

A Variational Inequality Approach to Dynamic Pricing under Competition

Georgia Perakis

georgiap@mit.edu

Some Applications

Motivation

Traffic Congestion severe in recent years.

Congestion costs \$640/traveler in 39 areas U.S. in 1994 implying congestion \$48 billion for 1994!

Traffic Assignment

How can traffic congestion be managed and alleviated ?

Revenue Management

Post deregulation era: after 1978

Revenue management at : American Airlines
\$1.4 billion in added revenue in 3 years

• Marriott International: 4.7% increase in room revenue per year from revenue management

Revenue Management

Airline Revenue Management:

- "Control and management of reservations inventory in a way that increases company profitability." (Barry Smith)
- "Selling the right seat to the right customer at the right price at the right time." (Tom Cook)

Industries Adopting Revenue Management

- Airlines
- Hotels
- Railroads
- Car Rentals
- Cruise lines
- Tour and vacation packages
- Television Networks
- Others: public events ticketing,

Industry Characteristics

Advanced reservations system Range of prices for services Customer willingness to pay more/less for certain service guarantee Cancellations and no-shows High fixed cost, low variable cost Highly perishable inventory of "product"

Price Segmentation

Revenue Management Modeling

Decisions

– How many seats to sell in each fare class for each itinerary in the airline's schedule?

Maximize Expected Revenue

- account for uncertainty of demands, no-shows, overbooking, etc.
- account for plane seat configurations, capacity, etc.

Revenue Management Modeling

• Prices for fare classes are given from marketing department.

 Only worry about how to manage the inventory (i.e., plane's total capacity)

How about pricing fare classes?

Outline

Nonlinear Optimization and Variational Inequalities

- Some key concepts and results in NLPs and VIs
- Connection with problems in mathematical programming

An Application in Multi Period Pricing

- The Best Response Problem --- The Market Equilibrium Problem
- An Iterative Learning Algorithm
- Insights from Numerical Examples
- The Stochastic Demand Setting

The Price of Anarchy -- The Price of Competition

• Measuring the loss of efficiency due to competition (Asymmetric Costs)

History of Optimization

Fermat, 1638; Newton, 1670 $\min f(x)$ x: scalar $\frac{df(x)}{dx}=0$ Minimum Maximum Euler, 1755 min $f(x_1,\ldots,x_n)$ $\nabla f(x) = 0$

History of Optimization

Lagrange, 1797

min $f(x_1,\ldots,x_n)$

s.t.
$$g_k(x_1,\ldots,x_n)=0$$
 $k=1,\ldots,m$

Euler, Lagrange Problems in infinite dimensions, calculus of variations.

Kuhn and Tucker 1950s

History of Optimization

1950s Applications.1960s Large Scale Optimization.Karmakar, 1984 Interior point algorithms.

Where do NLPs Arise?

Wide Applicability

Transportation

- Traffic management, Traffic equilibrium ... Revenue management and Pricing
- Finance Portfolio Management
- Equilibrium Problems

Where do NLPs Arise?

Wide Applicability

Engineering

 Data Networks and Routing
 Pattern Classification
 Manufacturing
 Resource Allocation
 Production Planning

The general problem again

 $f(x): \Re^n \mapsto \Re$ is a continuous (usually differentiable) function of nvariables

$$oldsymbol{g_i}(x) \colon \real^n \mapsto \real, i = 1, \dots, m,$$

 $h_j(x) \colon \Re^n \mapsto \Re, j = 1, \ldots, l$

The general problem again

An Analogy -- Chutes and Ladders

Two Issues Where do solutions lie?

Consider the problem:

s.t.	$(x-8)^2 + (y-9)^2 \le 49$
	x ≥ 2
	x ≤ 13
	$\mathbf{x} + \mathbf{y} \le 24$

Where do solutions lie?

Consider the problem:

Minimize
$$(x - 11)^2 + (y - 10)^2$$

s.t.	$(x-8)^2 + (y-9)^2 \le 49$
	x ≥ 2
	x ≤ 13
	x + y ≤ 24

Solution in the Interior

Where do solutions lie?

Consider the problem:

Minimize
$$(x-14)^2 + (y-14)^2$$

s.t.	$(x-8)^2 + (y-9)^2 \le 49$
	x ≥ 2
	x ≤ 13
	$x + y \le 24$

Solution on the Boundary

Second Issue Global versus Local Minima

Minimization in one variable over $2 \le x \le 7$

Convex Sets

- A subset $old S\subset \Re^n$ is a *convex set* if $x,y\in S\Rightarrow \lambda x+(1-\lambda)y\in S \qquad orall \lambda\in [0,1]$
- If S, T are convex sets, then S ∩ T is a convex set
 Implication: The intersection of any collection of convex sets is a convex set

Convex Set

Not a Convex Set

Not a Convex Set

Convex Set

Convex Functions

• A function f(x) is a convex function if $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$ $orall oldsymbol{x},oldsymbol{y} \qquad orall oldsymbol{\lambda} \in [oldsymbol{0},oldsymbol{1}]$ • A function f(x) is a concave function if $f(\lambda x + (1-\lambda)y) \geq \lambda f(x) + (1-\lambda)f(y)$ $orall oldsymbol{x},oldsymbol{y} \qquad orall oldsymbol{\lambda} \in [oldsymbol{0},oldsymbol{1}]$

Convex Functions

Convexity and Minima

 $egin{array}{lll} \min & f(m{x}) \ {\sf s.t.} & m{x} \in \mathcal{F} \end{array}$

<u>Theorem</u>: Suppose that \mathcal{F} is a convex set, $f : \mathcal{F} \to \Re$ is a convex function, and x^* is a local minimum of P. Then x^* is a global minimum of f over \mathcal{F} .

COP and Global Minima

Convexity and Minima

Proof

Assume that x^* is not the global minimum. Let y be the global minimum. From the convexity of $f(\cdot)$,

 $egin{aligned} f(y(\lambda)) &= f(\lambda x^* \!+\! (1\!-\!\lambda)y) \leq \lambda f(x^*) \!+\! (1\!-\!\lambda)f(y) \ &< \lambda f(x^*) + (1\!-\!\lambda)f(x^*) = f(x^*) \end{aligned}$

for all $\lambda \in (0, 1)$.

Therefore, $f(y(\lambda)) < f(x^*)$ for all $\lambda \in (0, 1)$, and so x^* is not a local minimum, resulting in a contradiction

$egin{aligned} COP:&\min f(x)\ ext{s.t. }g_1(x)\leq 0\ ert \ &ert \ &e$

COP

COP

COP is called a *convex optimization problem* if $f(x), g_1(x), \ldots, g_m(x)$ are convex functions

Note that this implies that the feasible region $\boldsymbol{\mathcal{F}}$ is a convex set

In *COP* we are minimizing a convex function over a convex set

Implication: If **COP** is a convex optimization problem, then any local minimum will be a global minimum.

Optimality Conditions

Characterization of convex functions

Theorem Let f(x) be continuously differentiable. Then f(x) is convex if and only if

 $abla f(x)'(\overline{x}-x) \leq f(\overline{x}) - f(x)$

First order Taylor approximation of *f* is a global underestimator of *f*

 $f(x) + \nabla f(x)'(\overline{x} - x)$
Problem

 $min_{x\in K}f(x)$

• $K \subseteq \Re^n$ nonempty, closed, convex • f continuously diff/ble over K

If f is convex then local min is also global min

Optimality Conditions - Motivation

Generalizes:Zero slope at local min x*from unconstrained toconstrained problems

1. Necessary If x^* is a local min of f in $K \Rightarrow$ $\nabla f(x^*)'(x - x^*) \ge 0, \forall x \in K$ (1) (identifies candidates for local min) 2. Sufficient f convex over K then also if condition (1) is

satisfied then $x^* = arg \min_{x \in K} f(x)$

When $K = \Re^n$ reduces to $\nabla f(x^*) = 0$

First Order Conditions become

 $\nabla f(x^*) = 0$

Examples

1st Order Optimality Conditions

Proof

1st Order Optimality Conditions

 $\begin{array}{l} \displaystyle \underbrace{\mathsf{Necessary:}}_{f(x^*) \leq f(y)} \\ \displaystyle \mathsf{If}(x^*) \leq f(y) \\ \displaystyle \mathsf{Let} \text{ any } x \in K, \, \phi(t) = f(x^* + t(x - x^*)), \, t \in [0, \bar{t}] \, (\bar{t} \\ \displaystyle \mathsf{suff. small}) \\ \displaystyle f(x^*) \leq f(y) \Rightarrow \phi(0) \leq \phi(t), \, t \in [0, \bar{t}] \\ \displaystyle \mathsf{Min}_{t \in [0, \bar{t}]} \, \phi(t) \Rightarrow 0 = argmin_{t \in [0, \bar{t}]} \phi(t) \Rightarrow \\ \displaystyle \frac{d\phi(t)}{dt}|_{t=0} \geq 0 \\ \displaystyle \Rightarrow \nabla f(x^*)'(x - x^*) \geq 0, \ \forall x \in K \end{array}$

Proof

1st Order Optimality Conditions

$\begin{array}{ll} \underline{\text{Sufficient:}} & \forall x \in K \ \nabla f(x^*)'(x-x^*) \geq \mathbf{0} \\ \text{For } f \text{ convex} \\ \text{Recall: } f(x) \geq f(x^*) + \nabla f(x^*)'(x-x^*) \ \forall x \in K \\ \Rightarrow f(x) - f(x^*) \geq \nabla f(x^*)'(x-x^*) \geq \mathbf{0} \\ \Rightarrow f(x) \geq f(x^*) \ \forall x \in K \text{ i.e } x^* \text{ global min.} \end{array}$

The solution lies at the corner point $x^* = (13, 11)$

Examples

1st Order Optimality Conditions

 $2(x_1^*-16)(x_1-x_1^*)+2(x_2^*-14)(x_2-x_2^*)=$ $2(13-16)(x_1-13) + 2(11-14)(x_2-11) =$ $2(-3)(x_1-13)+2(-3)(x_2-11)=$ $2(-3)(x_1+x_2-24) \ge 0$ True since $x_1 + x_2 < 24$

 x^* is a local minimum but $\sqrt{f(x^*)'(x-x^*)} < 0$ for the feasible vector x shown

A MORE GENERAL FORMULATION

Variational Inequalities

Variational Inequality $VI(\mathbf{F},\mathcal{K})$ Find $\mathbf{x}^* \in \mathcal{K}$ such that $\mathbf{F}(\mathbf{x}^*) \ (\mathbf{x}-\mathbf{x}^*) \geq 0 \ \forall \mathbf{x} \in \mathcal{K}$

Early History of VIs

- Study of equilibria in electromagnetism (electrical networks, Kirkhoff's laws)
- Classical mechanics (equilibrium of forces, variational principle)
- Hartman and Stampacchia (1966) (partial differential equations, calculus of variation and control)
- R. Cottle introduces linear complementarity (1964) Karamardian nonlinear complementarity (1969)
- Smith in 1979 in the context of transportation and Dafermos in 1980, defined the variational inequality problem.

When is VIP equivalent to NLP ??

$$\nabla F(x) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ & \cdots & \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$
 symmetric + p.sd.

VI(F,K) equivalent to NLP(f,K) convex

Linear Optimization Problems

$$c^t x \ge c^t x^*$$
, for all $x \in P$

$$F(x) = ??$$

$$f(x) = ??$$

C()

$$\nabla f(x^*)^t (x - x^*) \ge 0, \text{ for all } x \in K$$
$$F(x^*)^t (x - x^*) \ge 0, \text{ for all } x \in K$$

Nonlinear Optimization

 $oldsymbol{K} = \{oldsymbol{x} \in \Re^{oldsymbol{n}} : oldsymbol{x} \geq oldsymbol{0}\}$

Then it follows:

$$abla^{ extsf{F}}_{ asymptot{f}}(x^{*})'(x-x^{*}) \geq 0 \hspace{0.2cm} orall x \geq 0$$

Optimization Subject to Bounds

 $abla f(x^*) \geq 0, \ x^* \geq 0, \
abla f(x^*)'x^* = 0 \quad (ext{NLCP})$

 \Leftrightarrow

Optimality Conditions - Rⁿ₊

Optimality Conditions - Rⁿ₊

"**⇒**"

Optimization Subject to Bounds

Proof...

If $abla f(x^*)'(x-x^*) \geq 0, \ \forall x \in K$ Let $x = x^* + e_i \ge 0$, $e_i = (0, ..., 1, ..., 0)$ $abla f(x^*)'e_i \geq 0, \ i.e. \ rac{ heta f(x^*)}{ heta x_i} \geq 0$ Repeat $\forall i$ then $\nabla f(x^*) \ge 0$ (*) If $x_i^* > 0$ then let $x = x^* - \epsilon e_i \ge 0$ for ϵ small $\epsilon
abla f(x^*)' e_i \geq 0, \;\; i.e. rac{ heta f(x^*)}{ heta x_i} \leq 0$ $f(*)+(**) \Rightarrow \text{ If } x_i^* > 0 \text{ then } rac{ heta f(x^*)}{ heta x_i} = 0$ i.e. $\nabla f(x^*)'x^* = 0$ (***)

Optimization Subject to Bounds

Proof...

Since \mathbf{x}^* is feasible then (*)+(***) QED

That is:

$x^* \ge 0, \quad \nabla f(x^*) \ge 0, \quad x^*, \nabla f(x^*) = 0$

Optimization Subject to Bounds

...Proof...

"⇐"

If $x^* \ge 0$, $\nabla f(x^*)'x^* = 0$, $\nabla f(x^*) \ge 0$ Then $\forall x \ge 0$, $\nabla f(x^*)'x \ge 0$ (combining with $\nabla f(x^*)'x^* = 0$) \Rightarrow $\nabla f(x^*)'(x - x^*) \ge 0$, $\forall x \ge 0$. QED

These results hold more generally for VIs

Optimization Subject to Bounds

...Proof...

Generalizes to Optimization Subject to Bounds

 $oldsymbol{K} = \{oldsymbol{x} \in \Re^{oldsymbol{n}}: \hspace{0.1cm} oldsymbol{a}_i \leq oldsymbol{x}_i \leq oldsymbol{b}_i, \hspace{0.1cm} i = 1,...,n \}$

```
egin{aligned} &oldsymbol{x}^* 	ext{ local min then} \ &rac{\partial f(x^*)}{\partial x_i} \geq \mathbf{0}, 	ext{ if } oldsymbol{x}^*_i = oldsymbol{a}_i \ &rac{\partial f(x^*)}{\partial x_i} \leq \mathbf{0}, 	ext{ if } oldsymbol{x}^*_i = oldsymbol{b}_i \ &rac{\partial f(x^*)}{\partial x_i} = \mathbf{0}, 	ext{ if } oldsymbol{b}_i > oldsymbol{x}^*_i > oldsymbol{a}_i \end{aligned}
```

Projection on a Convex Set

Let $z \in \Re^n$ and $K \subseteq \Re^n$ closed, convex set **Projection Problem**

$$\min f(x) = \|z-x\|^2$$

subject to $x \in K$

Projection Over a Convex Set

Projection of *z* to *K* is:

The Closest Point to z in Feasible Region K

Projection on a Convex Set

Projection Reformulation

Important Implication:First Order Optimality conditions: $\bigvee f(x^*)'(x - x^*) \ge 0 \quad \forall x \in K$ F

 $egin{array}{lll} \operatorname{Find}\, x^* \in K: & x^* = Pr_K(x^* -
ho igotimes f(x^*)) \ arepsilon \end{array}$

Optimality Conditions through Projection

 $x^* \in K$: $\nabla f(x^*)'(x-x^*) \ge 0$, $\forall x \in K$

$$x^* = \Pr_K(x^* - \rho \nabla f(x^*))$$

Projection on a Convex Set

 $egin{aligned} &
abla f(x^*)'(x-x^*) \geq \mathbf{0}, orall x \in K \Leftrightarrow \ &
ho > \mathbf{0}, \,
ho
abla f(x^*)'(x-x^*) \geq \mathbf{0}, \, orall x \in K \Leftrightarrow \ & ho
abla f(x^*)'(x-x^*) \leq \mathbf{0}, \, orall x \in K \Leftrightarrow \ & (x^* -
ho
abla f(x^*) - x^*)'(x-x^*) \geq \mathbf{0}, \, orall x \in K \Leftrightarrow \ & ext{Let} \ & z = x^* -
ho
abla f(x^*) \ & (z-x^*)'(x-x^*) \leq \mathbf{0}, \, orall x \in K \Leftrightarrow \ & x^* = Pr_K(z) = Pr_K(x^* -
ho
abla f(x^*)) \text{ QED} \end{aligned}$

Proof

Connection with Fixed Points

 $x^* \in K : F(x^*)^t (x - x^*) \ge 0, \forall x \in K$

$$\widehat{\mathbf{WHY}}?$$

$$x^* = \Pr_{K}(x^* - \rho F(x^*))$$

$$T(x) = Pr_{K}(x - r F(x))$$

$$\mathbf{x}^* = \mathbf{T}(\mathbf{x}^*)$$

How would you solve the VI or NLP as a result?

Projection on a Convex Set

Motivates the following method

Proof

X^{k+2}

Xk+

 $x^{k+1} - \rho \sqrt{f(x^{k+1})}$ $x^k - \rho \sqrt{f(x^k)}$

 $x^{k+1} = Pr_K(x^k -
ho
abla f(x^k))$

This can be viewed as a constrained version of Steepest Descent $-\nabla f(x^k)$

K

Overview of Solution Methods

- 1) Solve Equivalent Convex Min Problem
- 2) Projection Methods: $x_{k+1} = \Pr_{K}^{G}(x_{k} \rho G^{-1}F(x_{k}))$ G p.d, sym. $\rho > 0$, suf. small
- **3)** Relaxation Methods: $g_i(x_{k+1}, x_k) = F_i(x_1^k, \dots, x_{i-1}^k, x_i^{k+1}, x_{i+1}^k, \dots, x_n^k)$
- 4) Linearization Methods: $g(x_{k+1}, x_k) = F(x_k) + A(x_k)(x_{k+1} x_k)$
- 5) General Iterative Scheme:

Given x_k , find x_{k+1} in K: $g(x_{k+1}, x_k)(x - x_{k+1}) \ge 0$ for all x in K

- 6) Frank-Wolfe: $y_k = Arg \min_{y \in K} F(x_k)y, x_{k+1} in [x_k, y_k]$ via line-search
- 7) Simplicial Decomposition: Column generation approach
- 8) Cutting Plane Type Methods: Ellipsoid Method
- 9) Interior Point Methods

$\mathsf{F}(\mathsf{x}) = \mathsf{0}$

T:K --->K, K closed, convex subset of Rⁿ

F(x)=x-T(x), for all x in K

VI(F,K), FP(T,K) same solutions, if any!

Relation Between Problems

- K compact, convex set
- **F** continuous on K

then VI(f, K) at least one solution

VI(f,K) has a solution iff exists R>0: VI(F,K_R) has $\mathbf{x_R}^*$ $\| \mathbf{x_R}^* \| < \mathbf{R}$

F is **coercive**:

 $(F(x) - F(x_0))(x - x_0)/||x - x_0|| \longrightarrow infty$ as $||x|| \longrightarrow infty$ for x in K, some x_0 in K then VI(F, K) **at least one** solution
Conditions on VI Problem

Monotonicity $(F(x)-F(y))(x-y) \ge 0$ --- JF p.sd. --- convexity of f

Strict Mon. (F(x)-F(y))(x-y) > 0, $x \neq y --- JF$ p.d. --- s. convexity of f

Stro. Mon. a>0, $(F(x)-F(y))(x-y) \ge a ||x-y||^2 --- JF$ u.pd. -- u. conv of f

BUT for LP (c-c)(x-y)=0 ALWAYS!

Strong-f-Mon. b>0, $(F(x)-F(y))(x-y) \ge b ||F(x)-F(y)||^2 ---JF(x)-bJF(x)J(F(y))$ Co-coercivity p.sd.

F <u>strictly monotone</u> \longrightarrow VI(F,K) unique solution if any

1st Order Optimality Conditions

Optimization over a Simplex

 $K = \{x \in \Re^n : x \ge 0, \sum_{i=1}^n \chi_i = d\},\$ where d > 0 in \Re

If $x_i^* > 0$ then $rac{\partial f(x^*)}{\partial x_i} \leq rac{\partial f(x^*)}{\partial x_j}, \ \forall j$

Optimization over a Simplex

Example: $f(x) = x_1^2 + x_2^2 + (x_3 + 15)^2$ subject to $x_1 + x_2 + x_3 = 20, \ x_1, x_2, x_3 \ge 0$ Optimal solution: $x_1^* = 10 = x_2^*$ and $x_3^* = 0$ Notice that $x_1^* > 0$, $x_2^* > 0$ then $rac{\partial f(x^*)}{\partial x_1}=2x_1^*=20=rac{\partial f(x^*)}{\partial x_2}=2x_2^*$ $\leq rac{\partial f(x^*)}{\partial x_2} = 2(x_3^*+15) = 30.$

Some Application Areas

Transportation

Transportation Planning IVHS Free Flight

Economics

Spatial Price Equilibria Pure Exchange Equilibria General Economic Equilibria Financial Equilibria

<u>Multi-period Pricing</u>

Optimal Routing

Optimization over a Simplex

Optimal Routing...

Given a data net and a set W of OD pairs w = (i, j) each OD pair w has input traffic dw
Optimal routing problem:

Min
$$C(x) = \sum_{\rho} c_{\rho}(x) x_{\rho} = c(x)' x$$

$$s.t. \quad \sum_{p\in P_{oldsymbol{w}}} x_p = d_w, \;\; orall w\in W$$

 $oldsymbol{x_p} \geq oldsymbol{0}, \hspace{0.1cm} orall oldsymbol{p} \in oldsymbol{P_w}, \hspace{0.1cm} oldsymbol{w} \in oldsymbol{W}$

System Optimum

Optimization over a Simplex

...Optimal Routing...

 $egin{aligned} ext{Optimality conditions:} & &
abla C(x^*)'(x-x^*) \geq 0, & orall ext{feasible} x &
onumber \ &
abla C(x) = (rac{\partial C(x)}{\partial x_1},...,rac{\partial C(x)}{\partial x_p},...rac{\partial C(x)}{\partial x_n}) &
onumber \end{aligned}$

Equivalent Optimality conditions: $x_p^* > 0 \Rightarrow \frac{\partial C(x^*)}{\partial x_p} \le \frac{\partial C(x^*)}{\partial x_{p'}}, \ \forall p' \in P_w$

Used paths have smallest marginal cost

1st Order Optimality Conditions

Optimization over a Simplex

...Optimal Routing...

Optimality conditions: $abla C(x^*)'(x-x^*) \ge 0, \quad \forall ext{feasible } x$ $abla C(x) = (rac{\partial C(x)}{\partial x_1}, ..., rac{\partial C(x)}{\partial x_p}, ... rac{\partial C(x)}{\partial x_n})$

Equivalent Optimality conditions: $x_p^* > 0 \Rightarrow \frac{\partial C(x^*)}{\partial x_p} \leq \frac{\partial C(x^*)}{\partial x_{p'}}, \ \forall p' \in P_w$

Traffic Assignment

$$c_{p_1}(x) = x_{p_1} + \frac{1}{4}x_{p_2} + 13, c_{p_2}(x) = 3x_{p_2} + \frac{1}{2}x_{p_1} + 5, c_{p_3}(x) = 2x_{p_3} + 25$$

Behavioral Assumption: No user has ANY incentive to change

Only shortest paths are used !

If $x_{\rho}^* > 0 \implies c_{\rho}(x^*) = \min_q c_q(x^*)$

Arises is various contexts!

$$c_{p_1}(x^*)(x_{p_1} - 6) = 20(x_{p_1} - 6)$$

$$c_{p_2}(x^*)(x_{p_2} - 4) = 20(x_{p_2} - 4) \implies c(x^*)^t (x - x^*) \ge 0$$

$$c_{p_3}(x^*)(x_{p_3} - 0) \ge 20(x_{p_3} - 0) \qquad \forall x \text{ feasible}$$

Conversely?

Decentralized Problem----VIs

p in P, w in W, i in L

- $f = \Sigma_{i in P} F_p$
- $\mathbf{d}_{\mathsf{w}} = \Sigma_{\mathsf{p} \text{ in } \mathsf{P}_{\mathsf{W}}} F_{\mathsf{p}}$
- $C_{p}(f) = \Sigma_{i in P} c_{i}(f)$

A flow pattern (f^* , F^*) is **U-O**

if for all w in W and every p in P_{w}

$$C_{p}(f^{*}) = v_{w} \text{ if } F^{*}_{p} > 0,$$

 $C_{p}(f^{*}) \ge v_{w} \text{ if } F^{*}_{p} = 0$

Equivalent to VI(c, K) ?: $c(f^*)^t(f-f^*) \ge 0, \forall f$

 $\mathsf{K}=\{(f,F): f_i=\Sigma_{i \text{ in } P} F_{p_i} \mathsf{d}_w=\Sigma_{p \text{ in } P_W} F_{p_i} F_p \ge 0\}$

Traffic
AssignmentUnderlying ?System Optimum ← User Optimum
SOME

Equivalent to Find \mathbf{x}^* : $c(x^*)'(x - x^*) = \sum_{n} c_p(x^*)(x_p - x_p^*)$ Objective C does not exist if the Jacobian matrix Jc is not symmetric

Identical with optimality conditions of routing problem if we identify the path travel time with the derivative of cost *C* wrt path flow \boldsymbol{x}_p , i.e. $\boldsymbol{c}_p(\boldsymbol{x}) = \begin{vmatrix} \frac{\partial C(\boldsymbol{x})}{\partial \boldsymbol{x}_p} \\ \frac{\partial C(\boldsymbol{x})}{\partial \boldsymbol{x}_p} \end{vmatrix}$

Traffic Assignment

Example: One OD pair connected by 3 paths, with demand d = 10 $J_{C} = \begin{bmatrix} 1 & \frac{1}{4} & 0 \\ \frac{1}{2} & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $c_{p_1}(x) = x_{p_1} + \frac{1}{4}x_{p_2} + 13,$ $c_{p_2}(x) = 3x_{p_2} + \frac{1}{2}x_{p_1} + 5,$ $c_{p_3}(x) = 2x_{p_3} + 25$ $x_{p_1}^*=6, x_{p_2}^*=4, x_{p_3}^*=0$ $c_{p_1}(x^*) = c_{p_2}(x^*) = 20 \le c_{p_3}(x^*) = 25$ Can we find C(x): $\nabla C(x) = c(x)$?

NO, the Jacobian matrix Jc is not symmetric

System Optimum vs User Optimum

 $\sum_{p} c_{p}(x^{*})(x_{p}-x^{*}) \ge 0$, for all x feasible

- Variational Inequalities
- Connections with other problem classes
- Nonlinear Optimization (NLP)
- First Order Optimality Conditions for
- Optimization Subject to Bounds
- Optimization over Simplex
- Projection Problems
- Applications in Transportation

Questions?

Nonlinear Optimization and Variational Inequalities

\checkmark

Multi Period Pricing

- The Best Response Problem --- The Market Equilibrium Problem
- An Iterative Learning Algorithm
- Insights from Numerical Examples
- The Stochastic Demand Setting

The Price of Anarchy -- The Price of Competition

• Measuring the loss of efficiency due to competition (Asymmetric Costs)

Another Application

Multi-Period Pricing for Perishable Products

Total Market

Single, homogenous product

Total Market

Market demand for Seller *i* is determined by the function $h_i(p_1,...,p_l)$

Hotel room

Period 1

Period t

Period T

Market in a Multi-period Setting Perishable Product

Flight NY-Boston Airlines Advance booking

Characteristics

Oligopolistic market

- (Few Firms Compete for Products)
- Dynamic nature of problem
- Level of inventory

(Prices depend on level of inventory left, demand, prices of competitors)

- Nature of goods (perishable or not)

Application Areas

Airline Industry

Pricing airline tickets under competition

Service Industry

 Car Rentals, Hotels

 Retail Industry

 Filene's - Macy's

 Internet Pricing

Sample Literature

Revenue Management, Pricing and Inventory Control:

- Rosen (1965), Harker (1984), Murphy etal (1982)
- Gallego and van Ryzin (1993)
- Bitran and Mondschein (1997)
- Federgruen and Heching (1999)
- Chan et.al (2000)
- Bernstein and Federgruen (2001)
- Inventory: Zipkin (1999)

(BOOK)

- RM: McGill and van Ryzin (1999), Caldentey & Bitran (2002) (REVIEWS)
- Pricing: Elmaghraby & Keskinocak (2002),

Chan et.al., Gilbert & Yano (2003)

Competition: Cachon, Netessine (2003)

(REVIEWS)

(REVIEW)

The Decentralized Problem

Pricing and Allocation

- How many seats to sell (allocate) in each fare class?
- How to price each fare class?
- Account for uncertainty and competitors and network of legs in the itinerary.

The Decentralized Problem

User Optimum

Demand Non-separable

 $h_{1}(p) = -g_{11}p_{1} + g_{12}p_{2} + h_{1}$ $h_{2}(p) = g_{21}p_{1} - g_{22}p_{2} + h_{2}$

Could be Asymmetric g₁₂ is not g₂₁

Questions:

- How should seller i price the product in the face of competition?
- > What are the equilibrium prices for all competitors in the market?
- > How inefficient does the system become due to competition?

Multi-period oligopoly models

- Total capacity over horizon is fixed
 - No option to replenish capacity.
 - Inventory holding costs are negligible.
 - No backordering allowed.
 - Typically finite horizon problems.
 - Policies consist of decisions regarding pricing and protection levels.
 - Suited for pricing in transportation, revenue management, communication, energy etc.

Multi Period Pricing

- The Best Response Problem --- The Market Equilibrium Problem
- An Iterative Learning Algorithm
- Insights from Numerical Examples
- Conclusions

Based on paper with A. Sood entitled: "Competitive Multi-period Pricing for Perishable Products"

Assumptions

Joint work with

A. Sood

Perfect Information (of their and competitors' demand, total inventories)

Demand depends on current period prices

> For this talk: Demand is deterministic

> Single product and fixed perishability deadline

> Sellers are revenue maximizers over time horizon

Best Response Policy

If : Demand is deterministic

Cannot be applied...

- The best response problem can not be formulated as a convex optimization problem (except only under linear demand).
- The objective in the best response problem is not quasi-concave (except for a single period problem).
- The feasible space is not a lattice because of the fixed-inventory constraint. Hence the game is not a supermodular game.

Best Response Policy

If : Demand function h_i^t is s. decreasing w.r.t. p_i^t

Note: In the optimal solution, $d_i^t = h_i^t(p_i^t, \bar{p}_{-i}^t)$

Approach

Best response optimization problem

Variational inequality

Variational inequality

Best response optimization problem **Best Response Policy**

If *h_i(.)* is a **concave function** then the Best Response Problem can be **expressed as a** Variational Inequality problem

Demand decreases faster as price increases

Question

When is the **Best Response Problem** reasonable?

Proposition 1

The Best Response policy exists.

Perfect Information (of their and competitors' demand, total inventories)

Demand depends on current period prices

> For this talk: Demand is deterministic

> Single product

Demand s. decreases with own price

Theorem 2

The Best Response policy is **unique**. The Variational Inequality has a **unique** solution.

[$h_i^t(p_i^t, p_{-i}^t)$ is a **strictly decreasing** function of p_i^t]

Market Equilibrium

Nash Equilibrium Policies

Questions

- Does such a Nash Equilibrium exist?
- •ls it unique?
- How do we **compute** it?

Approach

Variational inequality

Joint variational inequality

Variational inequality

Joint variational inequality

Best response Optimization problem

Joint variational inequality

Theorem 4

There exists a **unique** market equilibrium.

[h_i(p) is concave in p]
[-h(p) is strictly monotone in p]

Monotonicity Conditions

• Strict Monotonicity

$$[F(x^{1}) - F(x^{2})]^{T}[x^{1} - x^{2}] > 0 \quad \forall x^{1} \neq x^{2}$$

S. Monotonicity F = gradient *obj* — S. Convexity of *obj*

Lemma

Let (p^*, d^*) be a solution to joint variational inequality. (p^*, d^*) satisfies the following relation:

$$d_i^{t*} = h_i^t(p_i^{t*}, p_{-i}^{t*}), \quad \forall \ i \in \mathbf{I}, \ t \in \mathbf{T}.$$

• Demand more sensitive to own price than competitors' prices

and

• Own demand decreases less than competitors' demand increases through own price increase

Naive Optimizers

Question

If all sellers are **naive optimizers** and the process is repeated several times, do the policies **converge** to an **equilibrium?**

Iterative learning

Theorem 5

Iterative learning will **converge** to Nash equilibrium prices.

 $\begin{bmatrix} -h(p_i, p_{-i}) \text{ is strongly monotone } (\alpha) \text{ in } p_i \end{bmatrix}$ $\begin{bmatrix} h(p_i, p_{-i}) \text{ is Lipschitz continuous } (L) \text{ in } p_{-i} \end{bmatrix}$ $\begin{bmatrix} \alpha > L \end{bmatrix}$

Monotonicity Conditions

• Strict Monotonicity

$$[F(x^{1}) - F(x^{2})]^{T}[x^{1} - x^{2}] > 0 \quad \forall x^{1} \neq x^{2}$$

Strong Monotonicity

$$[F(x^{1}) - F(x^{2})]^{T}[x^{1} - x^{2}] \ge \alpha ||x^{1} - x^{2}||^{2} \quad \forall x^{1}, x^{2}$$

• Lipschitz Continuity

$$||F(x^{1}) - F(x^{2})|| \le L||x^{1} - x^{2}|| \quad \forall x^{1}, x^{2}$$

Convergence conditions

For any given
$$\bar{\mathbf{p}}_i$$
, $\mathbf{h}_i(\bar{\mathbf{p}}_i, \mathbf{p}_{-i})$ is Lipschitz continuous with respect to \mathbf{p}_{-i} with parameter \mathcal{L} .

$$\|\mathbf{h}_i(ar{\mathbf{p}}_i, \hat{\mathbf{p}}_{-i}) - \mathbf{h}_i(ar{\mathbf{p}}_i, ar{\mathbf{p}}_{-i})\| \leq \mathcal{L} \|\hat{\mathbf{p}}_{-i} - ar{\mathbf{p}}_{-i}\|$$

2. For any given
$$\bar{\mathbf{p}}_{-i}$$
, $-\mathbf{h}_i(\mathbf{p}_i, \bar{\mathbf{p}}_{-i})$ is strongly mono-
tone with respect to \mathbf{p}_i with parameter α
 $(-\mathbf{h}_i(\hat{\mathbf{p}}_i, \bar{\mathbf{p}}_{-i}) + \mathbf{h}_i(\check{\mathbf{p}}_i, \bar{\mathbf{p}}_{-i})) \cdot (\hat{\mathbf{p}}_i - \check{\mathbf{p}}_i) \geq \alpha \|\hat{\mathbf{p}}_i - \check{\mathbf{p}}_i\|^2$

3. $\alpha > L$

Example

$$h_1^{\dagger}(p) = h_1^{\dagger} - g_{11}^{\dagger} p_1^{\dagger} + g_{12}^{\dagger} p_2^{\dagger}$$

 $h_2^{\dagger}(p) = h_2^{\dagger} - g_{22}^{\dagger} p_2^{\dagger} + g_{21}^{\dagger} p_1^{\dagger}$

Solving the Best Response Sub-Problems

At Step k: solve Best Response Sub-Problem:

$$\begin{array}{ccc} \max_{\mathbf{d}_{i},\mathbf{p}_{i}} & \sum_{t=1}^{T} d_{i}^{t} \cdot p_{i}^{t} & \mathbf{d}_{i}^{t}, \mathbf{p}_{i}^{t} \\ \text{such that} & d_{i}^{t} \leq h_{i}^{t}(p_{i}^{t},(p_{-i}^{t})_{k-1}) & \forall t \in \mathbf{T} \\ & \sum_{t=1}^{T} d_{i}^{t} \leq C_{i} & \mathbf{i=1,...,N} \\ & d_{i}^{t}, & p_{i}^{t} \geq \mathbf{0} & \forall t \in \mathbf{T}. \end{array}$$

Demand $h_i^t(., (p_{-i}^t)_{k-1}) = h_{i,k-1}^t(.)$ s. decreas. \rightarrow invertible

$$p_i^t = \bar{p}_{i,k-1}^t(d_i^t) = h_{i,k-1}^t^{-1}(d_i^t)$$

$$\begin{array}{ll} \max_{\mathbf{d}_{i}} & \sum_{t=1}^{T} d_{i}^{t} \cdot \bar{p}_{i}^{t}(d_{i}^{t}) \\ \text{such that} & \sum_{t=1}^{T} d_{i}^{t} \leq C_{i} \\ & d_{i}^{t} \geq \mathbf{0} \qquad \forall t \in \mathbf{T}. \end{array}$$

Solving the Best Response Sub-Problems

At Step k: solve Best Response Sub-Problem:

$$\begin{array}{ll} \max_{\mathbf{d}_{i}} & \sum_{t=1}^{T} d_{i}^{t} \cdot \bar{p}_{i}^{t}(d_{i}^{t}) \\ \text{such that} & \sum_{t=1}^{T} d_{i}^{t} \leq C_{i} \\ & d_{i}^{t} \geq \mathbf{0} \qquad \forall t \in \mathbf{T}. \end{array}$$

$$\max_{\mathbf{d}_{i}} \sum_{t=1}^{T} \pi_{i}^{t} = \sum_{t=1}^{T} d_{i}^{t} \cdot \bar{p}_{i}^{t}(d_{i}^{t})$$
$$d_{i}^{t} \ge \mathbf{0} \qquad \forall t \in \mathbf{T}.$$

$$\max_{\mathbf{d}_i} \ \pi_i^t = d_i^t \cdot \bar{p}_i^t(d_i^t) \\ d_i^t \ge \mathbf{0}$$

For all t=1,...T

Check if total demand does not exceed capacity

Numerical examples

2 seller $I = \{1, 2\}$ 10 period $T = \{1, 2, \dots, 10\}$

The demand is linear in prices and symmetric with respect to both sellers and varies with time:

$$h_i^t = D_{\mathsf{base}}^t - \beta^t p_i^t + \alpha^t p_{-i}^t \quad \forall i \in \mathbf{I}$$

Numerical examples

Model parameters held constant	Parameters varied
$D_{base} = \{110, 100, 100, 100, 90, 90, 100, 100, 80, 60\}$ $\beta = \{1.2, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4\}$ $\alpha = \{1.0, 1.1, 1.0, 0.8, 0.8, 0.7, 0.5, 0.4, 0.4, 0.4\}$	$\begin{array}{l} \{C1, C2\} = \\ \{3000, 2000\}, \\ \{3000, 500\}, \\ \{1000, 500\} \end{array}$

Trend in pricing policies with varying Capacities.

Numerical examples (varying capacity)

Numerical examples (varying capacity)

Numerical examples (varying capacity)

Numerical examples

	Λ	<i>Nodel parameters held constant</i>	Model parameters varied
$D_{f base} lpha lph$		$\{110, 100, 100, 100, 90, 90, 100, 100, 80, 60\}$ $\{1.2, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4\}$ $\{1.0, 1.1, 1.0, 0.8, 0.8, 0.7, 0.5, 0.4, 0.4, 0.4\}$	Starting estimate of prices $\forall i \in \mathbf{I} \text{ and } t \in \mathbf{T}$
$\{C_1, C_2\}$	=	{1000,500}	$p_i^* = 0, 150, 300, 450$

Numerical examples (varying starting est.)

Movement of pricing policies in iterations of the algorithm with varying initial estimates for starting prices.

Numerical examples

	M	odel parameters held constant	Model parameters varied
${}^{D}_{base}_{eta}$	=	$ \{ 110, 105, 100, 95, 90, 85, 80, 75, 75, 85 \} \\ \{ 1.2, 1.15, 1.1, 1.05, 1, .95, .9, .85, .8, 0.75 \} $	Starting estimate of prices $orall i \in \mathbf{I}$ and $t \in \mathbf{T}$
$\{C1, C2\}$	=	$\frac{13}{32}\beta$ {1000, 500}	$p_i^t = 0, 50, 100, 150$

Numerical examples (varying starting est.)

Practical convergence behavior of the algorithm with varying initial estimates for starting prices.

Numerical examples

Model parameters held constant	Model parameters varied
$D_{base} = \{110, 105, 100, 95, 90, 85, 80, 75, 75, 85\}$ $\beta = \{1.2, 1.15, 1.1, 1.05, 1, .95, .9, .85, .8, 0.75\}$	$\alpha = k\beta$
$\{C1, C2\} = \{1000, 500\}$	where, $k = \frac{1}{32}, \frac{1}{32}, \frac{1}{52}, \frac{1}{32}$

Numerical examples (vary price sensitivities)

Practical convergence behavior of the algorithm with varying relative price sensitivities.

Insights from Numerical Examples

- 1. Prices decrease as the total inventory increases.
- 2. Prices are higher in periods of low price sensitivity
- 3. But the **revenue** of the seller over the entire horizon **increases** (but diminishing returns) as total **inventory increases**.
- 4. But an **increase** in the total **inventory** of a **competitor** results in **lower** revenues for the seller.
- 5. Algorithm converges to equilibrium prices very fast
- 6. Dependence of Algorithm on starting policies.
- 7. Relative ratio of demand sensitivities to price affects rate of convergence. Prices converge to equilibrium at a geometric rate.
- 1. Introduced a **general dynamic optimization model** of pricing for **perishable** products that incorporates **competition**.
- 2. We characterized **Nash equilibrium** pricing using a **variational inequality formulation**. This allowed us to establish **existence** and **uniqueness** of the Nash equilibrium pricing policies.
- 3. Incorporated **nonlinear**, **asymmetric** demands in a **multi-period** setting

- 4. We introduced an **algorithm** for computing Nash equilibrium pricing policies. We proved its **convergence** and discussed the **practical implementation** of this algorithm.
- 5. We tested our findings through some **numerical examples** and discussed some **insights**.

Stochastic Demand Model

- Demand observed when the price is set at p for a realization x of a random variable X $\frac{d(p,x) = \theta(p) + \mu(p)x}{d(p,x)}$
- $P(X = x) = \phi(x), E[X] = 1$

• θ and μ are functions of price

Demand Model Effects

Additive form of demand d(p,x) = θ(p) + x
Multiplicative form of demand d(p,x) = μ(p)x

$d(p,x) = \theta(p) + \mu(p)x$

Stochastic Demand Model

 Expected demand
 E_X(d(p, X)) = θ(p) + μ(p)
 Price response of demand
 μ(p) ↓ in p
 θ(p) ↓ in p
 θ(p) ↓ in p

Modeling Competition

Many-seller case

 $d_i(p_i, p_{-i}, x) = \theta(p_i, p_{-i}) + x\mu(p_i, p_{-i})$

Two-seller case

 $d_1(p_1, p_2, x) = \theta(p_1, p_2) + x\mu(p_1, p_2)$ $d_2(p_2, p_1, x) = \theta(p_2, p_1) + x\mu(p_2, p_1)$

Modeling Competition

Expected demand

E_X(d_i(p_i, p_{-i}, X)) = θ(p_i, p_{-i}) + μ(p_i, p_{-i})

Price response of demand

μ(p_i, p_{-i})↓ in p_i and ↑ in p_{-i}
θ(p_i, p_{-i})↓ in p_i and ↑ in p_{-i}

Total capacity C_i and T periods horizon

Arbitrary stochasticity

$$P(X = x) = \phi(x), x \ge 0$$

Linear demand-price relation

$$\mu_i(p_i, p_{-i}) = \hat{d}_i - \beta_i p_i + \alpha_i p_{-i}$$

$$\theta_i(p_i, p_{-i}) = \check{d}_i - \gamma_i p_i + \delta_i p_{-i}$$

$$\alpha_i, \beta_i, \gamma_i, \delta_i \ge 0$$

How to handle total capacity C_i

How do we avoid selling more than we have total capacity C_i?

 Penalty for over-sale at end of horizon (Overbooking penalty)

- More on the stochastic demand case
- Joint pricing and inventory control --- Competition

- Many products (network case)
- Delay of price to affect demand
- Previous prices also affecting demand
- Demand Learning

Questions?

Nonlinear Optimization and Variational Inequalities

Multi Period Pricing

The Price of Anarchy -- The Price of Competition

- Motivation (Transportation, Multi Period Pricing)
- VIs for Decentralized Systems vs NLP for Centralized Systems
- A **Bound** when Costs are Linear (the role of **Asymmetry**)
- A Bound when Costs are Nonlinear (the role of Non linearity)

Motivation --- Transportation

Costs --- Travel times

$c_i(f_i)$ on arc i depends on flow f_i on arc i (separable)

Drivers take the "best route" for themselves!

If car drivers are selfish

Optimize for themselves!

How many of the two cars will use arc 1 Versus arc 2?

If car drivers are dictated so that total cost is minimum (social optimization)

How many of the two cars will be asked to use arc 1 versus arc 2?

User Opt. Total Cost = 4/3 Social Opt. Total Cost

Social Optimum

User Opt. Total Cost = 4/3 Social Opt. Total Cost

Motivation --- **Transportation**

Costs --- Travel times

c_i(f_i) on arc i depends on flow f_i on arc i (separable)
 c_i(f) on arc i depends on flow vector f
 (I.e. neighboring arcs influence traffic)

(non-separable)

(non-separable)

 $c_{1}(f) = g_{11}f_{1} + g_{12}f_{2} + g_{13}f_{3} + \dots + b_{1}$ $c_{2}(f) = g_{21}f_{1} + g_{22}f_{2} + g_{23}f_{3} + \dots + b_{2}$

.....

(i.e. neighboring arcs influence traffic)

> upstream effects> downstream effects> intersections

Decentralized Problem----VIs

p in P, w in W, i in L

- $f_i = \Sigma_{i \text{ in P}} F_i$
- $\mathbf{d}_{\mathsf{w}} = \Sigma_{\mathsf{p} \text{ in } \mathsf{P}_{\mathsf{W}}} \boldsymbol{F}_{\boldsymbol{p}}$
- $C_{p}(f) = \Sigma_{i in P} c_{i}(f)$

A flow pattern (f^* , F^*) is **U-O**

if for all w in W and every p in P_w

$$C_{p}(f^{*}) = v_{w} \text{ if } F^{*}_{p} > 0,$$

 $C_{p}(f^{*}) \ge v_{w} \text{ if } F^{*}_{p} = 0$

Equivalent to VI(c, K) : $c(f^*)^t(f - f^*)^t)$

$$c(f^*)^t(f-f^*) \ge 0, \forall f$$

 $\mathsf{K}=\{(f,F): f_i=\Sigma_{i \text{ in } P} F_{p_i} d_w = \Sigma_{p \text{ in } P_w} F_{p_i} F_p \ge 0\}$

The Centralized Problem ---- NLP

System Optimum

 $\operatorname{Min}_{\mathbf{f}} \Sigma_{\operatorname{i} \operatorname{in} \mathbf{L}} \mathbf{C}_{\operatorname{i}}(f) f_{i}$

such that

$$\mathsf{K}=\{(f,F): f_{i}=\Sigma_{i \text{ in } P} F_{\rho,} \mathsf{d}_{w}=\Sigma_{p \text{ in } P_{w}} F_{\rho,} F_{\rho} \geq 0\}$$

How bad is User-Optimization ?

Roughgarden and Tardos (2001)

constant terms $b \ge 0$, $g_1, g_2 > 0$

$$OF_{uo}/OF_{so} \leq 4/3$$

 $c_1(f) = g_1 f_1 + b_1$ $c_2(f) = g_2 f_2 + b_2$ $G = \begin{bmatrix} g_1 & 0 \\ & & \\ 0 & g_2 \end{bmatrix}$

G pd, diagonal matrix

1

2

 $c_{1}(f) = g_{11}f_{1} + g_{12}f_{2} + b_{1}$ $c_{2}(f) = g_{12}f_{1} + g_{22}f_{2} + b_{2}$

$$g_{12} = g_{21}$$

c(z)=Gf+b $f=(f_1,f_2)$

G pd, symmetric matrix (contribution from arc i to j same as arc j to i)

c(f)=Gf+b $f=(f_1,f_2)$

G pd, asymmetric matrix (contribution not the same)

Sample Literature

Transportation and Game Theory:

- Dafermos (1969, 1980, 1984)
- Florian and Hearn (1993), Nagurney(2000)

(REVIEWS)

- Papadimitriou and Koutsoupias (1999)
- Roughgarden and Tardos, Roughgarden (2001)
- Johari and Tsitsiklis (2002)

Hotel room

Period 1

Period t

Period T

Market in a Multi-period Setting Perishable Product

Flight NY-Boston Airlines Advance booking

The Decentralized Problem

The Decentralized Problem

User Optimum

Demand Non-separable

 $h_{1}(p) = -g_{11}p_{1} + g_{12}p_{2} + h_{1}$ $h_{2}(p) = g_{21}p_{1} - g_{22}p_{2} + h_{2}$

Could be Asymmetric g₁₂ is not g₂₁

The Centralized Problem ?

System Optimum

$$\text{Max}_{\text{d,p}} \Sigma_{\text{i in L}} \text{profit seller}_{\text{i}}$$

Often not legal!

How bad is system due to competition and lack of coordination?

 $F_{1}(z) = g_{11}z_{1} + g_{12}z_{2} + b_{1}$ $F_{2}(z) = g_{21}z_{1} + g_{22}z_{2} + b_{2}$

G pd, asymmetric matrix

A Bound between SO and UO $F(z)=Gz+b \quad z=(z_{1},z_{2},...,z_{n})$

 $F(z^*)'(z-z^*) \ge 0$, for all z feasible

Define: S = G + G' symmetrized matrix (pd) 2 Define: $c = ||S^{-1}G||_{S}$

Transportation

c² describes how congestion in neighboring roads affects your travel time

This phenomenon also applies to pricing with competition

Contributions

> Understand the price of "competition"

> how bad is system due to lack of coordination?

Non-separable payoffs (costs)

> the role of asymmetry (non-separable)

* symm. ($c^2=1$) \rightarrow 4/3,

- * little asymm. ($c^2 <= 2$) $\rightarrow 4/(4-c^2)$,
- * quite asymm. ($c^2 > 2$) $\rightarrow c^2$
- Nonlinear payoffs (costs)

The role of non-linearity (measure non-linearity)
Version of the paper to appear at the IPCO conference Proceedings
Also full version under review in MOR

Questions?

