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Motivation

Some Applications

Traffic Congestion severe in recent years.

Congestion costs $640/traveler in 39 areas U.S. in 1994
implying congestion $48 billion for 1994!




Traffic Assignment

How can traffic congestion be
managed and alleviated ?



Revenue Management

 Revenue management at : American Airlines

$1.4 billion in added revenue in 3 years

« Marriott International: 4.7% increase in room
revenue per year from revenue management



Revenue Management

Airline Revenue Management:

e “Control and management of reservations
inventory in a way that increases company
profitability.” (Barry Smith)

o “Selling the right seat to the right customer at
the right price at the right time.” (Tom Cook)



Industries Adopting Revenue Management

* Airlines

* Hotels

» Railroads

« Car Rentals

e Cruise lines

« Tour and vacation packages
* Television Networks

» Others: public events ticketing, ....




Industry Characteristics

° Advanced reservations system 1.
« Range of prices for services

» Customer willingness to pay more/less
for certain service guarantee

» Cancellations and no-shows
» High fixed cost, low variable cost
» Highly perishable inventory of product

\.c




Price Segmentation

four
prices




Q Revenue Management Modeling

 Decisions

— How many seats to sell in each fare class for
each itinerary in the airline’s schedule?

 Maximize Expected Revenue

— account for uncertainty of demands, no-shows,
overbooking, etc.

— account for plane seat configurations, capacity,
etc.



Revenue Management Modeling

* Prices for fare classes are given from
marketing department.

* Only worry about how to manage the
inventory (i.e., plane’s total capacity)

 How about pricing fare classes?



Outline

Nonlinear Optimization and Variational Inequalities

» Some key concepts and results in NLPs and Vls

» Connection with problems in mathematical programming

An Application in Multi Period Pricing

» The Best Response Problem --- The Market Equilibrium Problem
* An Iterative Learning Algorithm

* Insights from Numerical Examples

» The Stochastic Demand Setting

The Price of Anarchy -- The Price of Competition
» Measuring the loss of efficiency due to competition (Asymmetric Costs)



History of
Optimization

Fermat, 1638; Newton, 1670
min f(x) X: scalar

df(z) _ Minimum
der /; S/{

Maximum

min f(xy,...,2,)

Euler, 1755

Vf(x)=0



History of
Optimization

Lagrange, 1797
min f(z1,...,Ty)

st gp(x1y...,2,)=0 k=1,...,m

Euler, Lagrange Problems in infinite dimensions,
calculus of variations.

Kuhn and Tucker 1950s



History of
Optimization

1950s Applications.
1960s Large Scale Optimization.
Karmakar, 1984 Interior point algorithms.

Mnimum

Maximum



Arise?

e Transportation

Traffic management, Traffic equilibrium . ..
Revenue management and Pricing

e Finance - Portfolio Management
e Equilibrium Problems



Arise?

e ENngineering
Data Networks and Routing
Pattern Classification

e Manufacturing

Resource Allocation
Production Planning



The general
problem again

f(xz): R" - R
IS a continuous (usually differentiable) function of n
variables

gi(z): R"— RN,z =1,...,m,

hi(z): R~ R,j=1,...,1



The general
problem again

NLP:

min  f(x)
gm(m) <0
hl(m) — )

hg(..ic) =0




An Analogy -- Chutes and Ladders




Two Issues

Where do solutions lie?

Consider the problem:

Minimize

S.t.

(x = 16)2 + (y —14)2

(x=8)2 + (y-9)2 < 49



Solution at a Corner Poip

Feasible
8 1 Region




Where do solutions lie?

Consider the problem:

Minimize (x = 11)2 + (y —10)?
s.t. (x-8)2 + (y-9)2 < 49
X =2
x<13



Solution in the Interior

4 Solution: x=11, y=10

0 2 4 6 8 10 12 14 X



Where do solutions lie?

Consider the problem:

Minimize (x — 14)> + (y —14)?
s.t. (x—8)% + (y-9)* <49
).
x<13



Solution on the Bounda




Second Issue
Global versus Local Minima

Minimization in one variable over2<x<7

— X = 3.5 s alocal optimal solution.

f(x
(x) /\ //
( / — x = 2 is a local optimal solution.
]

\x = 5 isthe global optimal solution.

C{[[




Convex Sets

e A subset S C R™ is a convex set If
z,yce S=xx+(1—-NyeS VA € [0, 1]

o If S, T are convex sets, then S NT Is a convex set

e Implication: The intersection of any collection of

convex sets Is a convex set
A X+(1-A)y

@




Convex Sets

Convex Set

O

Not a Convex Set

Not a Convex Set

Convex Set



Convqx
Functions

e A function f(x) is a convex function if \<:7/

f(Az + (1 - A)y) <Af(z) + (1 - A)f(y)

Va,y VA € [0,1]
e A function f(x) is a concave function if

f(Az + (1 -A)y) > Af(z) + (1 - A)f(y)

Ve, vy VA € [0,1]



Convex Functions

Line above the curve!

\& M(x)+1-ME(y)
4

fO\x+H(1-\)y)

Convex function

X Ax+(1-A)y y



Convex
Optimization

Convexity and Minima

min f(x)

st zc F

Theorem: Suppose that F is aconvexset, f: F - R
IS a convex function, and z* is a local minimum of P.
Then z* is a global minimum of f over F.




COP and Global Minima
f(x)

f Convex Function

N

local minimum

y y(A) x* X



Convexity and Minima

Convex
Optimization

Assume that x* is not the global minimum. Let y be
the global minimum. From the convexity of f(-),

F(y(A) = F(Az*+(1-A)y) < Af(z")+(1-A) f(y)

< Af(z") + (1 = A) f(z¥) = f(x7)
forall A € (0,1).

Therefore, f(y(A\)) < f(x*) forall A € (0,1), and so
x* IS hot a local minimum, resulting in a contradiction



Convex
Optimization

COP: min f(x)
s.t. gl(m) < 0

gm(z) <0
Axr =0>



Convex
Optimization

COP is called a convex optimization problem if
f(x),g1(x),...,gnm(x) are convex functions

Note that this implies that the feasible region Fis a
convex set

In COP we are minimizing a convex function over a
convex set

Implication: If COP is a convex optimization problem,
then any local minimum will be a global minimum.



Characterization of convex functions

Optimality
Conditions

Theorem Let f(x) be continuously differentiable.
Then f(x) is convex if and only if

VIi(z) (T —=z) < f(z) - f(z)

f

First order Taylor approximation of fis a
global underestimator of f

)
P

'\
f(x)+V f(x) (x-X)

>



1st Order Optimality Conditions

Problem
mingcx f(x)

e K C ™ nonempty, closed, convex
e f continuously diff/ble over K

If £is convex then local min is also global min



Optimality Conditions - Motivation
| f)=x?

WEPEL

x =0
Generalizes: Zero slope at local min x°

from unconstrained to

constrained problems



1st Order Optimality Conditions

1. Necessary
If 2* is a local min of f In K =
Vf(x*)(x—x*) >0, Ve e K (1)
(identifies candidates for local min)

2. Sufficient
f convex over K then also if condition (1) is
satisfied then «* = arg min, g f(x)

When K = R" reduces to Vf(xz*) =0



1st Order Optimality Conditions

At local min x*

O

Vf(x*) makes angle < 90
with all feasible variations

X -x*in K



First Order Optimality Conditions

When

WK= R"

First Order Conditions become

Vi(x*) =0




1st Order Optimality Conditionm

SENTINE

Min f(z) = z*

subject to




1st Order Optimality Condition“

Necessary: If * is local min = Vy € B(x*, €)
f(z*) < f(y)
Let any x € K, ¢(t) = f(z* + t(xz — =*)), t € [0,¢t] (t
suff. small)
f(@*) < F(y) = ¢(0) < ¢(t), Lt € [0,¢]
Minpp @(t) = 0 = argmingoz9(t) =
d(‘b(t)lt:() >0
dt —
= Vf(z*)(x—x*) >0, Ve e K




1st Order Optimality Condition“

Sufficient: Ve € K Vf(x*)(x—x*) >0

For f convex

Recall: f(z) > f(z*) + Vf(z*)(x —x*) Ve € K
= f(z) — f(z*) 2 Vf(z*)(z —z*) 2 0

= f(x) > f(x*) YV € K i.e z* global min.

A
(%) \
AANE
fx)+ VE(x)'(x-x)
i >

f




1st Order Optimality Conditions

Example 2: (‘,‘i ——
min f(z) = (z; — 16)? + (zz — 14)?
Subject to
(1 — 8)% + (z2— 9)? < 49

13>.’131>2

r1+ x2 < 24
The solution lies at the corner point * = (13,11)



Solution Corner Point

x2 A
//
4] .
xX-x*
24 | N
ne= Vf(X*) \

Feasible
region




1st Order Optimality Conditionm

2(x] —16)(xy — x7) + 2(x5 — 14) (3 — x5) =

2(13 — 16) (1 — 13) + 2(11 — 14)(x2 — 11) =
2(—3)(5131 — 13) —|— 2(—3)(5[32 — 11) —

2(—3)(x1+x2—24) > 0
True since 1 + x4 < 24



Optimality Conditions

Levels of
objective

K

Failure of optimality
region conditions when K'is
not convex

not a convex set

X*is a local minimum but

Vf(x*) ’(x-x*)<0 for the feasible vector x shown



A MORE GENERAL FORMULATION

Variational Inequalities

Variational Inequality VI
Find x* € L such that F(x*) (x—x*) > 0 Vx € K




Early History of Vis

¢ Study of equilibria in electromagnetism
(electrical networks, Kirkhoff's laws)

® Classical mechanics
(equilibrium of forces, variational principle)

®* Hartman and Stampacchia (1966)
(partial differential equations, calculus of variation and control)

®* R. Cottle introduces linear complementarity (1964)
Karamardian nonlinear complementarity (1969)

¢ Smith in 1979 in the context of transportation and
Dafermos in 1980, defined the variational inequality problem.



When is VIP equivalent to NLP ??

F(x) =

oF

ox,

oF

| Ox,

OF

o,

oF

Ox

n

symmetric + p.sd.

| |

VI(F,K) equivalent to NLP(f,K) convex




Linear Optimization Problems

c'x=>c'x, forallx(OP

Of(x ) (x—x )20, forallxOK
F(x)' (x—-x)=20, forallx UK




Nonlinear Optimization

AR, -5

N 4 f(x)=3

S f(x)=2

OF(x") (x=x") 20, forallxOK

X* solves NLP === x* solves VIP

\Vf=F

Converse ?



Optimization Subject to Bounds

1st Order Optimality Conditions

K={xeRh": x>0}
Then it follows:
F * Yy / *®
VIi(x)Y(x—a") >0 Ve >0
<~

r F
Vf(z*) >0, >0, Vf(z*)xz* =0 (NLCP)



Optimality Conditions - R",

A




Optimality Conditions - R",
T

V fx)




Optimization Subject to Bounds

1st Order Optimality Conditions

=
If Vf(x*)(x—ax*) >0, Veec K

letx =z=*+e; >0, e; =(0,...,1,...,0)
Vf(z*)e; >0, 1.e. Gf(m*)>0

Repeat vz then Vf(m)>0 (*)

If 7 > 0thenlet x = =* — ee; > 0 for e small
er(m Ye; > 0, zeaf(m)<0

(*)+(**) = If * > 0 then gf(“f .
l.e. Vf(x* )’m* =0 (**)




Optimization Subject to Bounds

1st Order Optimality Conditions

Since x* is feasible then (*)+(***) QED

That is:

x¥20, V fix® =20, x** \/f(xx*)=0



Optimization Subject to Bounds

1st Order Optimality Conditions

o
If 2* > 0, Vf(xz*)z*=0,Vf(x*) >0
ThenvVx >0, Vf(xz*)x >0
(combining with V f(z*)'z* = 0) =
Vf(x*)(x—x*) >0,Ve > 0. QED

These results hold more generally for Vls



Optimization Subject to Bounds

1st Order Optimality Conditions

Generalizes to Optimization Subject to Bounds

K={xzecR": a;<ax;<b;, 1 =1,...,n}

x* local min then
8'f($ ) > 0, Ifsc@ — a;

Bf(:r,)<0 If:l?f:_bz'

82&’2)—0, if b; > xF > a;



Projection on a
Convex Set

Let z € R™ and K C R™ closed, convex set
Projection Problem

min f(z) = ||z — z|?

subject to € K



Projection Over a Convex Set

Necessary - sufficient conditions

for x* = the projection of zon K
The angle of z-x* and x-x* should be = 90" X
for all x in K,
I.e. (z-x7)’(x-x*) = 0 vz

Projection of zto K is:

The Closest Point to z in Feasible Region K



. . Projection Reformulation

Convex Set

Important Implication:
First Order Optimality conditions:
Vf(x)Y(x—x*) >0 Ve e K

a &

Findx*c K: x* = Prg(x®— pVf(x"))
F



Optimality Conditions through Projection

x OK: OF(x)(x—x)=20, OxOK

1

x =Pr (x - pOf(x))




projection on 2 [

Convex Set

Vfi(x*)Y(x —x*) >0Ve e K &

p>0 pVf(xY(x—x*)>0,Ve e K &
—pVf(x*Y(x—x*)<0,Vz e K &

(z*— pVf(z*) —z*)Y(x—2*) >0, Ve e K &
Let z = x* — pV f(x*)
(z—x2)Y(x—x*)<0,Ve e K &

x* = Prig(z) = Prg(z* — pVf(x*)) QED



Connection with Fixed Points

x OK:F(x ) (x—x)=20,x0K

1 =

x =Pr(x = pF(x))

T(x) = P (x- r F(x))




How would you solve the VI or NLP as a result?



projection on 2 [

Convex Set

Motivates the following method

= = Pri(z” — pVI(=")
Y

k1 _ ,OVf(Xk” 1)
O xk— ,OVf(Xk ),

This can be viewed As a constrained ; )
version of Steepest Descent -\/f(x)



Overview of Solution Methods
1) Solve Equivalent Convex Min Problem
2) Projection Methods: x,. =Pr,°(x, - 0G'F(x,))
G p.d, sym. 0 >0, suf.small
3) Relaxation Methods: g;(x ,.; X )=Fi(Xx/~..., X_{
4) Linearization Methods: g (x ., X )=F(X)*A(X)(X 11~ X))

5) General Iterative Scheme:

k+1 k
X X/+1 ’- Xn )

Given x,, find x .., In K: g(x ., X, )(X- X 4., )20 forall xin K

6) Frank-Wolfe: y,= Arg min,;, « F(X)y, X 11 in [X,;¥, ] Via line-search

yin K
7) Simplicial Decomposition: Column generation approach
8) Cutting Plane Type Methods: Ellipsoid Method

9) Interior Point Methods




Systems of Equations

F(x) =0
T:K --->K, K closed, convex subset of R"
F(x)=x-T(x), for all x in K

VI(F,K) , FP(T,K) same solutions, if any!



Relation Between Problems

E
Q
U
I

L
I

B
R
I

A




Existence

VI(1,K) has a solution
iff
exists R>0: VI(F,K;) has xi*

| xg* || <R

* K compact, convex set

e F continuous on K

then VI(f, K) at least one solution

F 1s coercive:
(F(x) -F(x())(x-X,)/||x-X,|| --> infty

as |[x|| --> infty

for x in K, some x,1n K

then VI(F, K) at least one solution




Conditions on VI Problem

Monotonicity (F(x)-F(y))(x-y) =0 --- JF p.sd. --- convexity of f
Strict Mon. (F(x)-F(y))(x-y) >0, x #y --- JF p.d. --- s. convexity of f
Stro. Mon. a>0, (F(x)-F(y))(x-y) = a ||x-y||?> --- JF u.pd. -- u. conv of f

BUT for LP (c-¢)(x-y)=0 ALWAYS!

Strong-f-Mon. b>0, (F(x)-F(y))(x-y) = b |[F(x)-F(y)||? -==JF(x)-bJF(x)J(F(y

Co-coercivity p-sd.



Uniqueness

F strictly monotone .. VI(F.K) unique solution

if any

F strongly monotone VI(F,K) unique solution




Optimization over a Simplex

1st Order Optimality Conditions

K — {m - %n e L 2 0, Z:’%={I: d}s
whered > 0In R

Vi) (z—=z*) =3, 2 (a; —x}) > 0

1 Oz,

|fm:>0then%;j)gm, Vg



Optimization over a Simplex

Example:

f(z) = =1 + =3 + (z3 + 15)*
subject to
x1+ x2+x3 =20, x1,23,23 >0

Optimal solution: ; =10 =z5and x5 =0
Notice that 3 > 0, x5 > 0 then

3f($ ) = 2z% = 20 = 3f(=1;)

af(m

6:1’33

= 2x5
= 2(x% + 15) = 30.



Some Application Areas

» Transportation

Transportation Planning
IVHS -;
Free Flight

« Economics
Spatial Price Equilibria
Pure Exchange Equilibria
General Economic Equilibria

Financial Equilibria $ $

* Multi-period Pricing




Optimal Routing

-

Oriain Destination
g e >, of OD w

NS g 1= ((1,2), 25)
vty  2=((1,2),(2,4),(4,5))
3=((1,3),(3,4),(4,5))
4= ((1,3),(3,5))



Optimization over a Simplex

Optimal Routing...

e Given a data net and a set W of OD pairs w = (2, 7)
each OD pair w has input traffic d,,
e Optimal routing problem:

Min C(x) =2, Cy(X)X,= C(X)’X

rp, >0, Vpc P,, wecW

System Optimum



Optimization over a Simplex

...Optimal Routing...

Optimality conditions:
VC(z*) (x —x*) > 0, Vfeasible =

VC(z) = (

0C (x) oC (x) 60(:1:))
oy " oz, T Oan

Equivalent Optimality conditions:
oC (x*) - oC (z*)
8.’.Cp _ 3:1:1,,-

z, > 0= , Vp' € P,

Used paths have smallest marginal cost



Optimization over a Simplex

1st Order Optimality Conditions : :
...Optimal Routing...

Optimality conditions:
VC(z*) (x —x*) > 0, Vfeasible =

VC(z) = (

0C (x) oC (x) 60(:1:))
oy " oz, T Oan

Equivalent Optimality conditions:
oC (x*) - oC (z*)
8.’.Cp _ 3:1:1,,-

z, > 0= , Vp' € P,



Traffic Assignment




Example

O=Belmont

dw: 10 w=(0O,D)

1 1
Cp (x) =X, +pr2 +13,cp2(x) =3xp2 +5xpl +5,cp3 (x) =2xp3 +25

Behavioral Assumption: No user has ANY incentive to
change

Only shortest paths are used !

If Xo*>0 = Cp(X™) = Ming Cq(x¥)



=6
PP Conc. Av. XPI
Ozléelmont

O
Py Mem. Dr. x "=

=MIT
O

Variational

c(x ) (x—x)=0, [Ifeasible

Inequality
Arises iIs various contexts!



Example

Cp (x*)(xp1 —6) :2O(xp1 —6)
N (x*)(xp2 —4) = ZO(xp2 -4) = c(x)(x-x)=20
C,. (x*)(xp3 -0)2 ZO(xp3 —0) [1x feasible

Conversely?



Decentralized Problem---Vis
pinP, winW,iinL

fi:ziinPFp
dwzzpinPWFp

Co(N=2inp G ()
A flow pattern (%, F*) is U-O
If for all win W and every pin P,
C,(f)=v, ifF,>0,
(F)yzv, iftF*=0

Equivalentto Vi(c, K) 22 |c(f ) (f—f)=0,00f

K={(fF):f=2.. ,F d,=2

imP " p,

F, F, =0}

p in Py



Min C(x)

Traffic X feasible
Assignment System Optimum -- > User Optimum

SOME

Equivalent to

Find x* : ¢(z*)(xz — x*) = cp(x™)(zp — 93;)

V. feasible

User - Optimum

c(x) =VC(x)



Underlying ?

Traffic System Optimum & User Optimum
Assignment SOME

Equivalent to
Find x* : ¢(z*)(xz — x*) = Z cp(x”) (zp — )

Objective C does not exist if

the Jacobian matrix Jc is not symmetric

\

Identical with optimality conditions ofi routing problem
If we identify the path travel time with the derivative of

cost C wrt path flow z,, i.e. cy(x) = 3('(;35:)

c(x) =VC(X)




Traffic

Assignment

Example:

One OD pair connected by 3 paths, with demand
d—=10 4 I
C'Pl(m) — m’Pl + %mpz _I_ 13! b7 !
Cp, () = Bxp, + 3p, + 5, Jc = 7% 3 0
C’Ps(m) = 2xp; + 25 0O 0 2
m;’l:G’ 93;)224,&;3:0 \ /

Cp, () = cpy(27) = 20 < ¢py(z*) = 25
Canwe find C(xz) : VC(x) = c(x)?

NO, the Jacobian matrix Jc is not symmetric



System Optimum vs User Optimum

X*so Example: c(x) = Gx+g

Min C(x) = 2, c,(x)x,= c(X)’x

System Optimum
X feasible

C(x) = x’Gx+gx
VC(X) =2 Gx +g

c(x' ) (x—x)=0, [Oxfeasible User- Optimum

2, C,(x*)(X,- x*) >= 0, for all x feasible



Summary

- Variational Inequalities
Connections with other problem classes
* Nonlinear Optimization (NLP)

 First Order Optimality Conditions fo

« Optimization Subject to Bounds

« Optimization over Simplex

* Projection Problems

» Applications in Transportation



Questions?




Outline

Nonlinear Optimization and Variational Inequalities

Multi Period Pricing

» The Best Response Problem --- The Market Equilibrium Problem
* An Iterative Learning Algorithm

* Insights from Numerical Examples

» The Stochastic Demand Setting

The Price of Anarchy -- The Price of Competition

» Measuring the loss of efficiency due to competition (Asymmetric Costs)



Another Application _

NEUES

Total Market

Single, homogenous product



O - Pr

[ p] !E

Seller 1 Seller | Seller I

Total Market

Market demand for Seller i is determined by the function
hi(p1!"'!pl)



Hotel room

P O Pr

1

‘ ‘ B

Seller 1 Seller | Seller I

Period 1 Period t Period T

Market in a Multi-period Setting
Perishable Product Flight NY-Boston

Airlines Advance
booking



Characteristics

Oligopolistic market

(Few Firms Compete for Products)
— Dynamic nature of problem
— Level of inventory

(Prices depend on level of inventory left,

demand, prices of competitors) T
— Nature of goods (perishable or not)



Application Areas

* Airline Industry

Pricing airline tickets under competition

. <N aR
®* Service Industry =00
Car Rentals, Hotels I ENES

®* Retail Industry
Filene’s - Macy's
®* Internet Pricing




Sample Literature

Revenue Management, Pricing and Inventory Control:

Rosen ( 1965), Harker (1984), Murphy etal (1982)
Gallego and van Ryzin (1993)

Bitran and Mondschein (1997)

Federgruen and Heching (1999)

Chan et.al (2000)

Bernstein and Federgruen (2001)

Inventory: Zipkin (1999) (BOOK)
RM: McGill and van Ryzin (1999), Caldentey & Bitran (2002) (REVIEWS)
Pricing: EImaghraby & Keskinocak (2002),

Chan et.al., Gilbert & Yano (2003) (REVIEWS)
Competition: Cachon, Netessine (2003) (REVIEW)



The Decentralized Problem

{ I l; =

Seller 1 Seller i Seller 1

Period 1 Period t Period T
Seller Maximizes profit
Decisions: prices at each period

allocation of total capacity



Pricing and Allocation

— How many seats to sell (allocate) in each fare class?
— How to price each fare class?

— Account for uncertainty and competitors and
network of legs in the itinerary.



The Decentralized Problem

User Optimum

Demand
Non-separable

hi(P) = - 911P4 + 912P,* h;
hy (P) = 924P1-920P5 + hy

Could be Asymmetric
912 921



Seller 1 Seller i Seller 1

Period 1 Period t Period T

Questions:
> How should seller i price the product in the face of competition?

» What are the equilibrium prices for all competitors in the market?

» How inefficient does the system become due to competition?



Multi-period oligopoly moedels

« Total capacity over horizon is fixed
— No option to replenish capacity.
— Inventory holding costs are negligible.
— No backordering allowed.
— Typically finite horizon problems.

— Policies consist of decisions regarding pricing and
protection levels.

— Suited for pricing in transportation, revenue
management, communication, energy etc.



Outline

Multi Period Pricing

» The Best Response Problem --- The Market Equilibrium Problem
* An Iterative Learning Algorithm

* Insights from Numerical Examples

» Conclusions

Based on paper with A. Sood entitled:
“Competitive Multi-period Pricing for Perishable Products”



Assumptions

Joint work with
A. Sood
> Perfect Information

(of their and competitors’ demand, total inventories)

» Demand depends on current period prices
» For this talk: Demand is deterministic
» Single product and fixed perishability deadline

> Sellers are revenue maximizers over time horizon



Question

/'

Given the|policy of all other competitors|

what should be

my pricing policy

¢



Best Response Policy

If : Demand is deterministic

d;,p;
such that d! <hli(pl,pt.) WVteT

gp,'ggpffnax Vi €'T

¢
Pmin




Cannot be applied...

 The best response problem can not be
formulated as a convex optimization problem
(except only under linear demand).

* The objective in the best response problem is
not quasi-concave (except for a single period
problem).

 The feasible space is not a lattice because of
the fixed-inventory constraint. Hence the game
Is not a supermodular game.



If :

Best Response Policy

d;,p; By
such that  d! <Al(pl,pt,) vte Tl
S dl < C; >
Pmin <P <Pmax V€T
i

Note: In the optimal solution, dt = hi(p}, pt

Demand function h/is s. decreasing w.r.t. p/



Approach

Best response

optimization problem Variational inequality

Best response
optimization problem

Variational inequality




Best Response Policy

If hy(.) iIs a concave function then the
Best Response Problem can be
expressed as a Variational Inequality
problem




Question

When is the Best Response Problem
reasonablee



Proposition 1

The Best Response policy exists.



Assumptions

» Perfect Information
(of their and competitors’ demand, total inventories)

» Demand depends on current period prices
» For this talk: Demand is deterministic

» Single product

» Demand s. decreases with own price




Theorem 2

The Best Response policy is unique.
The Variational Inequality has a unique solution.

[ hi(p/, p.f) is a strictly decreasing function of p/]



Market Equilibrium
& ;P

j 1

Seller 1 Seller i S_ellerI

Period 1 Period t Period T

Nash Equilibrium Policies



Questions

e Does such a Nash Equilibrium exist?
°|s it unique?

e How do we compute it¢



Approach

Joint variational

Variational inequality e ey

Joint variational
inequality

Variational inequality

Best response Joint variational
Optimization problem inequality




Theorem 4

There exists a unique market equilibrium.

[h:(p) iIs concave in p |
[ -h(p) Is strictly monotone in p |



Monotonicity Conditions

e Strict Monotonicity

e Stfrong Monotonicity

[F(zl) — F(aD)]! [a! — 22] > aflat — 22| Vel a

e Lipschitz Conftinuity

| F(e) — F(2®)|| < Lijz- —a*|| Vo,

S. Monotonicity F = gradient obj — S. Convexity of obj



Lemma

Let (p*,d*) be a solution to joint variational
inequality. (p*,d*) satisfies the following rela-
tion:

d* = hi(pt*,p™*), Viel, teT.



* Demand more sensitive to own price than competitors’
prices

and

e Own demand decreases less than competitors’ demand

increases through own price increase

Example

o I
. @
-Jh =

by
\ _J




Naive Optimizers




Question

If all sellers are naive optimizers and the
process is repeated several times, do the
policies converge to an equilibrium?

Iterative learning



Theorem 5

Iterative learning will converge to Nash
equilibrium prices.

[-h(p;. p.) Is strongly monotone (a) in p;]
[ h(p:, p.) is Lipschitz continuous (L) in p_]
[a>L]



Monotonicity Conditions

e Strict Monotonicity

e Sfrong Monotonicity

[F(z!) — F(aD)]! [a! — 22] > ozt — 22| Vel z

e Lipschitz Conftinuity

| F(e) — F(a®)|| < Lijz- —a*|| Vo,



Convergence conditions

| . % any given p;, h;(p;,p—;) is Lipschitz con-
tinuous with respect to p_; with parameter L.

|h;(p;, p—;) —h;(p;. D)l < L ||p—; — Pl

For any given p_;, —h;(p;, p_;) is strongly mono-
dtone with respect to p; with parameter

(—h; (Ps, D_;) + hi(P;, D7) - (P; —D;) > O ||p; — bl

3. a>L



Example

~ f I r 4 ;o -'
N, —dy P2 95 P71
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Solving the Best Response Sub-Problems

At Step k: solve Best Response Sub-Problem:

T dt 1§ t t
E P di ’ pi

such that df ht(pz, (p )k 1) Vit € T
ZT dt < C; i=1,...,N
d%&’ pi >0 t=1,...,T

Demand h%(.,(p’ii)k_l)=h§,k_1(.) s. decreas. - invertible

maxg, >j—q d - pi(dl)
such that zT dt < C;
de >0 vVt € T.




Solving the Best Response Sub-Problems

At Step k: solve Best Response Sub-Problem:

maxq, Yj—ydf P;(d;)
such that Y/, dl < C;
dt >0 vte T,

Check if total demand does not exceed capacity



At Step k: solve Best Response Sub-Problem:

|
Origin 0 Destination
: (
c, %
C2 ¢ i=1,...N
competitors
T




Numerical examples

10 period T =4{1,2,---,10}
The demand is linear in prices and symmetric
with respect to both sellers and varies with

time:

hi = Dpyce — B0t +a'p’; Viel




Numerical examples

Model parameters held constant

{110,100, 100,100,90,90, 100,10
{1.2,1.2, 11 1009 08 07 06,
: : : 4

{3000, 2000},
{3000, 5001,
{1000, 500}

Trend in pricing policies with varying Capacities.



N U mencal examnm pleS (varying capacity)

4 '}
Teme period

ntoey: Imitial level & Level ab end of period v i Cumuilative Rewanu
o Ll Ll EERIE EvenUes

l
Time pesiod
eI Time period




Numerical examples warying capacity)

Cumulative Revanues

Teme period Time peniod



Numerical examples warying capacity)

ann -

GO0 -
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Numerical examples

Model parameters held constant Model parameters varied
110,100, 100,100, 90,90, 100, 10 Starting estimate of prices

{121211100283870 : VielandteT

Hoooc% é010? 0.8,0 5,0 p! = 0,150,300, 450




N U merical exampleS (varying starting est.)

4 ] ]
Tume period

lterations: Slarting price = 300

Movement of pricing policies in iterations of the algorith
with varying initial estimates for starting prices.




Numerical examples

Model parameters held constant Model parameters varied
110,105,100,95,90,85,80,75,75,85

Starting estimate of prices
£:5l.2, 1.15,1.1,1.05,1,.95,.9,.85,.8,0.75} VielandteT

p! = 0,50,100, 150

2
{1000, 500}



N U merical exampleS (varying starting est.)

Practical convergence behavior of the algorithm with varying
initial estimates for starting prices.




Numerical examples

Model parameters held constant Model parameters varied

110, 105,100, 95,90, 85,80, 75, 75, 85
{1.2,1.15,1.1,1.05,1,.95,.9,.85,.8,0.75}
{1000, 500}




N U m e rl Cal exa m p | eS (vary price sensitivities)

Practical convergence behavior of the algorithm with varying
relative price sensitivities.
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Insights from Numerical Examples

Prices decrease as the total inventory increases.
Prices are higher in periods of low price sensitivity
But the revenue of the seller over the entire horizon
increases (but diminishing returns) as total inventory
increases.

But an increase in the total inventory of a competitor
results in lower revenues for the seller.

Algorithm converges to equilibrium prices very fast
Dependence of Algorithm on starting policies.
Relative ratio of demand sensitivities to price affects
rate of convergence. Prices converge to equilibrium at
a geometric rate.



Contributions and Insights _

1. Infroduced a general dynamic optimization model of
pricing for perishable products that incorporates
competition.

2. We characterized Nash equilibrium pricing using a
variational inequality formulation. This allowed us to
establish existence and uniqueness of the Nash
equilibrium pricing policies.

3. Incorporated nonlinear, asymmetric demands in a
multi-period sefting



Contributions and Insights _

4. We introduced an algorithm for computing Nash
equilibrium pricing policies. We proved its convergence
and discussed the practical implementation of this
algorithm.

5. We tested our findings through some numerical
examples and discussed some insights.



Stochastic Demand! Model

e Demand observed when the price is set at
p for a realization x of a random variable

. d(p,z) = 0(p) F p(p)a

o P(X =2) = ¢(z), E[X] =1

e / and p are functions of price



Demand Modell Effects

e Additive form of demand

d(p,z) = 0(p)+ =
e Multiplicative form of demand

d(p,z) = p(p)x

d(p,z) = 0(p)+ pu(p)x



Stochastic Demand! Model

e Expected demand
Ex(d(p,X)) = 6(p)+ u(p)

e Price response of demand

pu(p) 4 inp
0(p) 1 inp



Viodelingl Competition

Many-seller case

di(pip e )= R0 ) S e (P, P

Two-seller case

0(p1,p2) + zu(p1, p2)
0(p2,p1) + xp(p2,p1)

d1(p1,p2,x)
do(p2,p1,)




Modeling Competition

e Expected demand
Eaa(d: (pin = ) =0 (p 0 R ()
e Price response of demand

p(p;,p—;) 4 inp; and 1T in p_;
0(pi,p—i) 4 in p; and 1 in p_;



Assumptions

® Total capacity C; and T periods horizon

e Arbitrary stochasticity

e Linear demand-price relation

d; — Bipi + aip_;

Gl A S
ay, /Bia Yis 5?, Z O

L (p7 o)
B )




How: te handle total capacity: C;

How do we avoid selling more than we have total capacity C;?

* Penalty for over-sale at end of horizon
(Overbooking penalty)

* Limiting of sales in every period (Allocations)
* Limiting total sales (Lost sales)



Extensions

e More on the stochastic demand case

e Joint pricing and inventory control --- Competition

e Many products (network case)
 Delay of price to affect demand
e Previous prices also affecting demand

e Demand Learning




Questions?




Outline

Nonlinear Optimization and Variational Inequalities

Multi Period Pricing

The Price of Anarchy -- The Price of Competition

» Motivation (Transportation, Multi Period Pricing)
* VIs for Decentralized Systems vs NLP for Centralized Systems
* A Bound when Costs are Linear (the role of Asymmetry)

* A Bound when Costs are Nonlinear (the role of Non linearity)



Motivation --- Transportation

Costs --- Travel times

c;(f:) on arc i depends on flow f; on arc i (separable)

Drivers take the “best route” for themselves!



Selfish versus Social Optimization

If car drivers are selfish

Optimize for themselves!

f,=0 and f,=2 SN

c,(f) =f,

How many of the two cars will use arc 1

Versus arc 27



Selfish versus Social Optimization

If car drivers are dictated so that total cost is minimum
(social optimization)

c,(f)=2
Min 2 * f,+ f,2 2—
f+f,=2 —— f=1f,=1
£, f,>=0 Cy(f) =t

How many of the two cars will be asked to use
arc 1 versus arc 27



Selfish versus Social Optimization

Min 2 * f,+ f,2 = 2+1= 3

f+f,=2 —— f=f, =1
f,, f,>=0 C,(H=2

Social Optimum

Cy(f) =f,
c,(f) "fitcy(f) " f, =2*f+f*=4
f,=0 and f,=2 User Optimum

User Opt. Total Cost = 4/3 Social Opt. Total Cost




Selfish versus Social Optimization

Social Optimum

User Opt. Total Cost = 4/3 Social Opt. Total Cost

c,(F)=2

2—>

Is this a coincidence?

User Optimum




Motivation --- Transportation

Costs --- Travel times

c;(f:) on arc i depends on flow f; on arc i (separable)

c;(f) on arc i depends on flow vector f
(l.e. neighboring arcs influence traffic)

(non-separable)




A Bound between SO and UO

(non-separable)

C4(f) =g44f1+g4ofo+ gqsfst...+b,
Co(f) =241+ g0ofot gasfat... +b,

(i.e. neighboring arcs influence traffic)

> upstream effects
> downstream effects
> Iintersections




Decentralized Problem---Vlis
pinP, winW,iinL
I=Ziinp F
dW: 2 pin Pw Fp
Co(N=2inp G ()
A flow pattern (f*, F*) is U-O
iIf for all win W and every pin P,,
C,(f)=v, ifF,>0,
(Fy=zv, IFF*=0

Equivalent to Vi(c, K) : co(f Y (f-1)=0,00f

K={(fF):f=2.. ,F d,=2

imP " p,

F, F, =0}

p in Py



The Centralized Problem --- NLP

System Optimum

Min ;2 i, i (1) 1;

/

such that

K={(fF):f=%. ,F d,=2

1mP " p,

F, F,=0}

p in Py




A Bound between SO and UO

c,(f) =g,f;+b,
C,(f) =g,f,+b,

2

Roughgarden and Tardos (2001)

constant terms b= 0, 94,95~ 0

< 4/3

SO =

OF . /OF



A Bound between SO and UO

c,(f) =g,f;+b,
C,(f) =g,f,+b,

oF

o)

G pd, diagonal matrix



A Bound between SO and UO

~

o

~
911 G

912 92
_/

C4(f) =g44f1+g4,fr b,
C,(f) =g1of1+go,fr b,

c(z)=Gf+b  f=(f, f,)

G pd, symmetric matrix
(contribution from arc i to |

same as arc j to i)



A Bound between SO and UO ?7?

C4(f) =g44f1+g4,fr b,
C,(f) =g4f1 19, f b,

/

\_

~

11 1992

921 922

O=Belmont

_/

c(fy=Gf+b  f=(f, f,)

G pd, asymmetric matrix

(contribution not the same)



Sample Literature

Transportation and Game Theory:

Dafermos (1969, 1980, 1984)
Florian and Hearn (1993), Nagurney(2000) (REVIEWS)

Papadimitriou and Koutsoupias (1999)
Roughgarden and Tardos, Roughgarden (2001)
Johari and Tsitsiklis (2002)



Hotel room

P O Pr

1

‘ ‘ B

Seller 1 Seller | Seller I

Period 1 Period t Period T

Market in a Multi-period Setting
Perishable Product Flight NY-Boston

Airlines Advance
booking



The Decentralized Problem

{ I l; =

Seller 1 Seller i Seller 1

Period 1 Period t Period T
Seller Maximizes profit
Decisions: prices at each period

allocation of total capacity



The Decentralized Problem

User Optimum

Demand
Non-separable

hi(P) = - 911P4 + 912P,* h;
hy (P) = 924P1-920P5 + hy

Could be Asymmetric
912 921



The Centralized Problem ?

System Optimum

Max 4 , 2 _ profit seller,

I 1N

Often not legal!

How bad is system due to competition

and lack of coordination?




A Bound between SO and UO ?7?

F1(2) =94421194,Z,*Db,

F2(2) =92124%9202,1b;

4 \
911 @
G = F(z)=Gz+b  z=(z, z,)

dqo iS NOt gy, G pd, asymmetric matrix



A Bound between SO ana UO

F(z)=Gztb z=(z,z,

-----

F(z*)'(z-z*)>=0, for all z feasible

Define: S= G+G' symmetrized matrix (pd)
2

Define: c = ||S™ G||s

Jlheorem:

@ = =
OF ,0/OF 5o




Transportation

c? describes how congestion in neighboring
roads affects your travel time

This phenomenon also applies to pricing with

competition



Contributions

» Understand the price of “competition”
» how bad is system due to lack of coordination?
» Non-separable payoffs (costs)
» the role of asymmetry (non-separable)
* symm. (c?=1) > 4/3,
* little asymm. (c2<=2) > 4/(4-c2),
* quite asymm. (c2> 2) > c?
» Nonlinear payoffs (costs)
» the role of non-linearity (measure non-linearity)

Version of the paper to appear at the IPCO conference Proceedings

Also full version under review in MOR



Questions?
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