or a time-dependent travel

time with a link is equivalent since it is always possible to deduce the travel speed

from the travel time, and conversely, for a given travel distance. To better model

time-dependency, one has to take into account the adjustment of the travel speed

when the vehicle crosses the boundary between two consecutive time periods. In

the following, we propose a model that addresses this issue.

3.2 The model

In vehicle routing problems and more generally in the transportation �eld, an

important area that remains very challenging is the conception of eÆcient models

to achieve a good trade-o� between the implementation requirements and the

ability to reect the complexity of real-world conditions such as uctuations in

travel times. A "natural" and simple way to take time-dependency into account

is to work with time-dependent travel speeds and to adjust the speed when the

vehicle crosses a boundary between two time periods.

Let assume that the horizon is divided into p time periods T1; T2; :::; Tp. Given

a network of n nodes, a symmetric distance matrix D = (dij) and travel speed ma-

trices VT = (vijT ), T 2 fT1; T2; :::; Tpg are de�ned. In contrast with the formulation

proposed by Hill and Benton (92) where travel speeds are indexed by time periods

and nodes, here, the travel speeds are indexed by time periods and arcs. This re-

duces the computational e�ort at the cost of more storage (in Hill and Benton (92),

we recall that the travel speed on a link (i; j) is calculated as rijT = (riT + rjT )=2).

To limit the number of speed values vijT to estimate, the set of arcs A is parti-

tioned into subsets (Ac)1�c�C. That is, the travel speed during period T on an

arc (i; j) that belongs to a subset (or category) Ac is vijT = vcT , where vcT is

the travel speed associated with category Ac and time period T . Consequently,

the number of parameters in the model is considerably reduced, especially if C

is small. Partitioning the set of arcs into subsets is a reasonable assumption for

urban transportation networks since links (routes) can usually be classi�ed into

categories based on their physical characteristics (e.g., width, one/two ways, etc...),

and their geographical location.
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3.2.1 Changing travel speeds

The main point in our model is that we do not assume a constant speed over the

entire length of a link. Rather, the speed changes when the boundary between two

consecutive time periods is crossed.

D
is

ta
nc

e

i

j

t t0 f

V

Time

T T T1 2 3

1T3

i1

i2

V1T1

1T2V

Figure 3: Changing travel speed over time.

This is illustrated in �gure 3 where a route for one vehicle is considered. The

horizon is "discretized" into three time periods (Tj)1�j�3, with a di�erent speed

associated with each period. The vehicle leaves service point i at time t0 2 T1 and

travels at speed v1T1 until it reaches point i1 at the boundary between periods T1

and T2. From there, the vehicle travels at a faster speed v1T2 until it reaches point

i2 at the boundary between T2 and T3. Finally, it travels at speed v1T3 for the

remainder of its trip to reach point j.

3.2.2 Travel time calculation

Figure 4 describes the procedure for calculating the travel time between any pair

of nodes i and j.
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1. set t to t0,
set d to dij,

set t
0

to t+ (d=vcTk).

2. while (t
0

> �tk) do
2.1 d d� vcTk(�tk � t).

2.2 t �tk
2.3 t

0

 t+ (d=vcTk+1).

2.4 k  k + 1.

3. return (t
0

� t0).

Figure 4: Travel time calculation procedure.

We suppose that the vehicle leaves node i at t0 2 Tk =]t
�k
; �tk] and that link (i; j)

belongs to category c, 1 � c � C. It is assumed that dij is the distance between i

and j, and vcTk is the travel speed associated with category c and time period Tk.

Also, t denotes the current time and t
0

denotes the arrival time.

3.2.3 Characteristics of the travel time function

In our model, the travel speed vcT is a step function of the time of the day. There-

fore, the travel time is a piecewise continuous function over time that is simple

and easy to evaluate beside being a "natural" way to estimate travel times in real-

world conditions. Figure 5 gives an example of the travel speed function and its

associated travel time function for a link of length 1.

We are aware that travel speeds also change continuously over time, however

using step functions to compute travel speeds is a more reasonable assumption

than for travel times. That is, when the boundary between two consecutive time

periods is crossed, the speed will typically change much faster than the travel time

on a link.

Due to the travel speed changes, the travel time function proposed in this model

satis�es the FIFO property. That is, leaving a node earlier guarantees that one

will arrive earlier at destination. Consider the previous example given in �gure 5.
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Figure 5: An example of travel speed and travel time functions.

A vehicle that is ready to leave the link before t1 = 1 has no incentive to wait even

if its speed will increase afterward. Actually, during this waiting time, the vehicle

could have used the available speed to get closer to its destination until the time

of speed change. At this point, the faster speed could be used to terminate the

trip. Hence, the FIFO property precludes our model from inducing useless waiting

times.

This approach has been implemented within a parallel tabu search developed

by Taillard et al. (97) for the �xed travel time version of the problem. The next

section will briey introduce the original algorithm and then, explain how it was

modi�ed to cope with time-dependent travel times.

4 A parallel tabu search algorithm

4.1 The original algorithm

The algorithm developed in Taillard et al. (97) is a parallel tabu search heuristic

with an adaptive memory. Tabu search is an iterative local search technique that
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starts from some initial solution. At each iteration, a neighborhood is generated

around the current solution and the best solution in this neighborhood becomes

the new current solution (even if it does not provide an improvement). By allowing

a degradation of the objective, it is possible to escape from bad local optima, as

opposed to pure descent methods. The interested reader will �nd more details

about this approach in Glover and Laguna (97).

The algorithm developed in Taillard et al. (97) can be summarized as follows :

� Construct I di�erent initial solutions with a stochastic insertion heuristic

(where the choice of the next customer to be inserted is randomized).

� Apply tabu search to each solution and store the resulting routes in an adap-

tive memory.

� While a stopping criterion is not met do :

{ Use the routes stored in the adaptive memory to construct an initial

solution.

{ Decompose the problem into subproblems obtained through a geograph-

ical, distance-based, decomposition procedure (which partitions the ser-

vice area into sectors by sweeping a ray, with the central depot as the

pivot, over the routes).

{ Apply tabu search to each subproblem.

{ Add the routes of the resulting solution in the adaptive memory.

The objective is to minimize a weighted sum of total distance traveled and

total lateness over all customers. The procedure for generating the neighborhood

of the current solution is the CROSS exchange. Basically, two segments of variable

lengths are taken from two di�erent routes and swapped. Figure 6 illustrates this

procedure.

To speed up the algorithm, a parallel implementation on a network of work-

stations was developed (Taillard et al. (97)). The parallelization of the procedure

was achieved at two levels :
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Figure 6: A CROSS exchange.

(1) Di�erent tabu search threads run in parallel, each of them starting from a

di�erent initial solution.

(2) Within each search thread, many tabu searches run independently on the

subproblems obtained through the decomposition procedure.

4.2 Implementing the time-dependent model

Implementing the time-dependent model mostly impacts the evaluation of a new

solution after a CROSS exchange. In the following, we explain how the original

algorithm was modi�ed to cope with time-dependency.

4.2.1 Objective function

To evaluate a given solution, the total distance traveled is replaced by the total

travel time in the objective function.

4.2.2 Neighborhood evaluation

The evaluation of a move, as implemented in the original algorithm cannot be

directly applied to our problem. In the following, the original evaluation process is

briey described, then its adaptation to the time-dependent problem is discussed

in detail.
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The original procedure

As mentioned before, the original algorithm uses CROSS exchanges to generate

the neighborhood. The evaluation of such moves is based on the di�erence between

the value of the neighboring solution and the value of the current solution. Namely,

Æf1 = Æd+��Æl, where Æd and Æl are the modi�cation to the total distance and the

modi�cation to the total lateness of the solution, respectively, and � is a constant

parameter. The evaluation of Æd is done in constant time by simply subtracting

the total length of the edges that are removed from the solution and by adding the

total length of the edges that are introduced into the solution. The modi�cation to

the total lateness is the sum of the modi�cations to the total lateness incurred by

both routes involved in the CROSS exchange. Unlike Æd, this modi�cation cannot

be evaluated exactly in constant time because any additional lateness at a given

customer location must be propagated along the route. To reduce the complexity

of the calculation, an approximate evaluation procedure is used to evaluate each

neighboring solution. Then, the M best solutions according to this approximation

are evaluated exactly and the best solution is selected.

To illustrate the approximate evaluation procedure, the contribution Æl of the

new route servicing customers X1; X
0

2; Y2 and Y
0

1 in �gure 6 is considered. The

�rst part of this contribution is evaluated exactly in constant time by propagating

the lateness at customer X
0

2 along the route segment X
0

2 � Y2 (which is limited to

at most 7 customers, see Taillard et al. (97)). The second part of Æl is assessed

using an approximation function associated with customer Y
0

1 . To construct the

approximation function of a given customer i, the start of service bi is arti�cially

delayed by a number of Æbi values, and the impact of each Æbi on the total lateness

of the route Æli is evaluated exactly. A piecewise linear function is then produced

by interpolation between these points. The interested reader will �nd further de-

tails in Taillard et al. (97).

Adaptation to the time-dependent model

In the proposed time-dependent model, the di�erence between the value of the

neighboring solution and the current solution is Æf2 = Ætr + �:Æl, where Ætr is the

modi�cation to the total travel time and Æl is the modi�cation to total lateness.
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(a) Lateness

Due to the time-dependency component, the exact evaluation of lateness is more

computationally expensive than in the original problem. Thereby, using an approx-

imate evaluation procedure is even more important in this case. In the following,

the adaptation of the original approximation procedure is illustrated for the new

route servicing customers X1; X
0

2; Y2 and Y
0

1 in �gure 6.

(i) The contribution of the route segment X
0

2�Y2 to the total lateness is assessed

exactly as in the original algorithm. However, the time-dependent travel time cal-

culation described in subsection 3.2 is used. This provides the value Æb
Y
0

1

at Y
0

1 .

(ii) The contribution of the remainder of the route is evaluated approximately

as in the original procedure. That is, an approximate function is associated with

each customer i, based on an exact evaluation of Æli for a few values of Æbi, using

the time-dependent travel time function. Now, suppose that we search for the

value of ÆlY 0

1

induced by ÆbY 0

1

= z with zj � z � zj+1, where zj and zj+1 are two

consecutive values for which Æl
Y
0

1

is known exactly (i.e., these values have been

used to construct the linear interpolation). In �gure 7, we assume that Æl(z), Ælj

and Ælj+1 are associated with z, zj and zj+1 respectively.

��
��
��
��

Figure 7: Approximate evaluation of lateness.

The interpolation is such that Ælj � Æl(z) � Ælj+1, which makes sense since the

travel time function satis�es the FIFO rule (that is, the exact variation of lateness

Æl(z)� should also satisfy Ælj � Æl(z)� � Ælj+1).
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(b) Travel time

As opposed to the variation in total distance used in the original algorithm, as-

sessing the modi�cation to the total travel time cannot be achieved easily. To

illustrate this, consider the two routes in �gure 6. Subtracting the total length of

the removed edges and adding the total length of the new edges, was suÆcient to

evaluate the total distance variation. However, in the time-dependent context, it

may well happen that the total travel time over route segment X
0

1 � Y1 or (and)

over route segment X
0

2 � Y2 will change after executing the move (i.e., the total

travel time over segment X
0

1 � Y1 before the move depends on the arrival time to

X
0

1 from X1; after the move, it depends on the arrival time to X
0

1 from X2, which

may be di�erent). To overcome this diÆculty, an approximate evaluation is used,

similar to the one presented in (a).

At the end, the M best moves according to the approximation, are evaluated

exactly using the time-dependent travel time function, and the best exact move is

executed to obtain the new current solution. M is a parameter that needs to be

adjusted, since the better the approximation is, the lower the value of M needs to

be.

To examine the potential savings that may be obtained through the use of

the proposed time-dependent approach, several tests were conducted. The next

section reports computational results obtained with the new algorithm.

5 Computational results

In this section, we report experimental results obtained with the time-dependent

algorithm. First, we describe the test problems and then we report numerical

results.

5.1 Test problems

Our model was validated on Solomon's 100-customer Euclidean problems (see

Solomon(87)). In these problems, customer locations are generated within a

[0; 100]2 square. Six di�erent sets of problems are de�ned, namely C1, C2, R1,
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R2, RC1 and RC2. The customers are uniformly distributed in the problems of

type R, clustered in groups in the problems of type C and mixed in the problems of

type RC. In the problems of type 1, only a few customers can be serviced on each

route due to a narrow time window at the depot, as opposed to problems of type

2 where each route may have many customers. The travel times were calculated

using a 3x3 time-dependent travel speed matrix (vcT )1�c�3;1�T�3, where each row

corresponds to a category of arc and each column to a time period. Within the

scheduling horizon, the �rst and third periods stand for the morning and evening

rush hours, respectively. The second period corresponds to the middle of the day,

when the traÆc density is lower.

Scenario1
T

0.54 0.81 0.54
C 0.81 1.22 0.81

1.22 1.82 1.22

Scenario2
T

0.33 0.67 0.33
C 0.67 1.33 0.67

1.33 2.67 1.33

Scenario3
T

0.12 0.46 0.12
C 0.46 1.92 0.46

0.96 3.84 0.96

C = Category of arc.

T = Time period.

Table 1: Travel speed matrices in scenarios 1, 2, 3

Entries of the travel speed matrix were adjusted to create three di�erent types of

scenarios. For each scenario, the travel speeds in the morning and evening rush

hours were obtained by dividing the travel speeds in the middle of the day by a

factor �. In scenarios 1, 2 and 3, � was set to 1.5, 2 and 4 respectively. Hence,
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scenario 3 is the one with the highest degree of time-dependency, while scenario 1

is the one with the lowest. The travel speed matrices for the three scenarios are

reported in table 1. The average speed in each matrix is approximately 1, so the

"average" diÆculty is the same as in Solomon's original problems.

5.2 Experiments

The experiments reported in this section were performed on a network of 9 SUN

UltraSparc-IIi workstations (300 MHz). As mentioned previously, the objective

is to minimize the sum of total travel time and total lateness over all customers.

In these experiments, the eet size was set to the number of routes in the best

solution reported in the literature for each problem. The values of the parameters

were kept as in the original algorithm (see Gendreau et al. (99)). With respect to

parameter M , which corresponds to the number of best moves (according to the

approximation) which are evaluated exactly, several values were tested.

For each scenario, each problem is solved assuming time-dependent travel

speeds, and then assuming constant speeds (i.e., for each category of arcs, the av-

erage speed is taken over the three time periods). The two solutions are then com-

pared, using the time-dependent travel speed matrix, to evaluate what is gained

by explicitly considering variations in travel times over the day rather than using

the approximation represented by the average.

5.2.1 Preliminary tests

Scenario 1 was �rst considered for the preliminary tests. The intent was to �nd the

best value for parameter M . The preliminary experiments were conducted over a

small sample of problems selected in each of the six classes C1; C2; R1; R2; RC1; and

RC2. Several values had to be tested for every problem in the sample. Thereby,

a signi�cant amount of computation time is required if the size of the sample

is too large. On the other hand, this size has to be large enough to get a good

calibration. In our experiments, the size of the sample was set to 4. Table 2 reports

results obtained with the time-dependent travel speed matrix of scenario 1, and

the values 4, 8, 16, 24, 32 and 40 for parameter M . The four numbers in each
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entry are the average travel time, lateness, objective value and running time (in

minutes) respectively, for each problem class. In these experiments, the algorithm

stops after 50 restarts from the adaptive memory (see subsection 4.1). As expected,

increasing the value of M increases the running time and decreases the objective

value. However, the resulting increase in running time is small when compared to

the total running time. In fact, since the neighborhood of a given solution is large,

the algorithm spends much more time at evaluating the neighboring solutions,

even approximatively, than it does at evaluating a few solutions exactly. Table 2

was used to determine the value for M that achieves the best trade-o� between

execution time and solution quality. We observed that M = 32 and 40 lead to

approximatively the same results, while the execution time for M = 32 is slightly

smaller. Hence, the value 32 was retained for further testing.

To quantify the e�ort spent by the proposed time-dependent model when com-

pared with the original algorithm, we computed the amount of time consumed

by one iteration of each algorithm. Preliminary results have shown that the time-

dependent model leads to a very small increase in computational time (about 15.86

seconds against 15.29 seconds for problems of classes C1, R1 and RC1, and about

89.78 seconds against 86.36 seconds for problems of classes C2, R2 and RC2).

5.2.2 Numerical results

Table 3 compares, for scenarios 1, 2 and 3, the solutions obtained with time-

dependent travel speeds and the solutions obtained with constant speeds over all

problems in each category. The four numbers in each entry are the fraction of

infeasible solutions, the average travel time, lateness and objective value, respec-

tively, for each problem class. The row "Overall" contains averages taken over the

entire set of 56 test problems. It is worth noting that a solution obtained with con-

stant speeds may well be infeasible in the time-dependent context (i.e., the upper

bound of the time window at the depot may well be exceeded). This is what the

�rst number in each entry indicates. The results show that a signi�cant number

of solutions obtained with constant speeds are infeasible in the time-dependent

context and that this number increases with the degree of time-dependency. Also,
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the use of time-dependent travel speeds considerably improves the objective value.

This improvement is observed under the three scenarios, for all problem classes.

More precisely :

Scenario 1: An improvement is observed in all classes of problems (apart from

R2). The reduction ranges from 1.0% to 5.0%. In the case of R2, the two models

lead to approximatively the same results.

Scenario 2: As expected, the model performs better under scenario 2 where the

degree of time-dependency is higher. In fact, the results show an improvement in

all problem classes. The reduction ranges from 2.0% to 12.5%.

Scenario 3: In this scenario, the results are the most impressive. This is not

surprising since the degree of time dependency is the highest. An improvement is

observed in all problem classes. The reduction in the objective value ranges from

9.2% to 18.0%.

As we can see, the results obtained with time-dependent travel speeds are

(almost) systematically better than those obtained with constant speeds. This is

not really surprising, given that the average speed is a gross approximation of real

conditions. Furthermore, this approximation gets worse when the degree of time

dependency increases. It should also be noted that all numbers in Table 3 are

averages taken over a number of problems (from 8 to 12 problems, depending on

the problem class). These averages reect the natural tendency of time-dependent

solutions to be of better quality, although this is not necessary the case on speci�c

instances within a problem class. The next section will now describe the dynamic

version of the problem, where similar trends are observed.

6 Dynamic problem

The proposed model was also tested in a dynamic environment. In this section,

the dynamic time-dependent vehicle routing problem is �rst introduced. Then, we

explain how the algorithm of Taillard et al. (97) for the static problem with �xed

travel times was adapted to the dynamic case (Gendreau et al. (99)). We then

describe how we modi�ed the later algorithm to cope with time-dependent travel
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times in a dynamic environment. Finally, computational results are reported.

6.1 Problem de�nition

As opposed to the static problem, the number of service requests are not known

completely ahead of time, but are rather dynamically revealed as time goes by.

DA B

C

E

F

G

Completed movements.

Current movement.

Planned movements.

Figure 8: A vehicle route in a dynamic setting.

As illustrated in �gure 8, in a dynamic environment, a vehicle route can be divided

into three parts at any instant t:

� completed movements which form the part of the route already executed.

Thereby, this part cannot be modi�ed anymore;

� current movement of the vehicle toward its current destination;

� planned movements which constitute the portion of the route not yet exe-

cuted by the vehicle (planned route).

Whenever a new request unfolds at instant t, the problem is to assign this request

to a particular vehicle and incorporate it into its planned route at minimum cost.

6.2 Original dynamic algorithm (Gendreau et al. (99))

In a dynamic setting, at any instant t, a solution is a set of planned routes,

each beginning with the current destination of the associated vehicle. The major
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modi�cation for adapting the static algorithm to the dynamic case was related to

the management of new incoming events. In Gendreau et al. (99), a new event

may be of two types: the occurrence of a new service request, or the completion

of service at a customer. This latter event is related to the fact that the driver

has no prior knowledge of his planned route. Consequently, he must be informed

of his next destination as soon as he has completed the service at his current

location. Whenever any of these two types of events occurs, the tabu search threads

are interrupted. Then, after an appropriate update of the adaptive memory to

reect the current state of the world, the search is restarted with new solutions

constructed from the updated memory. The tabu search is thus used to improve

the current (static) solution between the occurrence of new events.

6.3 Time-dependent algorithm in a dynamic environment

In addition to the modi�cations already discussed in subsection 4.2, another mod-

i�cation is required in the dynamic case. In the original algorithm, a least com-

mitment strategy is considered. That is, if there is some time exibility at the

vehicle's next destination, the vehicle waits at its current location rather than its

next destination. The intent is to allow the vehicle to service a new request that

may appear in the vicinity of its current location. Hence, one has to determine a

value for the departure time that allows the vehicle to reach its next customer no

earlier than the lower bound of its time window.

When time-dependency is taken into account, the adjustment of the vehicle

departure time is more complicated, because the travel time between a given pair

of locations depends on the departure time from the origin. Hence, one has to take

into account the change that occurs in travel speed when the boundary between

two consecutive time periods is crossed. This problem is solved through a backward

recursive procedure (in contrast with the forward procedure used to compute the

travel times between customers).

In �gure 9, a route for one vehicle is considered. The horizon is "discretized"

into two time periods (Tk)1�k�2. In this �gure, i is the current customer and j is

the next customer to be serviced, with arc (i; j) belonging to category 1.
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Figure 9: Finding the departure time for a vehicle in a dynamic environment.

We also suppose that the time of departure dep belongs to time period T1 =

]t
�1
; �t1] and that l, the lower bound of the time window at customer j, belongs

to time period T2 =]t
�2
; �t2], with �t1 = t

�2
. With the least commitment strategy,

the departure time dep from node i is calculated as follows. First, we evaluate

the distance traveled during time period T2 which is d
0

ij = v1T2(l � t
�2
). Since the

remaining distance is d"ij = dij � d
0

ij, we obtain dep = �t1 � d"ij=v1T1 .

A pseudo-code for this backward recursive procedure is provided in �gure 10.

For a given vehicle, it calculates the departure time from its current customer i to

arrive at the lower bound l of the time window associated with its next destination

j, where l 2 Tk =]t
�k
; �tk]. In this �gure, t is a time variable which is updated at

each iteration and dep corresponds to the departure time. It is also assumed that

arc (i; j) belongs to category c, 1 � c � C.

The modi�ed algorithm was used to assess the proposed time-dependent model

in a dynamic context. Details about the experiments are reported in the next

subsection.
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1. set t to l,
set d to dij,

set dep to l � (d=vcTk).

2. while (dep < t
�k
) do

2.1 d d� vcTk(t� t
�k
).

2.2 t t
�k

2.3 dep t� (d=vcTk�1).

2.4 k k � 1.

3. return (dep).

Figure 10: Departure time calculation procedure in a dynamic environment.

6.4 Computational results

6.4.1 Simulation framework

Simulations were performed to validate our model in a dynamic setting. As in

the static case, data were taken from Solomon's 100-customer Euclidean problems

(Solomon (87)). The same six classes of problems were considered, namely C1,

C2, R1, R2, RC1 and RC2. The set of requests was divided into two subsets.

The �rst subset contains requests that are assumed to be known at the start of

the day (50% of the entire requests in our implementation). The second subset

contains requests that are received in real-time. Using minutes as time units for

time-related data in Solomon's �les, the time horizon was set to 15 minutes. This

leads to about 3 requests per minute. The interested reader will �nd more details

about the simulator in Gendreau et al. (99).

6.4.2 Numerical results

The experiments were conducted within the same framework used in the static

case (see section 5). Hence, the three scenarios previously considered were exam-

ined in the dynamic setting, using the same parameter values than those used in

the static environment. In the dynamic context, some requests may be rejected

when they occur because no feasible insertion place is found in the current routes.



This phenomenon is rather marginal, but a few solutions may contain only 98 or

99 customers (rather than 100 customers). Table 4 compares, for scenarios 1, 2

and 3, the solutions obtained with time-dependent travel speeds to those obtained

with constant speeds. The four numbers in each entry are the fraction of infeasible

solutions, the average travel time, lateness and objective value, respectively, for

each problem class. The row \Overall" contains averages taken over the entire set

of 56 test problems. In the following, we summarize the main �ndings for each

scenario.

Scenario 1: For all problem classes, the time-dependent model leads to substan-

tial improvements to the objective value, ranging from 4.0% to 13.2%. A total of 18

solutions produced with constant speeds are now infeasible in the time-dependent

context.

Scenario 2: As expected, the time-dependent model leads to larger improve-

ments in the objective value with regard to scenario 1, given the higher degree of

time-dependency. The improvement now ranges from 21% to 75%, depending on

the problem class. Furthermore, 32 solutions obtained with constant speeds are

infeasible (i.e., more than half of the solutions).

Scenario 3: The degradation of the model based on constant speeds appears

clearly in this case. The time-dependent model provides improvements ranging

from 62.5% to 78.0%, depending on the problem class, and almost all solutions

(except four) obtained with constant speeds are infeasible in the time-dependent

context.

7 Conclusion

Time-dependent vehicle routing is still a very challenging area that needs to be

explored, since it provides a more accurate way to model real problems. This

paper proposed a time-dependent model for a vehicle routing problem with time

windows, based on time-dependent travel speeds, which satis�es the FIFO as-

sumption. Characteristics of the model were addressed and discussed. Then,

experiments were performed to evaluate the model in a static and a dynamic
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environment. The results show that the time-dependent model provides very sig-

ni�cant improvements over the model with �xed travel times, thus indicating the

usefulness of additional information about the problem. Future work will now

be aimed at trying to exploit probabilistic information about the future to make

better dispatching decisions.
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Problem set M = 4 M = 8 M = 16 M = 24 M = 32 M = 40
C1 905.188 a 856.708 831.53 829.965 827.225 833.62
4 31.765 b 27.645 25.272 27.687 25.272 25.272

problems 936.952 c 884.352 856.802 857.655 852.498 858.635
27.833 d 28.039 28.962 29.284 29.304 29.508

R1 1023.62 997.88 980.392 972.38 973.195 963.225
4 59.432 51.59 46.91 47.537 37.767 52.007

problems 1083.05 1049.47 1027.30 1019.92 1010.96 1015.23
23.579 23.65 24.0625 24.632 24.95 24.929

RC1 1090.54 1064.38 1039.40 1036.74 1030.57 1030.68
4 49.517 28.002 40.975 38.935 37.225 40.272

problems 1140.06 1092.38 1080.37 1075.08 1067.79 1070.95
22.602 22.333 22.983 23.404 23.45 23.579

C2 836.25 758.518 785.675 763.92 759.705 737.045
4 25.34 35.037 35.702 34.667 18.562 39.90

problems 861.59 793.555 821.378 798.588 778.268 776.945
11.033 11.03 12.201 12.218 12.65 12.921

R2 996.258 1020.79 969.792 940.088 943.03 941.18
4 68.365 42.262 52.767 22.342 20.62 16.725

problems 1064.62 1063.05 1022.56 962.43 963.65 957.905
15.891 19.412 23.596 28.271 29.27 29.133

RC2 1162.63 1155.73 1087.93 1067.97 1015.51 1035.16
4 73.742 39.86 10.247 22.437 29.47 9.362

problems 1236.37 1195.59 1098.18 1090.41 1044.98 1044.522
10.912 12.558 16.783 16.515 16.867 16.903

aTravel time.

bLateness.

cObjective value.

dRunning time (in minutes).

Table 2: Searching for the best value for parameter M
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Problem set Scenario1 Scenario2 Scenario3
T ime� dep: Const: T ime� dep: Const: T ime� dep: Const:

speed speed speed speed speed speed

C1 0 a 0 0 0 0 0.222
9 818.57 b 836.878 836.787 857.241 984.556 1044.23

problems 21.514 c 15.764 112.553 109.45 399.28 637.99
840.084 d 852.642 949.34 966.691 1383.84 1682.22

R1 0 0 0 0.167 0 0.417
12 935.188 956.213 778.801 816.498 710.076 798.768

problems 26.461 25.655 36.395 33.692 48.907 51.53
961.648 981.868 815.197 850.19 758.983 850.298

RC1 0 0 0 0.125 0 0.125
8 1038.44 1063.02 873.741 908.692 825.97 900.741

problems 30.927 32.776 26.756 27.634 22.396 33.524
1069.36 1095.79 900.498 936.33 848.366 934.265

C2 0 0 0 0.25 0 0.75
8 659.221 699.714 764.091 810.00 1250.28 1119.10

problems 13.361 6.507 80.852 154.67 564.28 1038.26
672.582 706.221 844.944 964.676 1814.56 2157.36

R2 0 0 0 0.091 0 0.364
11 939.255 934.775 861.763 978.285 782.594 873.669

problems 10.698 9.18 8.100 16.581 18.465 40.546
949.954 943.955 869.864 994.866 801.059 914.215

RC2 0 0.125 0 0 0 0.5
8 1078.17 1081.59 988.124 1032.44 979.758 1034.29

problems 28.998 35.212 22.352 6.039 23.917 63.425
1107.17 1116.803 1010.48 1038.48 1003.68 1097.71

Overall 0 0.018 0 0.107 0 0.393
56 919.612 929.349 859.806 897.917 900.687 946.905

problems 21.645 20.476 61.623 54.939 165.504 283.713
941.257 949.825 921.430 952.855 1066.193 1230.618

aFraction of infeasible solutions.

bTravel time.

cLateness.

dObjective value.

Table 3: Comparison of time-dependent and constant speeds under the three sce-

narios in a static setting (with M = 32)
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Problem set Scenario1 Scenario2 Scenario3
T ime� dep: Const: T ime� dep: Const: T ime� dep: Const:

speed speed speed speed speed speed

C1 0 a 0 0 0.222 0 1.0
9 895.718 b 947.766 949.783 1080.75 1208.54 2058.99

problems 40.21 c 74.135 129.74 367.248 473.072 3190.72
935.928 d 1021.90 1142.52 1447.99 1681.61 5249.71

R1 0 0.583 0 0.833 0 1.0
12 1069.36 1199.90 931.956 1271.13 875.012 1506.57

problems 92.531 126.793 62.461 395.985 496.492 1490.15
1161.89 1326.69 994.418 1667.12 924.661 2996.72

RC1 0 0.625 0 1.0 0 1.0
8 1168.49 1288.60 1023.82 1364.41 974.794 1485.78

problems 132.084 210.266 69.048 595.28 47.77 1238.44
1300.58 1498.87 1092.87 1959.69 1022.56 2724.22

C2 0 0.25 0 0.75 0 1.0
8 712.542 696.881 884.101 751.332 1103.11 1184.45

problems 15.751 61.495 44.102 250.248 516.088 1660.43
728.294 758.376 928.204 1001.58 1619.19 2844.87

R2 0 0.273 0 0.273 0 0.818
11 1027.61 1086.55 971.037 1242.67 973.65 1520.63

problems 16.396 74.951 12.954 480.605 23.637 2934.54
1044.00 1161.50 983.992 1723.27 997.287 4455.17

RC2 0 0.125 0 0.375 0 0.75
8 1196.53 1253.62 1068.67 1342.52 1010.20 1783.80

problems 24.68 40.628 16.956 209.471 31.931 1779.71
1221.21 1294.25 1085.62 1552.00 1042.14 3563.51

Overall 0 0.321 0 0.571 0 0.929
56 1014.60 1085.599 968.315 1184.210 1014.14 1588.731

problems 54.156 98.434 55.366 388.995 272.17 2076.908
1068.76 1184.033 1033.80 1573.205 1286.31 3665.639

aFraction of infeasible solutions.

bTravel time.

cLateness.

dObjective value.

Table 4: Comparison of time-dependent and constant speeds under the three sce-

narios in a dynamic setting (with M = 32)
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