Application of Dynamic Pricing to Retail and Supply Chain Management

Soulaymane Kachani

Columbia University Kachani@ieor.columbia.edu

> PLU 6000 Feb 6, 2004

University of Montreal

OUTLINE OF PRESENTATION

- The pricing challenge
- The practice of pricing
- A pricing model for retail
- A pricing model for supply chain management
- A fluid delay-based model for pricing and inventory management
- Summary

PRICING IS THE BEST LEVER FOR EARNINGS IMPROVEMENT...

Impact of price increase on operating profit

... AND SHOULD BE ON EVERY CEO AGENDA

Growth drivers

Risk

OUTLINE OF PRESENTATION

- The pricing challenge
- The practice of pricing
- A pricing model for retail
- A pricing model for supply chains
- A fluid delay-based model for pricing and inventory management
- Summary

OVERALL OBJECTIVES OF PRICING IMPROVEMENT PROGRAMS

Achieve significant near-term improvements in profitability through enhanced price performance

Design and institutionalize comprehensive pricing management practices and processes to allow continued improvement into the future

Build systems, skills, incentives, etc. to support, enable, and sustain a high performing price management process

Achieve significant and sustainable gains in profitability through superior pricing management

OUTLINE OF PRESENTATION

- The pricing challenge
- The practice of pricing
- A pricing model for retail
- A pricing model for supply chain management
- A fluid delay-based model for pricing and inventory management
- Summary

3 Cs OF TACTICAL PRICING

How can companies implement a consistent tactical pricing policy for increasingly dynamic markets?

TACTICAL PRICING FRAMEWORK

CUSTOMER BEHAVIOR

Loyal customers

Will not switch in linear region

- Switching of loyal customers is highly non-linear
- Switching has hysterisis (i.e., is not immediately and completely reversible)

All customers

Shared customers

Will switch over linear region

- Elasticities based on perceived differences in
 - Product
 - Services
 - Channel
 - Promotion
- Switching behavior linearly dependent on cross-elasticity, price differential, and degree of awareness
- Limited to small price band

STATIC NON-LINEAR OPTIMIZATION AT CORE

UPDATE IS AUTOMATIC

IMPACT OF NEW PRICING POLICY

INTRA-DAY SEGMENTATION

	Customers	У		
		(light)	(peak)	
Loyal	55%	-	-	
Shared, Mobil	29%	16%	12%	
Shared, Texaco	14%	8%	6%	

IMPACT OF IMPROVED NEW PRICING POLICY

OUTLINE OF PRESENTATION

- The pricing challenge
- The practice of pricing
- A pricing model for retail
- A pricing model for supply chain management
- A fluid delay-based model for pricing and inventory management
- Summary

BACKGROUND

Scope of the engagement

 Find improvement opportunities in key account management for a leading manufacturer (with 75% of market share) through better price management, without changing the existing mix-structure

 Leverage manufacturer-retailer relationship to develop win-win situations

Purpose of the analysis

 Improve manufacturer category profitability by helping the retailer improve its own category results through better pricing policies
 Identify optimal category price structures for selected categories within the retailer scope of action*

Analyses performed

- Multiple regression analyses to determine own-price and cross-price elasticities for each SKU,** using weekly price, volume, and promotional activity data for 2 sample stores
- Margin optimization process for each category in both stores, incorporating retailer list prices and manufacturer unit costs per SKU

End-products and impact

- Own-price and cross-price elasticities for the top 5 SKUs in each analyzed category
- Optimal pricing schemes, resulting in 10% margin improvement for the retailer and 6% for the manufacturer

* This analysis was limited to margin changes only by the retailer. To simulate changes involving the manufacturer price list, competitive reaction must be incorporated

** Stock keeping unit

PRICE CHANGE ANALYSIS

A simple log price vs. log volume regression in most cases will not be of much use. The complete data set for each regression requires competitor product prices, promotional activity dummy variables, and other qualitative variables, such as seasonality or stock-outs

ESTIMATING ELASTICITY

• Econometric analysis has several advantages when it comes to estimating elasticity.* The general form of the log-price equation we used is:

$$\log Q_i = b_0 + b_i \log P_i + \sum_i c_j \log P_j + \sum_k d_k D_k$$

where:

Analysis

Rationale

Caveats

- Q_i is the volume sold and P_i is the price of target SKU i
- P'_i is the price of competitor SKU j
- b' and c are own-price and cross-price elasticities
- D_k are dummy variables accounting for promotional activities, store location, seasonality, etc. with their corresponding coefficients d_k
- A product's sales volume (Q_i) at a given point in time can be explained in terms of its own price (P_i) , other competing product prices (P_j) , relevant promotional activities, and other events, such as stock-outs and seasonal patterns (D_k)
- Make sure the correlation among explanatory ("right-hand") variables is low, especially between continuous (i.e., price) and binary (i.e., "catalog") variables; keep only one of the highly correlated explanatory variables
- Use alternative model specifications* (linear demand function, deviation-frommean model, etc.) to improve model fit
- Given its complexity, it is critical to involve client team members in this process. Client team members should be able to present model assumptions and results to management and thus step away from a conceptual black-box perspective

MARGIN OPTIMIZATION MODEL'S PROCESS

Input

- Daily sales data
 - Prices
 - Volume
 - Cost of goods sold
- Promotional activity log
 - Inclusion in catalogs
 - Temporary exhibit
 - Special event
- Manufacturer margin
- Industry constraints
 - Market share
 - Price/brand positioning
 - Average category pricing

Working steps

- Define the objective function(s)
- Enter demand and cost functions
- Add industry constraints
- Solve the model using a nonlinear optimization software
- Stress-test the results
- Discuss recommendations with the retailer and validate results through pilot tests

OBJECTIVE FUNCTIONS

Retailer

* If possible, trade spend and support should be added to the retailer's category revenues and to the manufacturing cost. Trade spend and support includes rappel, volume discount, year-end bonuses, indirect discounts, fixed-trade spend, and cost-to-serve variable expenses.

EXAMPLE

MATHEMATICAL PROBLEM SETTING

Optimize:
$$\max \sum_{i} Q_{i}(P_{i} - C_{i}) \text{ and/or } \max \sum_{i} Q_{i}(C_{i} - M_{i})$$

Subject to:
$$\log Q_{i} = b_{0} + b_{i} \log P_{i} + \sum_{j} c_{j}P_{j} \qquad \forall i \qquad \text{SKU demand function as calculated in the elasticity model for each SKU}$$
$$Q_{MAX} \ge \sum_{i} Q_{i} \ge Q_{MIN}$$
$$P_{1} > \$4.99$$
$$P_{2} > P_{1} \le P_{4}$$
$$\frac{Q_{4}}{\sum_{i} Q_{i}} \ge 30\%$$
$$\text{Minimum required market share for SKU #4}$$

Where:

Q is volume in units sold, P is price per unit, C is retailer cost per unit (and manufacturer list price), M is manufacturer unit cost including trade spend, bs are ownprice elasticity estimates, and cs are cross-price elasticity estimates

OUTLINE OF PRESENTATION

- The pricing challenge
- The practice of pricing
- A pricing model for retail
- A pricing model for supply chain management
- A fluid delay-based model for pricing and inventory management
- Summary

Introduction and Outline

Introduction

Observation:

> A newly produced unit of good incurs a sojourn time before being sold

Introduction and Outline

Introduction

Observation:

- > A newly produced unit of good incurs a sojourn time before being sold
 - This sojourn time depends on unit price, competitors' prices and level of inventory
 - This sojourn is similar to a travel time incurred in a transportation network

Contribution:

- Propose and study a dynamic pricing model:
 - Incorporates the delay of price and level of inventory in affecting demand
 - Includes pricing, production and inventory decisions in a multi-product environment

Approach:

- > A transportation fluid dynamics model that incorporates:
 - Price/Inventory level delay function
 - Production and sales dynamics
 - Production capacity constraints

Goals:

> Apply analytical methodologies and solution algorithms borrowed from the transportation setting to inventory control and supply chain

> Capture a variety of insightful phenomena that are harder to capture using current models in the literature

Motivation

Literature

Pricing theory has been extensively studied by researchers from a variety of fields:

- Economics (see for example R. Wilson (1993))
- Marketing (see for example G. Lilien et. Al (1992))

 Revenue management and supply chain management (see for example G. Bitran and S. Mondschein (1997), LMA. Chan et. al (2000), and, J. McGill and G. Van Ryzin (1999))

- Telecommunications (see for example, F. P. Kelly (1994), F. P. Kelly et al. (1998), and, I. Paschalidis and J. Tsitsiklis (1998))
- The book by Zipkin (1999), and references therein, provide a thorough review of inventory models.

Assumptions and Notations

Modeling Assumptions

We consider:

- Stackelberg leader (Monopoly is a special case)
- Many products
- Common capacity
- No substitution between products
- Holding costs
- No setup costs
- Non-perishable products
- Unit price is a function of inventory $p_i(I_i)$ (e.g. linear, hyperbolic)
- Deterministic model.

Average delay to sell a unit of good

 $A_i(I_i(t)) = T_i(I_i(t), p_i(I_i(t)), p_{i,1}^c(p_i(.)), p_{i,2}^c(p_i(.)), \dots, p_{i,J(i)}^c(p_i(.)))$ Average time needed to sell, at time *t*, a unit of product *i*, given an inventory $I_i(t)$, a unit price $p_i(I_i(t))$, and competitors' prices $p_{i,i}^c(p_i(.)), j \in \{1, \dots, J(i)\}$.

- Provide a methodology to estimate such a function in practice.
- Establish connection with the travel functions derived in the transportation context.

Notations

Assumptions and Notations

 $U_i(t)$ $u_i(t)$ $V_i(t)$ $v_i(t)$ $I_i(t)$ $p_i(I_i(t))$ $\overline{T_i}(I_i(t), p_i(.),$ $(p_{i,j}^c(p_i(.))),$ $j \in \{1, ..., J(i)\})$ $\overline{D_i(.)}$ $s_i(t)$ $c_i(t)$ $h_i(t)$ [0,T] $[0,T_{\infty}]$

- : cumulative production flow of product *i* during interval [0, *t*];
- production flow rate of product i at time t;
- : cumulative sales flow of product *i* during interval [0, *t*];
- : sales flow rate of product *i* at time *t*;
- : inventory (number of units of product) *i* at time *t*;
- : sales price of one unit of product i given an inventory $I_i(t)$;
- : time needed to sell both a unit of product i produced at time tand all inventory $I_i(t)$, given a unit price $p_i(I_i(t))$ and competitors prices $p_{i,j}^c(p_i(.))$;
- : product delay function, a function of the inventory $I_i(t)$, for example, we can choose $D_i(I_i(t)) = T_i(I_i(t), p_i(.), (p_{i,j}^c(p_i(.)), j \in \{1, ..., J(i)\}));$
- : exit time of a production flow of product type i entering at time t $(s_i(t) = t + D_i(I_i(t)));$
 - : production cost of product *i* at time *t*;
 - inventory cost of product i at time t;
 - : production period. After time **T**, the company ceases producing;
 - : analysis period. It is the interval of time from the instant when the first unit of product is produced to the first instant when all products have been sold.

Model Formulation

Link dynamics equations

The link dynamics equations express the relationship between the flow variables of a link. They are given by:

$$rac{dI_i(t)}{dt} = u_i(t) - v_i(t), \qquad orall i \in \{1,...,n\}.$$

Model Formulation

Link dynamics equations

The link dynamics equations express the relationship between the flow variables of a link. They are given by:

$$rac{dI_i(t)}{dt} = u_i(t) - v_i(t), \qquad orall i \in \{1,...,n\}.$$

Flow propagation equations

Flow propagation equations are used to describe the flow progression over time.

$$V_i(t) = \int_{\omega \in W} u_i(\omega) d\omega, \qquad orall i \in \{1,...,n\}$$

where $W = \{\omega : s_i(\omega) \leq t\}$.

If the product exit time functions $s_i(.)$ are continuous, and if the strict First-In-First-Out (FIFO) property is satisfied, then

$$V_i(t) = \int_0^{s_i^{-1}(t)} u_i(\omega) d\omega, \qquad orall i \in \{1,...,n\}.$$

Model Formulation

Link dynamics equations

The link dynamics equations express the relationship between the flow variables of a link. They are given by:

$$rac{dI_i(t)}{dt} = u_i(t) - v_i(t), \qquad orall i \in \{1,...,n\}.$$

Flow propagation equations

Flow propagation equations are used to describe the flow progression over time.

$$V_i(t) = \int_{\omega \in W} u_i(\omega) d\omega, \qquad orall i \in \{1,...,n\}$$

where $W = \{\omega : s_i(\omega) \le t\}$.

If the product exit time functions $s_i(.)$ are continuous, and if the strict First-In-First-Out (FIFO) property is satisfied, then

$$V_i(t) = \int_0^{s_i^{-1}(t)} u_i(\omega) d\omega, \qquad orall i \in \{1,...,n\}.$$

Boundary equations

$$U_i(0)=0, \ \ V_i(0)=0, \ \ \ I_i(0)=0, \ \ \ orall i\in\{1,...,n\}.$$

Model Formulation

Non-negativity and Capacity Constraints

 $egin{aligned} & u_i(.) \ ^{\mathbf{3}} \ 0, \ ^{"} \ i \ \widehat{\mathbf{1}} \ \{1, ..., n\}, CFR(.) \ ^{\mathbf{3}} \ 0 \ . \ & \sum_{i=1}^n u_i(t) \leq CFR(t). \end{aligned}$

Model Formulation

Non-negativity and Capacity Constraints

$$\hat{u}_{i}(.) \stackrel{\mathbf{3}}{=} 0, "i \hat{\mathbf{1}} \{1,...,n\}, CFR(.) \stackrel{\mathbf{3}}{=} 0,$$

 $\sum_{i=1}^{n} u_{i}(t) \leq CFR(t).$

Objective function

The objective of the company is to maximize its profits. Profits are obtained by substracting production costs and inventory costs from sales. The objective function can be expressed as:

$$\sum_{i=1}^n \int_0^{T_\infty} p_i(I_i(t)) v_i(t) - c_i(t) u_i(t) - h_i(t) I_i(t) dt.$$

In general, the DPM is a continuous-time non-linear program. In this system of equations, the known variables are the product delay functions A_i (.) and the shared capacity *CFR* (.). The unknown variables are $u_i(t)$, $U_i(t)$, $v_i(t)$, $V_i(t)$, $I_i(t)$, $s_i(t)$ and the parameters of $p_i(I_i)$.

Feasibility conditions are similar to the Dynamic Network Loading (DNL) Problem in the dynamic traffic assignment context Extensive work done on the DNL problem, especially at CRT in Montreal

Solution Algorithm

Objective Function:

$$Obj = -Min \sum_{i=1}^{n} (k_i [\sum_{j=0}^{N-1} u_{ij}u_{ij+1} + \sum_{j=0}^{N} u_{ij}^2] + \sum_{j=0}^{N} g_{ij}u_{ij})$$
Constraints:

$$\sum_{\substack{i=0\\i=0}}^{n} u_{ij} \le CFR_j, \quad \forall j \in \{0, 1, ..., N\}$$

$$u_{ij} \ge 0, \quad \forall i \in \{1, 2, ..., n\}, \quad \forall j \in \{0, 1, ..., N\}$$
where $g_{ij} = -d(p_i^{\max} - c_{ij} - \frac{h_{ij} + h_{ij+1}}{2}d),$

$$k_i = \frac{e_i d^2}{2}, \text{ and } e_i = \frac{p_i^{\max} - p_i^{\min}}{C_i}$$
Approach:

$$C_{ij} = -\frac{\partial Obj}{\partial u_{ij}} = 2k_i u_{ij} + k_i (u_{ij+1} + u_{ij-1}) + g_{ij}$$

Graphical Illustration

Solution Algorithm

Iterative Relaxation Approach

Step 0: (*k*=0) for every $j \hat{I} \{0, ..., N\}$, for every $i \hat{I} \{1, ..., n\}$

$$u_{ij}^{0} = \frac{CFR_{j}}{n}$$

$$k = 1$$
Step k: for every $j \ \hat{I} \ \{0, ..., N\}$:

$$m_{ij}^{k} = k_{i}(u_{ij-1}^{k} + u_{ij+1}^{k-1}) + g_{ij}$$

$$C_{ij}^{k} = 2k_{i}u_{ij}^{k} + m_{ij}^{k}$$
We order the m_{ij} 's in non-decreasing order

$$m_{order(1,j)j}^{k} \leq m_{order(2,j)j}^{k} \leq ... \leq m_{order(n,j)j}^{k}$$
Equilibration approach
Find $l_{j}: C_{order(1,j)j}^{k} = ... = C_{order(l_{j},j)j}^{k} = a_{order(l_{j},j)j}^{k} \leq C_{ordet(l_{j+1},j)j}^{k}, ..., \leq C_{ordet(n,j)j}^{k}$

$$u_{order(1,j)j}^{k} > 0, ..., u_{order(l_{j},j)j}^{k} > 0, \sum_{i=1}^{l_{j}} u_{order(i,j)j}^{k} = CFR_{j}$$

$$u_{ordet(l_{j}+1,j)j}^{k} = ... = u_{ordet(n,j)j}^{k} = 0$$

Solution Algorithm

Iterative Relaxation Approach

Step k (continued): for every $j \ \hat{I} \ \{0, ..., N\}$: Let $\mathbf{a}_{order\ (i,j)\ j}^{k} = \frac{CFR_{j} + \sum_{m=1}^{i} \frac{m_{order\ (m,j)\ j}^{k}}{2k_{order\ (m,j)}}}{\sum_{m=1}^{i} \frac{1}{2k_{order\ (m,j)}}}$ Let $l_j = \begin{cases} \arg \min\{i \in \{1, ..., n-1\}: \mathbf{a}_{order(i,j)j}^k \leq m_{order(i+1,j)j}^k, \text{ if it exists} \\ n, \text{ otherwise} \end{cases} \end{cases}$ If $i > l_i$, $u_{order(i,i)i}^k = 0$ If $i \leq l_j$, $u_{order(i,j)j}^k = \frac{a_{order(l_j,j)j}^k - m_{order(i,j)j}^k}{2k_{order(i,j)j}}$. **Convergence criterion:** If $u_{ij}^k = 0 \Rightarrow C_{ij}^k \ge a_{order(l_i, j)j}^k - e$, stop. Otherwise k=k+1, go to step k.

Main result: The iterative relaxation algorithm converges to the unique optimal solution.

Small Case Example

Inputs:

5 products, 10 discretization intervals

Price/Inventory Relationship parameters

Pi ^{max}	Pi ^{min}	
10.1	4.1	Product
10.2	4.2	Product
10.3	4.3	Product
10.4	4.4	Product
10.5	4.5	Product

Shared Capacity Flow Rate Function

Discretization Interval Index	0	1	2	3	4	5	6	7	8	9
CFR _j	19	21	23	25	27	29	31	33	35	37

Small Case Example (continued)

Inputs (continued):

	Production Cost											
	0	1	2	3	4	5	6	7	8	9		
<i>c</i> _{1j}	8.5938	8.7500	8.8698	8.9709	9.0599	9.1405	9.2144	9.2833	9.3481	9.4093		
<i>c</i> _{2j}	5.4000	5.6209	5.7905	5.9333	6.0593	6.1731	6.2778	6.3751	6.4667	6.5533		
<i>c</i> _{3j}	4.1698	4.4405	4.6481	4.8231	4.9772	5.1167	5.2449	5.3642	5.4762	5.5823		
<i>c</i> _{4j}	4.9209	5.2333	5.4731	5.6751	5.8533	6.0142	6.1622	6.3000	6.4293	6.5517		
с _{5j}	7.6599	8.0093	8.2772	8.5033	8.7022	8.8823	9.0478	9.2017	9.3465	9.4833		

	Holding Cost												
	0	1	2	3	4	5	6	7	8	9			
h_{1i}	1.6037	1.5135	1.4865	1.4236	1.4107	1.3568	1.3504	1.3013	1.2987	1.2528			
h_{2j}	1.4138	1.2862	1.2482	1.1591	1.1409	1.0647	1.0556	0.9861	0.9825	0.9176			
h_{3j}	1.2331	1.0770	1.0302	0.9213	0.8989	0.8057	0.7944	0.7095	0.7049	0.6254			
h_{4j}	1.0574	0.8770	0.8230	0.6972	0.6714	0.5637	0.5507	0.4526	0.4474	0.3556			
h_{5i}	0.8846	0.6830	0.6226	0.4820	0.4532	0.3326	0.3182	0.2085	0.2027	0.1000			

Intermediary computations:

	Modified Margins												
	0	1	2	3	4	5	6	7	8	9			
<i>m</i> _{1j}	0.0524	0.1500	0.2249	0.2881	0.3437	0.4925	0.4412	0.9005	0.5247	0.8807			
m_{2j}	-2.7595	-2.4293	-1.7226	-1.8993	-1.3522	-1.4482	-1.0171	-1.0808	-0.7019	-1.7972			
m_{3j}	-4.1725	-2.6537	-2.8482	-2.3648	-2.1954	-2.1620	-1.5787	-2.0477	-0.9823	-3.0201			
m_{4j}	-3.7694	-2.5334	-2.5139	-2.1342	-1.9388	-1.8229	-1.4048	-1.6001	-0.8945	-2.4643			
m_{5j}	-1.7719	-1.6161	-1.1148	-0.8550	-0.8761	-0.1764	-0.6899	0.4197	-0.5354	-0.0679			

Small Case Example

(continued)

Minimum Equilibrium Costs

	0	1	2	3	4	5	6	7	8	9
a _{lj}	-1.5722	-0.8085	-0.4909	-0.1930	0.0922	0.3686	0.6381	0.9023	1.1621	0.4822
a _{2j}	-2.0471	-0.8588	-0.5216	-0.1328	0.3312	0.5089	1.1465	1.0638	1.9404	0.5328
a _{3j}	0.3875	2.3863	2.6718	3.6352	4.2846	4.7980	5.8613	5.8723	7.4177	5.8599
a _{4j}	-1.6909	-0.0736	0.0789	0.7505	1.1729	1.4875	2.2282	2.1361	3.2616	1.6978
a _{5j}	-1.9783	-1.0481	-0.6699	-0.3133	0.0294	0.3376	0.6874	0.9028	1.3215	0.3826

Output:

Optimal Production Flow Rates

Small Case Example

(continued)

	0	1	2	3	4	5	6	7	8	9
u _{1j}	0	0	0	0	0	0	0.8207	0.0074	2.6560	0
u_{2j}	2.9681	5.7549	4.3862	6.6084	5.7568	7.4410	6.8967	8.2630	7.7667	9.0827
u _{3j}	8.8559	6.6900	9.0762	8.5477	9.2700	10.4151	9.2370	12.2918	8.9352	14.1780
u _{4j}	7.1760	6.1885	7.6836	7.5871	8.2005	9.0021	8.5122	10.4268	8.5692	11.8622
u _{5j}	0	2.3666	1.8540	2.2568	3.7727	2.1418	5.5334	2.0110	7.0729	1.8772

Optimal Profit: \$405.0681

Small Case Example (continued)

Joint pricing and inventory management:

Optimal Profit as function of the slope (i.e. $(s+s^2)/C$)

Competitive Setting

In what follows, we express p_i^l as p_i^l ($I_i(t)$, $I_i^{-l}(t)$). This assumes:

> Knowledge of inventories of all players > $\{p_i^l(I_i(t), p_i^{-l}), l=1,...,K\}$ is "invertible"

Best Response Problem for Retailer /

Best Response Problem Retailer /

$$Max \sum_{i=1}^{n} \int_{0}^{T_{n}} p_{i}^{t} (I_{i}^{t}(t), I_{i}^{-t}(t)) v_{i}^{t}(t) - c_{i}^{t}(t) u_{i}^{t}(t) - h_{i}^{t}(t) I_{i}^{t}(t) dt$$

$$I_{i}^{t}(t) = U_{i}^{t}(t) - V_{i}^{t}(t) \quad \forall i \in \{1, ..., n\}$$
such that
$$\sum_{i=1}^{n} u_{i}^{t}(t) \leq CFR^{t}(t)$$

$$u_{i}^{t}(.) \geq 0 \quad \forall i \in \{1, ..., n\}$$

$$I_{i}^{t}(0) = U_{i}^{t}(0) = V_{i}^{t}(0) = 0 \quad \forall i \in \{1, ..., n\}$$

If the product exit time functions $s'_{i}(.)$ continuous, if strict FIFO holds, then

$$s_{i}^{l}(w) = w + D_{i}^{l}(I_{i}^{l}(w), I_{i}^{-l}(w))$$
$$V_{i}^{l}(t) = \int_{0}^{s_{i}^{l-1}(t)} u_{i}^{l}(w) dw \quad \forall i \in \{1, ..., n\}$$

Pricing function:

$$p_{i}'(I_{i}(t)) = p_{i}'^{\max} - e_{i}'I_{i}'(t) + S_{k \text{ not } I}f_{I}^{k}I_{i}^{k}(t)$$
$$e_{i}' > 0$$

Discretization: intervals of length d/M where M: discretization accuracy For every disctretization interval $j \ \hat{I} \ \{0, 1, ..., (N+1)M - 1\}$, and for every $t \ \hat{I} \ [j \ d/M, (j+1) \ d/M \]$:

 $CFR(t) = CFR_j$, $u_i(t) = u_{ij}$, $c_i(t) = c_{ij}$, and $h_i(t) = h_{ij}$

Piecewise constant

Decision variables:

Production levels: u_{ij} for every product i and for every discretizationinterval index jFor simplicity of the presentation, we consider M=1

Best Response – Retailer /

$$Obj' = -Min \sum_{i=1}^{n} (k_i' [\sum_{j=0}^{N-1} u_{ij}' u_{ij+1}' + \sum_{j=0}^{N} u_{ij}'^2] + \sum_{j=0}^{N} g_{ij}' u_{ij}' - \sum_{k \neq l} l_i^{k} [\sum_{j=0}^{N-1} u_{ij}' u_{ij+1}^{k} + \sum_{j=0}^{N} u_{ij}^{l} u_{kj}^{k}])$$
such that
$$\sum_{u_{ij}' \geq 0, \forall i \in \{1, 2, ..., n\}, \forall j \in \{0, 1, ..., N\}} u_{ij}' \geq 0, \forall i \in \{1, 2, ..., n\}, \forall j \in \{0, 1, ..., N\}} p_i^{l} (I_i(t)) = p_i^{l \max} - e_i^{l} I_i^{l}(t) + S_{k \text{ not } l} f_l^{k} I_i^{k}(t) k_i^{l} = \frac{e_i'd^2}{2} \qquad l_k^{k} = \frac{f_i^{k}d^2}{2} g_{ij}^{l} = -d(p_i^{l \max} - c_{ij} - \frac{h_{ij}^{l} + h_{ij+1}}{2}d)$$

Best Response Model and Nash Equilibrium

Best response model:

The best response problem is a strictly convex quadratic problem

There exists a solution to the best response problem, and this solution is unique

Nash equilibrium:

> If $e_i' > S_{knot} | f_i^k |$, there exists a Nash Equilibrium, and this equilibrium is unique

Solution Algorithm

Main ideas behind the solution algorithm

Non-separability by retailer is overcome using an iterative learning algorithm: outer loop

We start with initial production policies for every retailer

• At each iteration, retailers solve the QP using information from past iteration about other retailers: inner loop

 In the inner loop, non-separability by time period and shared capacity constraint among products are overcome using an iterative relaxation algorithm

Solution Algorithm - Inner Loop: For each retailer

Objective Function:

Co

$$Obj = -Min \sum_{i=1}^{n} (k_i [\sum_{j=0}^{N-1} u_{ij}u_{ij+1} + \sum_{j=0}^{N} u_{ij}^2] + \sum_{j=0}^{N} g_{ij}u_{ij})$$
Constraints:

$$\sum_{i=0}^{n} u_{ij} \le CFR_j, \ \forall j \in \{0, 1, ..., N\}$$

$$u_{ij} \ge 0, \ \forall i \in \{1, 2, ..., n\}, \ \forall j \in \{0, 1, ..., N\}$$
where $g_{ij} = -d(p_i^{\max} - c_{ij} - \frac{h_{ij} + h_{ij+1}}{2}d) - \sum_{\substack{k \text{ competitors} \\ past iteration of outerloop}} \sum_{\substack{k \in i = \frac{p_i^{\max} - p_i^{\min}}{C_i}} m_{ij}$
Approach:

$$C_{ij} = -\frac{\partial Obj}{\partial u_{ij}} = 2k_i u_{ij} + k_i (u_{ij+1} + u_{ij-1}) + g_{ij}$$

Solution Algorithm - Inner Loop: For each retailer

Step 0: (k=0) for every $j \hat{\mathbf{i}} \{0, ..., N\}$, for every $i \hat{\mathbf{i}} \{1, ..., n\}$

$$u_{ij}^{0} = \frac{CFR_{j}}{n}$$
Step k: for every j î {0,...,N} :

$$m_{ij}^{k} = k_{i}(u_{ij-1}^{k} + u_{ij+1}^{k-1}) + g_{ij}$$

$$C_{ij}^{k} = 2k_{i}u_{ij}^{k} + m_{ij}^{k}$$
We order the m_{ij} 's in non-decreasing order

$$m_{order(1,j)j}^{k} \leq m_{order(2,j)j}^{k} \leq ... \leq m_{order(n,j)j}^{k}$$
Equilibration approach
Find $l_{j}: C_{order(1,j)j}^{k} = ... = C_{order(l_{j},j)j}^{k} = a_{order(l_{j},j)j}^{k} \leq C_{ordet(l_{j+1},j)j}^{k}, ..., \leq C_{ordet(n,j)j}^{k}$

$$u_{order(1,j)j}^{k} \geq 0, ..., u_{order(l_{j},j)j}^{k} \geq 0, \sum_{i=1}^{l_{j}} u_{order(i,j)j}^{k} = CFR_{j}$$

$$u_{ordet(l_{j}+1,j)j}^{k} = ... = u_{ordet(n,j)j}^{k} = 0$$

53

Solution Algorithm - Inner Loop: For each retailer

p k (continued): for every j
$$\hat{I}$$
 {0,...,N} :
Let $a_{order(i,j)j}^{k} = \frac{CFR_{j} + \sum_{m=1}^{i} \frac{m_{order(m,j)j}^{k}}{2k_{order(m,j)}}}{\sum_{m=1}^{i} \frac{1}{2k_{order(m,j)}}}$
Let $l_{j} = \begin{cases} \operatorname{argmin}\{i \in \{1,...,n-1\}: a_{order(i,j)j}^{k} \leq m_{order(i+1,j)j}^{k}, \text{ if it exists}\}\\ n, \text{ otherwise} \end{cases}$
If $i > l_{j}, \quad u_{order(i,j)j}^{k} = 0$

If
$$i \leq l_j$$
, $u_{order(i,j)j}^k = \frac{a_{order(l_j,j)j}^k - m_{order(i,j)j}^k}{2k_{order(i,j)j}}$

If $u_{ij}^k = 0 \Rightarrow C_{ij}^k \ge a_{order(l_j,j)j}^k - e$, stop. Otherwise k=k+1, go to step k.

Main results:

Ste

> The Iterative Relaxation Algorithm converges to the unique optimal solution of the inner-loop problem

> The Iterative Learning&Relaxation Algorithm converges to the the unique Nash Equilibrium

OUTLINE OF PRESENTATION

- The pricing challenge
- The practice of pricing
- A pricing model for retail
- A pricing model for supply chain management
- A fluid delay-based model for pricing and inventory management
- Summary

Questions?

