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Motivation

g Traffic Congestion severe in recent years. 

Congestion costs $640/traveler in 39 areas U.S. in 1994$640/traveler in 39 areas U.S. in 1994
implying congestion $48 billion for 1994!

Some Applications



Traffic AssignmentTraffic Assignment

How can traffic congestion be How can traffic congestion be 
managed and alleviated ?managed and alleviated ?



Revenue ManagementRevenue Management

Post deregulation era: after 1978Post deregulation era: after 1978Post deregulation era: after 1978

• Revenue management at : 

$1.4 billion in added revenue in 3 years

• Marriott International: 4.7% increase in room 
revenue per year from revenue management

American Airlines



Revenue ManagementRevenue Management

Airline Revenue Management:Airline Revenue Management:

• “Control and management of reservations 
inventory in a way that increases company 
profitability.”   (Barry Smith)

• “Selling the right seat to the right customer at     
the right price at the right time.” (Tom Cook)



Industries Adopting Revenue Management

• Airlines
• Hotels
• Railroads
• Car Rentals
• Cruise lines 
• Tour and vacation packages
• Television Networks
• Others: public events ticketing, ....



Industry Characteristics

• Advanced reservations system
• Range of prices for services
• Customer willingness to pay more/less 

for certain service guarantee
• Cancellations and no-shows
• High fixed cost, low variable cost
• Highly perishable inventory of “product” 
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Revenue Management ModelingRevenue Management Modeling

• Decisions
– How many seats to sell in each fare class for 

each itinerary in the airline’s schedule?

• Maximize Expected Revenue
– account for uncertainty of demands, no-shows, 

overbooking, etc.
– account for plane seat configurations, capacity, 

etc.



Revenue Management ModelingRevenue Management Modeling

•• PricesPrices for fare classes are given from 
marketing department.

• Only worry about how to manage the manage the 
inventoryinventory (i.e., plane’s total capacity) 

• How about pricing fare classes?  



OutlineOutline
Nonlinear Optimization and Variational InequalitiesNonlinear Optimization and Variational Inequalities

•• Some key concepts and results in Some key concepts and results in NLPsNLPs and and VIsVIs

•• Connection with problems in mathematical programming Connection with problems in mathematical programming 

An Application in Multi Period PricingAn Application in Multi Period Pricing

•• The The Best ResponseBest Response Problem Problem ------ The The Market EquilibriumMarket Equilibrium ProblemProblem

•• An An Iterative Learning AlgorithmIterative Learning Algorithm

•• Insights from Numerical ExamplesInsights from Numerical Examples

•• The The Stochastic DemandStochastic Demand SettingSetting

The Price of Anarchy   The Price of Anarchy   ---- The Price of CompetitionThe Price of Competition
• Measuring the loss of efficiency due to competition  (Asymmetric Costs)



MaximumMaximum

MinimumMinimum



Kuhn and TuckerKuhn and Tucker 1950s1950s
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An Analogy  An Analogy  ---- Chutes and Ladders  Chutes and Ladders  



Two Issues Two Issues 
Where do solutions lie?Where do solutions lie?

s.t. (x(x––8)8)22 + (y+ (y––9)9)22 ≤≤ 4949

x x ≥≥ 22

x x ≤≤ 1313

x + y x + y ≤≤ 2424

Consider the problem:

MinimizeMinimize (x (x –– 16)16)22 + (y + (y ––14)14)22
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Solution: x = 13, y= 11Solution: x = 13, y= 11Solution: x = 13, y= 11

Solution at a Corner Point Solution at a Corner Point 

(16,14)(16,14)

Feasible Feasible 
RegionRegion



Where do solutions lie?Where do solutions lie?

s.t. (x(x––8)8)22 + (y+ (y––9)9)22 ≤≤ 4949

x x ≥≥ 22

x x ≤≤ 1313

x + y x + y ≤≤ 2424

Consider the problem:

MinimizeMinimize (x (x –– 11)11)22 + (y + (y ––10)10)22
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Solution: x = 11, y= 10Solution: x = 11, y= 10Solution: x = 11, y= 10

(11,10)(11,10)

Solution in the InteriorSolution in the Interior



Where do solutions lie?Where do solutions lie?

s.t. (x(x––8)8)22 + (y+ (y––9)9)22 ≤≤ 4949

x x ≥≥ 22

x x ≤≤ 1313

x + y x + y ≤≤ 2424

Consider the problem:

MinimizeMinimize (x (x –– 14)14)22 + (y + (y ––14)14)22
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Solution: x = 12, y= 12Solution: x = 12, y= 12Solution: x = 12, y= 12

(14,14)(14,14)

Solution on the BoundarySolution on the Boundary



x

f(x)

2 3 4 5 6 7

x  =  5x  =  5 is the globalglobal optimal solution.

x  =  2x  =  2 is a locallocal optimal solution.

Minimization in one variable over 2 ≤ x ≤ 7

x  =  3.5x  =  3.5 is a locallocal optimal solution.

Second IssueSecond Issue
Global versus Local MinimaGlobal versus Local Minima



S x y

λ x+(1-λ)y



Convex SetConvex Set

NotNot a Convex Seta Convex Set Convex SetConvex Set

NotNot a Convex Seta Convex Set

Convex SetsConvex Sets





f

Convex functionConvex function

x yλx+(1-λ)y

Line above the curve!Line above the curve!

Convex FunctionsConvex Functions

f(λx+(1-λ)y)

λf(x)+(1-λ)f(y)





COP and Global MinimaCOP and Global Minima

f(x)

xy y(λ) x*

f Convex Functionf Convex Function

local minimumlocal minimum









f

f(x)

f(x)+ f(x)’(x-x)

First order Taylor approximation of f is a 
global underestimator of f





f(x)=xf(x)=x22

x*=0

Generalizes: Zero slope at local min x*

from unconstrained to       

constrained problems

Optimality Conditions  Optimality Conditions  -- MotivationMotivation

f(x*) = 0





1st Order Optimality Conditions1st Order Optimality Conditions

At local min x*

makes angle ≤≤ 90 
with all feasible variations 

x -x* in K

f(x*)

x*x*

xx
f(x*)

K

<90



When

K= K= RRnn

*)(xf
x

x*
x

f(x)

x+  f(x)

First Order Optimality ConditionsFirst Order Optimality Conditions

f(x*) = 0

First Order Conditions become



f(x)=xf(x)=x22

1   21   2





f

f(x)

f(x)+ f(x)’(x-x)



(16,14)(16,14)

0

f(x*)

x-x*

xx11** = 13= 13

xx22*= 11*= 11
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Solution x1* = 13, x2*= 11Solution Solution xx11** = 13, = 13, xx22*= 11*= 11

Solution Corner PointSolution Corner Point

(16,14)(16,14)

Feasible Feasible 
regionregion

f(x*)

x-x*
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40

Feasible Feasible 
regionregion

Levels of Levels of 
objectiveobjective

f(x*) x*x*

xx

K

not a convex set Failure of optimality 
conditions when K is     
not convex

x*x* is a locallocal minimum but

f(x*)’(x-x*)<0 for the feasible vector x shown

Optimality ConditionsOptimality Conditions



A MORE GENERAL FORMULATIONA MORE GENERAL FORMULATION

Variational InequalitiesVariational Inequalities



Early History of Early History of VIsVIs

• Study of Study of equilibriaequilibria in electromagnetismin electromagnetism
(electrical networks, Kirkhoff’s laws)

• Classical mechanicsClassical mechanics
(equilibrium of forces, variational principle)

• Hartman and Hartman and StampacchiaStampacchia (1966)                               
(partial differential equations, calculus of variation and control)

• R. R. CottleCottle introduces linear linear complementaritycomplementarity (1964) 
Karamardian nonlinear linear complementaritycomplementarity (1969) 

•• Smith Smith in 1979 in the context of transportation transportation and     
DafermosDafermos in 1980, defined the variational inequalityvariational inequality problem.    



When is VIP equivalent to NLP ??When is VIP equivalent to NLP ??
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symmetric + p.symmetric + p.sdsd.  .  

VI(F,K)  equivalent toequivalent to NLP(f,K) convex



Linear Optimization ProblemsLinear Optimization Problems

Pxxcxc tt ∈≥  allfor   ,*

F(x)  = ?? ?? f(x) = ?? ?? 

KxxxxF
Kxxxxf
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 allfor   ,0)()(

**

**



Nonlinear Optimization Nonlinear Optimization 

K

x

f(x)=6

f(x)=2

f(x)=3

f(x)=2x *

F(x * )f = F

Kxxxxf t ∈≥−∇  allfor   ,0)()( **

x* solves NLP             x* solves VIP

Converse ??
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f(x*) K = Rn
+

Optimality Conditions  Optimality Conditions  -- RRnn
++

x*x*



f(x*)

K = Rn
+

Optimality Conditions  Optimality Conditions  -- RRnn
++

x*=0x*=0
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_
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x* ≥≥ 0,            0,            f(x*)f(x*) ≥≥ 0,         0,         x*x*’’ f(x*)=f(x*)=00

That is: 



These results hold more generally for VIs







KK

Projection Over a Convex SetProjection Over a Convex Set

xx
xx--x*x*

zz

zz--x*x*

Necessary Necessary -- sufficient conditionssufficient conditions

for for x* =x* = the projection of the projection of z z on on KK

The angle of The angle of zz--x*x* and and xx--x*x* should be should be ≥≥ 90    90    
for all for all x x in in KK,  ,  

i.e. i.e. (z(z--x*)’(xx*)’(x--x*)x*) ≤≤ 00

Projection of Projection of zz to to KK is:is:

The Closest Point to The Closest Point to zz in Feasible Region in Feasible Region KK

x*x*



F

F



KxxxxfKx ∈∀≥−∇∈     ,0)()'(   : ***
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)( ** xfx ∇− ρ

Optimality Conditions through ProjectionOptimality Conditions through Projection

f (x*)
Kx − x *

x*

f(x*)





Connection with Fixed PointsConnection with Fixed PointsConnection with Fixed Points

KxxxxFKx t ∈∀≥−∈ ,0)()(: ***

f (x*)

T(x) = PrK (x - r F(x))

x* = T(x* )

))( (Pr *** xFxx K ρ−=
Kx − x *

x*

      ρ > 0  
)( ** xFx ρ−

WHY ??



How would you solve the VI or NLP as a result?



xk – ρ  f(xk)

KK

xk
xk+1

- f(xk)

xk+1 – ρ  f(xk+1)
xk+2

This can be viewed as a constrained 
version of Steepest Descent



Overview of Solution MethodsOverview of Solution Methods
1)1) Solve Equivalent Convex Min Problem

2)2) Projection Methods:

G p.d, sym.

3)3) Relaxation Methods:Relaxation Methods: gi(x k+1, xk)=Fi(x1
k,..., xi-1

k,xi
k+1,xi+1

k,...,xn
k)

4)4) Linearization Methods:Linearization Methods: g (x k+1, xk)=F(xk)+A(xk)(x k+1- xk)

5)5) General Iterative Scheme: General Iterative Scheme: 

Given xk, find x k+1 in K: g(x k+1, xk)(x- x k+1 )≥ 0 for all x in K

6)6) Frank-Wolfe: yk= ArgArg minminyy in Kin K F(F(xxk)y,  x k+1 in [xk;yk ] via line-search

7)7) SimplicialSimplicial DecompositionDecomposition: Column generation approach

8)8) Cutting Plane Type Methods:Cutting Plane Type Methods: Ellipsoid Method

9)9) Interior Point Methods

small suf. ,0
))(G (Pr -1

1

>
−=+

ρ
ρ kk

G
Kk xFxx



Systems of EquationsSystems of Equations

T:K T:K ------>K,   K >K,   K closed, convexclosed, convex subset of subset of RRnn

F(x)=xF(x)=x--T(x),T(x), for all x in Kfor all x in K

VI(F,K) , FP(T,K) VI(F,K) , FP(T,K) samesame solutions, solutions, if any!if any!

F(x)  = 0F(x)  = 0



Relation Between ProblemsRelation Between ProblemsRelation Between Problems

VIP FP⇔

NLP

LPLP

E
Q
U
I
L
I
B
R
I
A



ExistenceExistence

• K compactcompact, convex set

• F continuous on K

then VI(f, K) at least oneat least one solution

VI(f,K) hashas a solution  

iff 

exists R>0: VI(F,KR) has xR
*

|| xR* || <R

F is coercivecoercive:

(F(x) -F(x0))(x-x0)/||x-x0|| --> infty

as ||x|| --> infty

for x in K, some x0 in K

then VI(F, K) at least oneat least one solution



Conditions on VI ProblemConditions on VI Problem

• Monotonicity Monotonicity (F(x)-F(y))(x-y) ≥ 0  --- JF p.p.sdsd.. --- convexityconvexity of f

Strict MonStrict Mon. (F(x)-F(y))(x-y) >0, x ≠y --- JF p.d.p.d. --- s.s. convexityconvexity of f

StroStro. Mon.. Mon. a>0, (F(x)-F(y))(x-y) ≥ a ||x-y||2 --- JF u.pd.u.pd. -- u.u. convconv of f

BUT for LPBUT for LP (c-c)(x-y)=0 ALWAYS!ALWAYS!

• StrongStrong--ff--Mon.Mon. bb>0, (F(x)-F(y))(x-y) ≥ b ||F(x)-F(y)||2 ---JF(x)-bJF(x)J(F(y)

Co-coercivity                                                      p.p.sdsd..



UniquenessUniqueness

F strongly monotonestrongly monotone VI(F,K) unique solutionunique solution

F strictly monotonestrictly monotone VI(F,K) uniqueunique solution

if anyif any
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$ $

• Transportation
Transportation Planning
IVHS
Free Flight 

• Economics
Spatial Price Equilibria
Pure Exchange Equilibria
General Economic Equilibria
Financial Equilibria

• Multi-period Pricing

Some Application AreasSome Application Areas



Optimal RoutingOptimal Routing

Destination     Destination     
of OD wof OD wOrigin             Origin             

of OD wof OD w

1 2

3

4

11

22

33

44 55

11= = (((1,2), (2,5)(1,2), (2,5)))

33= = (((1,3),(3,4),(4,5)(1,3),(3,4),(4,5)))

44= = (((1,3),(3,5)(1,3),(3,5)))

22==(((1,2),(2,4),(4,5)(1,2),(2,4),(4,5)))
Paths:Paths:



System Optimum System Optimum 

Σp cp(x)xp= c(x)’x



Used paths have smallest marginal cost





Traffic AssignmentTraffic Assignment



w=(O,D)dw=10

Behavioral Assumption: No user has ANY incentive to        
change

If xp*>0 cp(x*) = minq cq(x*)

Only shortest paths are used !

p=Mem. Dr.
2

p=Rt. 93
3

O=Belmont

p=Conc. Av.
1

D=MIT

252)(,5
2
13)(,13

4
1)(

33122211
+=++=++= pppppppp xxcxxxcxxxc

ExampleExample



w=(O,D)

dw=10

xp
1

=6*
p
2

x * =4
p
3

x *=0

p=Rt. 93
3

xp1
=6*

p= Mem. Dr.
2

O=Belmont

p= Conc. Av.1

D=MIT

p
2

x*=4

p
3

x*=0

Arises is various contexts!

Variational

Inequality

Variational

Inequality

25)(20)()( ***
321

=≤== xcxcxc ppp

feasible    ,0 )()( ** xxxxc t ∀≥−

ExampleExample



feasible                )0(20)0)((

0)()(        )4(20)4)((

)6(20)6)((
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*

***

*

xxxxc

xxxcxxxc

xxxc

ppp

t
ppp

ppp

∀−≥−

≥−⇒−=−

−=−

Conversely? Conversely? 

ExampleExample



Decentralized Problem---VIsDecentralized ProblemDecentralized Problem------VIsVIs
p in P ,  w in W, i in L

fi= Σ i in P Fp

dw= Σ p in Pw Fp

Cp(f)= Σ i in P ci (f)

p
2

p
3

O

p
1 D

A flow pattern (f*, F*) is UU--OO

if for all w in W and every p in Pw

Cp (f*) = vw    if F*p > 0, 

Cp (f*) ≥ vw    if F*p= 0

Equivalent to VI(c, K) ?:   

K={(f,F): fi= Σ i in P Fp, dw= Σ p in Pw Fp,  Fp ≥ 0}

  ,0)()( ** ffffc t ∀≥−



System Optimum  System Optimum  ---- > User Optimum       > User Optimum       
SOMESOME

User User -- Optimum Optimum 

c(x) =  C(x)

Min C(x)
x feasible



c(x) =  C(x)

Objective Objective CC does not exist ifdoes not exist if

the the JacobianJacobian matrix matrix JcJc is not symmetricis not symmetric

System Optimum System Optimum User OptimumUser Optimum
Underlying ?Underlying ?

SOMESOME



NO, the Jacobian matrix Jc is not symmetric

11 ¼     0¼     0

½    3     0½    3     0

0     0     20     0     2
JcJc ==



System Optimum System Optimum vsvs User OptimumUser Optimum

Σp cp(x*)(xp- x*) >= 0, for all x feasible

Min C(x)  = Σp cp(x)xp= c(x)’x
x feasible

System OptimumSystem Optimum

x*SO

feasible    ,0 )()( ** xxxxc t ∀≥− UserUser-- OptimumOptimum

x*UO

Example: c(x) = Gx+g

C(x) = 2 Gx +g

C(x) = x’Gx+gx 



SummarySummary

•• Variational InequalitiesVariational Inequalities

••Connections with other problem classesConnections with other problem classes

•• Nonlinear Optimization (NLP)Nonlinear Optimization (NLP)

•• First Order Optimality Conditions for NLPFirst Order Optimality Conditions for NLP

•• Optimization Subject to BoundsOptimization Subject to Bounds

•• Optimization over SimplexOptimization over Simplex

•• Projection ProblemsProjection Problems

•• Applications in TransportationApplications in Transportation

f (x*)
KKx − x *

x*

f(x*)



Questions?Questions?



OutlineOutline
Nonlinear Optimization and Variational InequalitiesNonlinear Optimization and Variational Inequalities

Multi Period PricingMulti Period Pricing

•• The The Best ResponseBest Response Problem Problem ------ The The Market EquilibriumMarket Equilibrium ProblemProblem

•• An An Iterative Learning AlgorithmIterative Learning Algorithm

•• Insights from Numerical ExamplesInsights from Numerical Examples

•• The The Stochastic DemandStochastic Demand SettingSetting

The Price of Anarchy   The Price of Anarchy   ---- The Price of CompetitionThe Price of Competition

• Measuring the loss of efficiency due to competition  (Asymmetric Costs)



Total MarketTotal Market

Single, homogenous productSingle, homogenous product

Sellers

Another  Application  Another  Application  
MultiMulti--Period PricingPeriod Pricing

for Perishable Productsfor Perishable Products



Seller 1

p1

Seller i

pi

Seller I

pI

Total Market

… …

Market demand for Seller Market demand for Seller ii is determined by the function is determined by the function 
hhii(p(p11,…,,…,ppII))



Hotel room Hotel room 

Seller 1

p1

Seller i

pi

Seller I

pI

… …

Period 1 Period t Period T

Market in a Multi-period Setting
Perishable Product Flight NY-Boston

Airlines Advance 
booking

Flight NY-Boston

Airlines Advance 
booking



CharacteristicsCharacteristics
_  _  OligopolisticOligopolistic market

(Few Firms Compete for Products)

– DynamicDynamic nature of problem

– Level of inventoryLevel of inventory

(Prices depend on level of inventory left,   
demand, prices of competitors)

–– NatureNature of goods (perishable or not)



Application AreasApplication Areas

•• Retail Industry Retail Industry 
Filene’s - Macy’s

•• Service Industry  Service Industry  
Car Rentals, Hotels

•• Internet PricingInternet Pricing

•• Airline Industry Airline Industry 
Pricing airline tickets under competition



Sample LiteratureSample Literature
Revenue Management, Pricing and Inventory Control:Revenue Management, Pricing and Inventory Control:

•• Rosen ( 1965), Rosen ( 1965), HarkerHarker (1984), Murphy (1984), Murphy etaletal (1982)(1982)

•• GallegoGallego and van and van Ryzin  Ryzin  (1993) (1993) 

•• BitranBitran and and MondscheinMondschein (1997) (1997) 

•• FedergruenFedergruen and and HechingHeching (1999)(1999)

•• Chan et.alChan et.al (2000)(2000)

•• Bernstein and Bernstein and FedergruenFedergruen (2001)(2001)

•• Inventory:Inventory: ZipkinZipkin (1999)                                                         (1999)                                                         (BOOK)(BOOK)

•• RM:RM: McGill and van McGill and van RyzinRyzin (1999), (1999), CaldenteyCaldentey & & BitranBitran (2002)  (2002)  (REVIEWS)(REVIEWS)

•• Pricing:Pricing: ElmaghrabyElmaghraby & & KeskinocakKeskinocak (2002), (2002), 

Chan et.al., Gilbert & Yano (2003)              Chan et.al., Gilbert & Yano (2003)              (REVIEWS)(REVIEWS)

•• Competition:Competition: CachonCachon, , NetessineNetessine (2003)                                        (2003)                                        (REVIEW)(REVIEW)



Seller 1 Seller i Seller I

… …

The Decentralized ProblemThe Decentralized Problem
C1 Ci CI

Period 1 Period t Period T

Seller    Seller    Maximizes   profit

Decisions:Decisions: prices 

allocation of total  capacity
at each periodat each period



Pricing and AllocationPricing and Allocation

–– How manyHow many seats to sell (allocate) in each fare class?

–– How to priceHow to price each fare class?

– Account for uncertaintyuncertainty and competitorscompetitors and 
network of legsnetwork of legs in the itinerary. 



The Decentralized ProblemThe Decentralized Problem

User OptimumUser Optimum

DemandDemand
NonNon--separableseparable

hh11(p) = (p) = -- gg1111pp1 1 + g+ g1212pp22+ h+ h11

hh2 2 (p) =   g(p) =   g2121pp1 1 -- gg2222pp2 2 + h+ h22

Could be Asymmetric Could be Asymmetric 
gg12   12   is notis not gg2121



Seller 1

p1

Seller i

pi

Seller I

pI

… …

Period 1 Period t Period T

Questions: Questions: 
How should seller i price the product in the face of competitioHow should seller i price the product in the face of competition?n?

What are the equilibrium prices for all competitors in the markWhat are the equilibrium prices for all competitors in the market?et?

How inefficient does the system become due to competition?How inefficient does the system become due to competition?



MultiMulti--period oligopoly modelsperiod oligopoly models

• Total capacity over horizon is fixed
– No option to replenish capacity.
– Inventory holding costs are negligible.
– No backordering allowed.
– Typically finite horizon problems.
– Policies consist of decisions regarding pricing and 

protection levels.

– Suited for pricing in transportation, revenue 
management, communication, energy etc.



OutlineOutline

Multi Period PricingMulti Period Pricing

•• The The Best ResponseBest Response Problem Problem ------ The The Market EquilibriumMarket Equilibrium ProblemProblem

•• An An Iterative Learning AlgorithmIterative Learning Algorithm

•• Insights from Numerical ExamplesInsights from Numerical Examples

•• ConclusionsConclusions

Based on paper with A. Sood entitled:Based on paper with A. Sood entitled:
“Competitive Multi“Competitive Multi--period Pricing for Perishable Products”period Pricing for Perishable Products”



AssumptionsAssumptions
Joint work with 

A. Sood

Joint work with 

A. Sood

Perfect Information                                            Perfect Information                                            
(of their and competitors’ demand, total inventories)(of their and competitors’ demand, total inventories)

Demand Demand depends ondepends on current period pricescurrent period prices

For this talk:For this talk: DemandDemand isis deterministicdeterministic

Single product Single product and fixed perishability deadline

Sellers are revenue maximizers over time horizon



Question

Given the policy of all other competitors, 
what should be my pricing policy ?

Z-i

zi



Best Response PolicyBest Response Policy

If   : Demand is deterministic 



Cannot be applied…Cannot be applied…

• The best response problem can not be 
formulated as a convex optimization problem 
(except only under linear demand).

• The objective in the best response problem is 
not quasi-concave (except for a single period 
problem).

• The feasible space is not a lattice because of 
the fixed-inventory constraint. Hence the game 
is not a supermodular game.



Best Response PolicyBest Response Policy

If  : Demand function hi
t is s. decreasing w.r.t. pi

t



ApproachApproach

Best response
optimization problem Variational inequality

Variational inequality Best response
optimization problem



Best Response PolicyBest Response Policy

If hi(.) is a concave functionconcave function then the 
Best Response Problem can be 

expressed as a Variational Inequality 
problem

Demand decreases faster as price increasesDemand decreases faster as price increases



Question

When is the Best Response Problem
reasonable?



Proposition 1

The Best Response policy exists.



AssumptionsAssumptions
Perfect Information                                            Perfect Information                                            
(of their and competitors’ demand, total inventories)(of their and competitors’ demand, total inventories)

Demand Demand depends ondepends on current period pricescurrent period prices

For this talk:For this talk: DemandDemand isis deterministicdeterministic

Single product Single product 

Demand s. decreases Demand s. decreases with own price with own price 



Theorem 2

The Best Response policy is unique.
The Variational Inequality has a unique solution.

[ hi
t(pi

t, p-i
t) is a strictly decreasing function of pi

t ]



Market EquilibriumMarket Equilibrium

Seller 1

p1

Seller i

pi

Seller I

pI

… …

Period 1 Period t Period T

Nash Equilibrium Policies



Questions

•Does such a Nash Equilibrium exist?

•Is it unique?

•How do we compute it?



Approach

Variational inequalityVariational inequalityVariational inequality Joint variational 
inequality

Joint variational
inequality

Variational inequalityVariational inequalityVariational inequality

Joint variational
inequality

Variational inequalityVariational inequalityBest response
Optimization problem



Theorem 4

There exists a unique market equilibrium.

[ -h(p) is strictly monotone in p ]
[hi(p) is concave in p ]



Monotonicity Conditions

• Strict Monotonicity

• Strong Monotonicity

• Lipschitz Continuity

S. Monotonicity F = gradient obj ___ S. Convexity of obj



Lemma



•Demand more sensitive to own price than competitors’   
prices

and

•Own demand decreases less than competitors’ demand  

increases through own price increase

gg1111
t t --gg1212

tt

--gg2121
t     t     gg2222

tt
--JhJh = = 

hh22
t t (p)= h(p)= h22

t t –– gg2222
t t pp22

t t +g+g2121
t t pp11

t t 

hh11
t t (p)= h(p)= h11

t t –– gg1111
t t pp11

t t +g+g1212
t t pp22

t t Example

gg1111
tt > g> g1212

tt

gg2222
t t >> gg2121

t

gg1111
tt > g> g2121

tt

gg2222
t t >> gg1212

t t t 



Naive Optimizers



Question

If all sellers are naive optimizers and the 
process is repeated several times, do the 

policies converge to an equilibrium?

Iterative learning



Theorem 5

Iterative learning will converge to Nash 
equilibrium prices.

[ -h(pi , p-i) is strongly monotone (α) in pi ]
[ h(pi , p-i) is Lipschitz continuous (L) in p-i ]

[ α > L ]



Monotonicity Conditions

• Strict Monotonicity

• Strong Monotonicity

• Lipschitz Continuity



Convergence conditions

1.

2.

3.

α

α

α > L



hh22
t t (p)= h(p)= h22

t t –– gg2222
t t pp22

t t +g+g2121
t t pp11

t t 

hh11
t t (p)= h(p)= h11

t t –– gg1111
t t pp11

t t +g+g1212
t t pp22

t t ExampleExample

Min (gMin (g1111
t t ,, gg2222

tt )= )= α > 0α > 0

Max (gMax (g1212
tt, g, g2121

tt)= )= L >0L >0

αα > L> L
gg1111

t t --gg1212
tt

--gg2121
t     t     gg2222

tt
--JhJh = = 

gg1111
tt > g> g1212

tt

gg2222
t t >> gg2121

tt

gg1111
tt > g> g2121

tt

gg2222
t t >> gg1212

t t 



Solving the Best Response SubSolving the Best Response Sub--ProblemsProblems

At Step k:At Step k: solve Best Response Subsolve Best Response Sub--Problem:Problem:

di
t,  pi

t

i=1,…,N
t=1,…,T

Demand                                       s. Demand                                       s. decreasdecreas.. invertibleinvertible



Solving the Best Response SubSolving the Best Response Sub--ProblemsProblems

At Step k:At Step k: solve Best Response Subsolve Best Response Sub--Problem:Problem:

1.

For all t=1,…T

Check if total demand does not exceed capacityCheck if total demand does not exceed capacity



At Step k:At Step k: solve Best Response Subsolve Best Response Sub--Problem:Problem:

i=1,…N

competitors

1

2

N

...

1’

2’

N’

......

1

2

t

T

Origin

CC11

CC22

.

.

.

CCNN

Destination

2. wherewhere

single period profitsingle period profit



Numerical examples



Numerical examples



Numerical examples (varying capacity)



Numerical examples (varying capacity)



Numerical examples (varying capacity)



Numerical examples



Numerical examples (varying starting est.)



Numerical examples



Numerical examples (varying starting est.)



Numerical examples



Numerical examples (vary price sensitivities)



Insights from Numerical ExamplesInsights from Numerical Examples

1. Prices decrease as the total inventory increases.
2. Prices are higher in periods of low price sensitivity
3. But the revenue of the seller over the entire horizon 

increases (but diminishing returns) as total inventory
increases.

4. But an increase in the total inventory of a competitor 
results in lower revenues for the seller. 

5. Algorithm converges to equilibrium prices very fast
6. Dependence of Algorithm on starting policies.
7. Relative ratio of demand sensitivities to price affects 

rate of convergence. Prices converge to equilibrium at 
a geometric rate.



ContributionsContributionsContributions and InsightsContributions and Insights

1. Introduced a general dynamic optimization model of 
pricing for perishable products that incorporates 
competition.

2. We characterized Nash equilibrium pricing using a 
variational inequality formulation. This allowed us to 
establish existence and uniqueness of the Nash 
equilibrium pricing policies.

3. Incorporated nonlinear, asymmetric demands in a 
multi-period setting



ContributionsContributionsContributions and InsightsContributions and Insights

4. We introduced an algorithm for computing Nash 
equilibrium pricing policies. We proved its convergence 
and discussed the practical implementation of this 
algorithm.

5. We tested our findings through some numerical 
examples and discussed some insights.



Stochastic Demand ModelStochastic Demand Model



Demand Model EffectsDemand Model Effects



Stochastic Demand ModelStochastic Demand Model



Modeling CompetitionModeling Competition

Many-seller case

Two-seller case



Modeling CompetitionModeling Competition



AssumptionsAssumptions

• Total capacity Ci and T periods horizon



How to handle total capacity How to handle total capacity CCii

• Penalty for over-sale at end of horizon                 
(Overbooking penalty)

• Limiting of sales in every period (Allocations)
• Limiting total sales (Lost sales)

How do we avoid selling more than we have total capacity Ci?



ExtensionsExtensions

• More on the stochastic demand case

• Joint pricing and inventory control --- Competition

• Many products (network case)

• Delay of price to affect demand

• Previous prices also affecting demand 

• Demand Learning



Questions?Questions?



OutlineOutline
Nonlinear Optimization and Variational InequalitiesNonlinear Optimization and Variational Inequalities

Multi Period PricingMulti Period Pricing

The Price of Anarchy   The Price of Anarchy   ---- The Price of CompetitionThe Price of Competition

•• Motivation  (Motivation  (TransportationTransportation, , Multi Period PricingMulti Period Pricing))

•• VIsVIs for Decentralized Systems for Decentralized Systems vsvs NLP for Centralized SystemsNLP for Centralized Systems

•• AA BoundBound when Costs are Linear (the role of when Costs are Linear (the role of AsymmetryAsymmetry))

•• A A BoundBound when Costs are Nonlinear (the role of when Costs are Nonlinear (the role of Non linearityNon linearity))



Motivation  Motivation  ------ TransportationTransportation

Costs Costs ------ Travel timesTravel times

ci(fi) on arc i depends on flow fi on arc i (separable)(separable)

Drivers take the “best route” for themselves!Drivers take the “best route” for themselves!



Selfish versus Social OptimizationSelfish versus Social Optimization

If car drivers are selfish

Optimize for themselves!

cc22(f) =f(f) =f22

2

cc11(f) =2(f) =2

f1=0 and f2=2

How many of the two cars will use arc 1

Versus arc 2? 



Selfish versus Social OptimizationSelfish versus Social Optimization

cc22(f) =f(f) =f22

cc11(f) =2(f) =2

2

If car drivers are dictated so that total cost is minimum 
(social optimization)

Min 2 * f2 * f11+ f+ f22
22

ff11+ f+ f2 2 =2                  =2                  ff11= f= f2 2 =1=1

ff11, f, f2 2 >=0 >=0 

How many of the two cars will be asked to use 
arc 1 versus arc 2? 



Selfish versus Social OptimizationSelfish versus Social Optimization

cc22(f) =f(f) =f22

cc11(f) =2(f) =2

2

Min 2 * f2 * f11+ f+ f22
2  2  = 2+1= = 2+1= 33

ff11+ f+ f2 2 =2                  f=2                  f11= f= f2 2 =1=1

ff11, f, f2 2 >=0 >=0 

cc11(f) * f(f) * f11+ c+ c22(f) * f(f) * f22 = 2 * f= 2 * f11+ f+ f22
2  2  = = 44

f1=0 and f2=2 User Optimum

Social Optimum 

User Opt. Total Cost = 4/3 Social Opt. Total Cost



Selfish versus Social OptimizationSelfish versus Social Optimization

Social Optimum 

cc22(f) =f(f) =f22

cc11(f) =2(f) =2

2

Is this a coincidence?

User Optimum

User Opt. Total Cost = 4/34/3 Social Opt. Total Cost



Motivation  Motivation  ------ TransportationTransportation

ci(f) on arc i depends on flow vector f
(I.e. neighboring arcs influence traffic)                    

(non(non--separable)separable)

Costs Costs ------ Travel timesTravel times

ci(fi) on arc i depends on flow fi on arc i (separable)(separable)



A Bound between SO and UOA Bound between SO and UO

(non(non--separable)separable)

cc11(f) =g(f) =g1111ff11+g+g1212ff22+ g+ g1313ff33+…+b+…+b11

cc22(f) =g(f) =g2121ff11+g+g2222ff22+ g+ g2323ff33+…+b+…+b22

…..…..

(i.e. neighboring arcs influence traffic)(i.e. neighboring arcs influence traffic)

> upstream > upstream effectseffects
> downstrea> downstream effectsm effects
> intersect> intersectionsions



Decentralized Problem---VIsDecentralized ProblemDecentralized Problem------VIsVIs
p in P ,  w in W, i in L

fi= Σ i in P Fi

dw= Σ p in Pw Fp

Cp(f)= Σ i in P ci (f)

p
2

p
3

O

p
1 D

A flow pattern (f*, F*) is UU--OO

if for all w in W and every p in Pw

Cp (f*) = vw    if F*p > 0, 

Cp (f*) ≥ vw    if F*p= 0

Equivalent to VI(c, K) :   

K={(f,F): fi= Σ i in P Fp, dw= Σ p in Pw Fp,  Fp ≥ 0}

  ,0)()( ** ffffc t ∀≥−



The Centralized Problem  The Centralized Problem  ------ NLPNLP

System OptimumSystem Optimum

Min Min ff Σ i in L ci (f) fi

such thatsuch that

K={(f,F): fi= Σ i in P Fp, dw= Σ p in Pw Fp, Fp ≥ 0}

How bad is User-Optimization ?How bad is User-Optimization ?



A Bound between SO and UOA Bound between SO and UO
1

2

cc11(f) =g(f) =g11ff11+b+b11

cc22(f) =g(f) =g22ff22+b+b22

≥

RoughgardenRoughgarden and and TardosTardos (2001)(2001)

constant terms b     0,        gconstant terms b     0,        g11,g,g2 2 > 0> 0

OFOFuouo//OFOFsoso 4/34/3≤



A Bound between SO and UOA Bound between SO and UO
1

2

cc11(f) =g(f) =g11ff11+b+b11

cc22(f) =g(f) =g22ff22+b+b22

gg1 1 00

0     g0     g22

G  = G  = 

G pd, diagonal matrixG pd, diagonal matrix



A Bound between SO and UOA Bound between SO and UO

cc11(f) =g(f) =g1111ff11+g+g1212ff22+b+b11

cc22(f) =g(f) =g1212ff11+g+g2222ff22+b+b22

G pd, symmetric matrixG pd, symmetric matrix

(contribution from arc i to j(contribution from arc i to j

same as arc j to i)same as arc j to i)

gg1212 = g= g2121

c(z)=c(z)=GfGf+b     f=(f+b     f=(f1,1,ff22))
gg1111 gg1212

gg1212 gg2222

G  = G  = 



A Bound between SO and UO ??A Bound between SO and UO ??

gg1111 gg1212

gg2121 gg2222

G  = G  = 

G pd, asymmetric matrixG pd, asymmetric matrix

(contribution not the same)(contribution not the same)
gg1212 is notis not gg2121

p=Mem. Dr.
2

p=Rt. 93
3

O=Belmont
p=Conc. Av.
1

D=MITcc11(f) =g(f) =g1111ff11+g+g1212ff22+b+b11

cc22(f) =g(f) =g2121ff11+g+g2222ff22+b+b22

c(f)=c(f)=GfGf+b     f=(f+b     f=(f1,1,ff22))



Sample LiteratureSample Literature

Transportation and Game Theory:Transportation and Game Theory:

•• DafermosDafermos (1969, 1980, 1984)(1969, 1980, 1984)

•• FlorianFlorian and Hearn (1993), Nagurney(2000)and Hearn (1993), Nagurney(2000) (REVIEWS)(REVIEWS)

•• Papadimitriou and Papadimitriou and KoutsoupiasKoutsoupias (1999)(1999)

•• RoughgardenRoughgarden and and TardosTardos, , RoughgardenRoughgarden (2001)(2001)

•• JohariJohari and and TsitsiklisTsitsiklis (2002)(2002)



Hotel room Hotel room 

Seller 1

p1

Seller i

pi

Seller I

pI

… …

Period 1 Period t Period T

Market in a Multi-period Setting
Perishable Product Flight NY-Boston

Airlines Advance 
booking

Flight NY-Boston

Airlines Advance 
booking



Seller 1 Seller i Seller I

… …

The Decentralized ProblemThe Decentralized Problem
C1 Ci CI

Period 1 Period t Period T

Seller    Seller    Maximizes   profit

Decisions:Decisions: prices 

allocation of total  capacity
at each periodat each period



The Decentralized ProblemThe Decentralized Problem

User OptimumUser Optimum

DemandDemand
NonNon--separableseparable

hh11(p) = (p) = -- gg1111pp1 1 + g+ g1212pp22+ h+ h11

hh2 2 (p) =   g(p) =   g2121pp1 1 -- gg2222pp2 2 + h+ h22

Could be Asymmetric Could be Asymmetric 
gg12   12   is notis not gg2121



The Centralized Problem  ?The Centralized Problem  ?

System OptimumSystem Optimum

Max Max d,p d,p Σ i in L profit selleri 

Often not legal!Often not legal!

How bad is system due to competition 
and lack of coordination? 

How bad is system due to competition How bad is system due to competition 
and lack of coordination? and lack of coordination? 



A Bound between SO and UO ??A Bound between SO and UO ??

FF11(z) =g(z) =g1111zz11+g+g1212zz22+b+b11

FF22(z) =g(z) =g2121zz11+g+g2222zz22+b+b22

gg1111 gg1212

gg2121 gg2222

G  = G  = F(z)=F(z)=GzGz+b     z=(z+b     z=(z1,1,zz22))

OFuo/OFso bound ??OFOFuouo//OFOFsoso bound ??bound ??

G pd, asymmetric matrixG pd, asymmetric matrixgg1212 is notis not gg2121



A Bound between SO and UOA Bound between SO and UO
F(z)=F(z)=GzGz+b     z=(z+b     z=(z1,1,zz2,…, 2,…, zznn))

F(z*)’(zF(z*)’(z--z*)>=0,  for all z feasiblez*)>=0,  for all z feasible

Define:   S= G+G’  Define:   S= G+G’  symmetrizedsymmetrized matrix   (pd)matrix   (pd)
22

Define:   Define:   c = ||Sc = ||S--11 G||G||SS

Theorem: 
OFUO/OFSO 4          if 1   c2    2

4-c2

c2              if   2      c2

Theorem: Theorem: 
OFOFUOUO/OF/OFSOSO 4          4          if 1   cif 1   c2    2    22

44--cc22

cc2              2              if   2      cif   2      c22

≤≤
≤≤

≤≤ ≤≤
≤≤



Transportation

cc2 2 describes how congestion in neighboring describes how congestion in neighboring 
roads affects your travel timeroads affects your travel time

Transportation

This phenomenon also applies to pricing with This phenomenon also applies to pricing with 
competitioncompetition



ContributionsContributions
Understand the price of “competition” Understand the price of “competition” 

how bad  is system due to lack of coordination?how bad  is system due to lack of coordination?

NonNon--separable payoffs (costs)separable payoffs (costs)

the role of asymmetry   (nonthe role of asymmetry   (non--separable)separable)

* * symmsymm.. (c(c22=1) =1) 4/34/3, , 

* little * little asymmasymm.. (c(c22<=2) <=2) 4/(44/(4--cc22),),

* quite * quite asymmasymm.. (c(c2 2 > 2)  > 2)  cc22

Nonlinear payoffs (costs)Nonlinear payoffs (costs)

the role of nonthe role of non--linearity  (measure nonlinearity  (measure non--linearity)linearity)

Version of the paper to appear at the IPCO conference ProceVersion of the paper to appear at the IPCO conference Proceedingsedings
Also full version under review in MORAlso full version under review in MOR



Questions?Questions?
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