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Abstract

This article traces the evolution of ambulance location and relocation models pro-
posed over the past thirty years. The models are classified in two main categories.
Deterministic models are used at the planning stage and ignore stochastic considera-
tions regarding the availability of ambulances. Probabilistic models reflect the fact that
ambulances operate as servers in a queueing system and cannot always answer a call.
In addition, dynamic models have been developed to repeatedly relocate ambulances
throughout the day.

Key words: Ambulances, emergency medical services, location, relocation, rede-
ployment.

Résumé

Cet article passe en revue 1’évolution des modeles de positionnement et de reposi-
tionnement d’ambulances proposés au cours des trente dernieres années. Les modeles
dynamiques sont utilisés au stade de la planification et font abstraction de la disponi-
bilité des ambulances. Les modeles probabilistes refletent le fait que les ambulances
fonctionnent comme des serveurs dans un systeme de files d’attente et ne peuvent pas
toujours répondre a un appel. De plus, des modeles dynamiques ont récemment été
développés pour relocaliser de fagon répété les ambulances pendant la journée.

Mots clefs: Ambulances, systemes de véhicules d’urgence, localisation, relocalisa-
tion, redéploiement.
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1 Introduction

This review article traces the evolution of ambulance location and relocation models pro-
posed over the past thirty years. This period was marked by an unprecedented growth
not only in computer technology, but also in modeling and algorithmic sophistication, in
the performance of mathematical programming solvers, and in the widespread adoption
of computer software at several levels of decision making. The literature on ambulance
positioning systems truly reflects this evolution. The first models proposed were unsophis-
ticated integer linear programming formulations, but over time more realistic features were
gradually introduced, and solution techniques also evolved.

Most of the early models dealt with the static and deterministic location problem.
These were meant to be used at the planning stage and they ignored stochastic considera-
tions. Several probabilistic models were then developed to reflect the fact that ambulances
operate as servers in a queueing system and are sometimes unavailable to answer a call.
Dynamic models are more recent. They address the problem of repeatedly relocating am-
bulances in the same day to provide better coverage. In recent years, the development
of powerful local search algorithms, particularly tabu search (Glover and Laguna, 1997),
coupled with the growth of parallel computing (Crainic and Toulouse, 1998) have given rise
to a new stream of research that deals effectively with the dynamic nature of the problem.
With the newest models and algorithms, large scale problems can be solved rapidly and
dynamically in real time, with a high level of accuracy.

There exists a rich literature on emergency vehicles siting models. The survey by
Marianov and ReVelle (1995) provides an overview of the most important models pub-
lished until that date. Our review is less general since it focuses on ambulance services,
but it unavoidably covers some of the same material, albeit with a different emphasis. The
Marianov-ReVelle survey ends with an indirect reference to dynamic relocation models in-
tegrated within geographic information systems: “rarely have ambulances been positioned
at free standing stations” ..., “Lastly we have a warming competition ... The technique of
GIS” (p.223). Our survey precisely addresses this issue by devoting a section to dynamic
relocation models which have just started to emerge. We also report on actual imple-
mentations of ambulance location and relocation models. Finally, we provide a synthetic
overview, in table form, of all the models we discuss.

The article is structured as follows. In Section 2, we briefly describe the function-
ing of emergency medical services. Two early models developed for the static case are
described in Section 3. An important shortcoming of these models is that they may no
longer guarantee adequate coverage as soon as ambulances dispatched to a call become
unavailable. T'wo types of models have been developed to handle the need to provide extra
coverage: deterministic models and probabilistic models. These are presented in Sections 4
and 5, respectively. We have chosen to concentrate on the most important models, leav-
ing aside several minor variants already listed in the articles of ReVelle (1989), Swersey
(1994) and Marianov and ReVelle (1995). In Section 6, we provide an account of some of
the emerging research in the area of dynamic ambulance repositioning. A summary and
conclusions follow in Section 7.
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2 How emergency medical services operate

The chain of events leading to the intervention of an ambulance to the scene of an incident
includes the following four steps: 1) incident detection and reporting, 2) call screening, 3)
vehicle dispatching and 4) actual intervention by paramedics. Decisions made by emergency
services managers are concerned with the second and third steps. The main function of the
screening process is to determine the severity of the incident and its degree of urgency (e.g.,
on a one-to-four scale), and to make a decision on the type and number of ambulances to
dispatch. Since time is vital in emergency situations, it is critical that vehicles be at all
time located so as to ensure an adequate coverage and a quick response time (Wisborg et
al., 1994). The United States Emergency Medical Services Act (see Ball and Lin, 1993) sets
some standards: in urban areas, 95% of requests should be served within 10 minutes; in
rural areas, they should be served within 30 minutes. This is where ambulance location and
relocation models and algorithms come into play. Advanced information technologies are
now often used to assist the ambulance management process. These include road network
surveillance (Heddebaut, 1997; Cohen, 1999), vehicle positioning systems (Bouveyron and
Didier, 1993; American TriTech, 1996), geographical information systems (Bernhardsen,
1999), and artificial intelligence based call screening systems (Clawson and Dernocoeur,
1991). Ideally, these systems should be fully integrated and interconnected within an
ambulance relocation module.

From a medical and economic point of view, it seems advisable for an urban emer-
gency medical services system to operate several vehicle types serially (Stout, Pepe and
Mosesso, 2000). This has been shown to increase the global system performance in trauma
cases and cardiac incidents (Haas et al., 1995). Emergency medical services typically work
with two types of providers having different capabilities: basic life support (BLS) units
and advanced life support (ALS) units, both of which are often dispatched to the same
incident, but within different time standards (Mandell, 1998). In several North-American
cities, BLS is assured by firemen trained as paramedics. They are based at local fire sta-
tions and are often the first to arrive on scene. ALS is covered by ambulances. Most calls
can be served by only one ambulance, but on occasions two or more are required.

There are important differences between the operations of emergency medical ser-
vices and those of fire companies or police departments. First, ambulances are not always
based in a building, but often at a very rudimentary location such as a parking lot. More
importantly, they are periodically relocated to insure a good coverage at all times. Am-
bulances do not normally patrol streets between calls, but once they are dispatched to
the scene of an incident, they may be diverted to a more important call. Police cars, on
the contrary, regularly perform patrol duties since their presence on city streets acts as a
crime deterrent. For further readings on fire and police operations, the interested reader is
referred to Larson (1972), Walker, Chaiken and Ignall (1979), Swersey (1994), and Adams
(1997).
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3 Two early models for the static ambulance location
problem

Ambulance location models are defined on graphs. The set of demand points is denoted
by V and the set of potential ambulance location sites is denoted by W. The shortest
travel time t;; from vertex 7 to vertex j of the graph is known. As is common in location
theory, assigning demands to a discrete set can be achieved through an aggregation process
which unavoidably results in a loss of accuracy. Various techniques have been proposed to
measure and control the error bound (Erkut and Bozkaya, 1999; Francis, Lowe and Tamir,
2000). A demand point i € V is said to be covered by site j € W if and only if t;; < r,
where 7 is a preset coverage standard. Let W; = {j € W : t;; < r} be the set of location
sites covering demand point 1.

In the Location Set Covering Model (LSCM) introduced by Toregas, ReVelle, Swain
and Bergman (1971), the aim is to minimize the number of ambulances needed to cover
all demand points. It uses binary variables x; equal to 1 if and only if an ambulance is
located at vertex j:

(LSCM) Minimize Z xj (1)
JEW

subject to Z z; > 1 (ieV) (2)
JEW;
7y € 0,1} Gew). 3)

This model ignores several aspects of real-life problems, the most important probably being
that once an ambulance is dispatched, some demand points are no longer covered. Some of
the more sophisticated models described in Section 4 adequately address this shortcoming.
The model also assumes that up to |W| ambulances are available, which is not always the
case in practice. It does, however, provide a lower bound on the number of ambulances
required to ensure full coverage.

An alternative approach proposed to counter some of the shortcomings of the LSCM
is to maximize population coverage subject to limited ambulance availability. In the Mazi-
mal Covering Location Problem (MCLP) originally proposed by Church and ReVelle (1974),
d; denotes the demand of vertex i, and p is the number of available ambulances. The binary
variable y; is equal to 1 if and only if vertex 7 is covered by at least one ambulance. The
model is then:

(MCLP) Maximize Z diy; (4)
eV

subject to Z xj >y (teV) (5)
JEW;
Z T; =D (6)
jeW
z; € {0,1) G ew) (7)

yi €40,1} (teV). (8)
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Each of the two models LCSM and MCLP makes sense in its own right. The first can
be used as a planning tool to help determine the right number of vehicles to cover all
demand, while the second attempts to make the best possible use of available limited
resources. Several extensions of both models have been proposed in the ambulance location
literature. A sensible approach is to repeatedly solve MCLP with increasing values of p
until all demand is covered. A tradeoff between cost and coverage can then be made.

Eaton et al. (1985) have used MCLP to plan the reorganization of the emergency
medical service in Austin, Texas. The proposed plan has saved the city $3.4 million in
construction costs, and $1.2 million annually in operating costs, in 1984. In addition,
average response time has been reduced despite an increase in calls for service.

4 Deterministic static models with extra coverage

Neither LSCM nor MCLP recognizes the fact that on occasions vehicles of several types
may be dispatched to the scene of an incident. Also, even if only one vehicle type is used,
solving MCLP alone may not provide a sufficiently robust location plan. We present in
this section a number of deterministic models developed to deal with the issue of multiple
coverage. Probabilistic models will be presented in Section 5.

One of the first models developed to handle several vehicle types is the Tandem
Equipment Allocation Model, or TEAM (Schilling et al., 1979). It applies naturally to fire
companies that operate with two types of equipment (pumpers and rescue ladders), but
it is also relevant in an ambulance location context where BLS and ALS units are used.
Denote by p? and p? the number of vehicles of types A and B available, let 74 and B
be the coverage standards for each vehicle type, and define WiA ={jeW:t; < Y,
WE ={jeW:t;<rB}. Let :vf(x]B) be a binary variable equal to 1 if and only if a
vehicle of type A(B) is located at vertex ¢, and let y; be a binary variable equal to 1 if and
only if vertex ¢ € V is covered by two types of vehicle. The TEAM model can be written
as follows:

(TEAM) Maximize Y diyi (9)
1€V
subject to Z $3~4 > Yi (teV) (10)
JEWA
Y 2P >y, (ieV) (11)
jewp
> aft=p? (12)
JEW
> 2P =pP (13)
JEW
:):3-4 < :):}3 (jeWw) (14)
zt 2P €{0,1} (jew) (15)

yi € {0,1} (1eV). (16)



Les Cahiers du GERAD G-2000-53 — Revised 5

This model is a direct extension of MCLP except for constraints (14) which impose a
hierarchy between the two vehicle types. This constraint can of course be removed if
circumstances warrant it. In the Facility-Location, Equipment-Emplacement Technique, or
FLEET model (Schilling et al. 1979), constraints (14) are relaxed, but only p location
sites may be used. A more elaborate model for fire protection siting, and belonging to
the same family, was later developed by Marianov and ReVelle (1992). It can be used to
locate capacitated fire stations with two types of equipment, subject to constraints ensuring
that each demand point is adequately covered by the right number of pumper and rescue
ladders.

In any of the above models, coverage may become inadequate when vehicles become
busy. A strategy employed in the case of a single vehicle type is to modify MCLP in order
to provide better multiple coverage, without increasing the total number of vehicles beyond
p. As suggested by Daskin and Stern (1981) and by Hogan and ReVelle (1986), a second
objective can be incorporated within MCLP to better distinguish between multiple optima,
of (4). In the first case the authors use a hierarchical objective to maximize the number
of demand points covered more than once. In the second case, the total demand covered
twice is maximized. Hogan and ReVelle (1986) also present two models Backup Coverage
Formulations, called BACOP1 and BACOP2, incorporating binary variables y; equal to
1 if and only if demand point 7 € V is covered once by an ambulance within a coverage
standard r, and binary variables u; equal to 1 if and only if 7 is covered twice within r.
The two models are:

(BACOP1) Maximize Y diu; (17)
i€V
subject to Z xj—u; > 1 (teV) (18)
JEW;
Z rj=0p (19)
JEW
0<u; <1 (teV) (20)
zj >0 (ieV) (21)
d
(BACOP2) Maximize 0  diyi +(1—-0)>  diu; (22)
i€V i€V
subject to Z zj—yi—u; >0 (teV) (23)
JEW;
w; —y; <0 (Z S V) (24)
Y xi=p (25)
JEW
0<wu; <1 (teV) (26)
0<y; <1 (1eV) (27)
xzj >0, (e W) (28)

where 0 is a weight chosen in [0, 1].
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In the model proposed by Gendreau, Laporte and Semet (1997), two coverage
standards are used: r; and ro, with 71 < r9. All demand must be covered by an ambulance
located within 79 time units, and a proportion a of the demand must lie within 7 time
units of an ambulance, which may possibly coincide with the ambulance that covers that
demand within 79 units. The United States Emergency Medical Services Act of 1973 sets
a value of 10 minutes for r;, but no value for ro, and a = 0.95. The Double Standard
Model (DSM) of Gendreau, Laporte and Semet seeks to maximize the demand covered
twice within a time standard of r1, using p ambulances, at most p; ambulances at site j,
and subject to the double covering constraints.

Let Wl ={j € W: t;j <r}and W? = {j € W: t;; < ra}. The integer variable
y; denotes the number of ambulances located at j € W and the binary variable :vf is equal
to 1 if and only if the demand at vertex i € V is covered k times (k = 1 or 2) within
time units. The formulation is then:

(DSM) Maximize Y  dia? (29)
1€V

subject to Z y; > 1 (ieV) (30)
JEW?
JEV %
Y yizait+al  (GeV) (32)
Jjew}
x? <z} (ieV) (33)
dyi=p (34)
JEW
Yi < pj (Jew) (35)
j,af € {0,1} (ieV) (36)
y; integer (jew). (37)

Here, the objective function computes the demand covered twice within r; time units,
constraints (30) and (31) express the double coverage requirements. The left-hand side
of (32) represents the number of ambulances covering vertex i within 71 units, while the
right-hand side is 1 if ¢ is covered within 71 units, and 2 if it is covered at least twice within
r1 units. The combinations of constraints (31) and (32) ensures that a proportion « of the
demand is covered and the coverage standard must be r1. Constraints (33) state that vertex
i cannot be covered at least twice if it is not covered at least once. In constraints (35), p;
can be set equal to 2 since an optimal solution using this value always exists.

5 Probabilistic static models with extra coverage

One of the first probabilistic models for ambulance location is the Maximum FEzxpected
Covering Location Problem formulation (MEXCLP) due to Daskin (1983). In this model,
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it is assumed that each ambulance has the same probability ¢, called the busy fraction,
of being unavailable to answer a call, and all ambulances are independent. The busy
fraction can be estimated by dividing the total estimated duration of calls for all demand
points by the total number of available ambulances. Thus, if vertex ¢ € V is covered
by k ambulances, the corresponding expected covered demand is Ey = d;(1 — ¢*), and
the marginal contribution of the k' ambulance to this expected value is Fj, — Ej,_; =
d;(1 — q)qkil. In MEXCLP, up to p ambulances may be located in total, but more than
one vehicle may be located at the same vertex. Let y;; be a binary variable equal to 1 if
and only if vertex ¢ € V is covered by at least k£ ambulances. The model can be written as
follows:

p
(MEXCLP) Maximize Y > di(1—q)¢" ya (38)
1€V k=1
p
subject to Z rj = Zyik (ieV) (39)
JEW; k=1

Z x; <p (40)

JEW
xj integer (jeWw) (41)

The validity of this model stems from the fact that the objective function is concave in
k. Therefore, if y;z = 1, then y;;, = 1 for A < k. Since the objective is to be maximized,
both (39) and (40) will be satisfied as equalities. It follows that the two sides of (39) will
be equal to the number of ambulances covering vertex i € V.

An application of MEXCLP to the city of Bangkok is described in Fujiwara, Mak-
jamroen and Gupta (1987). The authors have solved MEXCLP heuristically on an instance
with [V| = 59, [W| = 46 and 10 < p < 30. One conclusion of their study is that by re-
ducing the number of ambulances from 21, as in the current situation, to 15, a similar
expected covering and average response time could be obtained. An extension of MEX-
CLP, called TIMEXCLP, was also developed by Repede and Bernardo (1994) and applied
to the Louisville, Kentucky, data. In TIMEXCLP, variations in travel speed throughout
the day are explicitly considered. The authors have combined this model with a simula-
tion module to provide an assessment of the proposed solutions. The main result was an
increase of the proportion of calls covered in ten minutes or less from 84% to 95%. In
addition, the response time went down by 36%. Finally, Goldberg et al. (1990b) have
developed yet another variant of MEXCLP in which stochastic travel times are considered.
The objective was to maximize the expected number of calls covered within eight minutes.
The authors classify the potential location sites in order of preference. They compute the
probability of reaching a demand point within this time standard, based on the following
three probabilities: 1) the probability that an ambulance at the k™ preferred site for a
demand point be able to reach this point within eight minutes; 2) the probability that this
ambulance is available; 3) the probability that the ambulances located at the k& — 1 less
preferred site are not available. On data from the city of Tucson, Arizona, they showed
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that a better location plan could yield a one percent increase in the expected number of
calls covered within eight minutes and that the worst covering ratio of a zone in time could
be increased from 24% to 53.1%.

Two other probabilistic models were proposed by ReVelle and Hogan (1989) to
maximize the demand covered with a given probability . These authors formulate the
Mazimum Availability Location Problem (MALP I and MALP 1I) as a chance constrained
stochastic program (Charnes and Cooper, 1959). In MALP I, the busy fraction g is assumed
to be the same for all potential location sites. The minimum number of ambulances required
to serve each demand point ¢ with a reliability level of « is determined by the constraints

PRy
1—¢"i >« (ieV) (43)
which can be linearized as
> x> [log(l—a)/logq] (i€ V). (44)

JEW;

To formulate MALP I, define binary variables y;; as in MEXCLP. The model can be
written as:

(MALP 1) Maximize Y dis, (45)

€V
b

subject to Zyjk < Z x;j (ieV) (46)
k=1 JEW;
Yike < Yik—1 (teV,k=2,...,b) (47)
Y zi=p (48)
JEW
z; € {0,1} (j e W) (49)
yir. €{0,1} (GeV,k=1,...,p). (50)

Here, constraints (47) are required since the concavity property observed in MEXCLP no
longer holds.

In MALP II, the assumption that the busy fraction is identical for all sites is re-
laxed. Instead, ReVelle and Hogan compute an estimate of the busy fraction ¢; associated
with each ¢ € V, as the ratio of the total duration of all calls associated with ¢ to the total
availability of all ambulances in W;. This value is a lower bound since some ambulances in
W; may be dispatched to calls unrelated to ¢, but a valid albeit conservative model can be
constructed along the lines of MALP I. In MALP II, instead of b, a value b; is computed
for each ¢ € V. ReVelle and Hogan (1989) rightly point out the difficulty of working with
a busy fraction g; specific to each j € W since these values are an output of the model
and cannot be known a priori. However, given an ambulance location plan and demand
levels, probabilities can be estimated using analytical tools such as the hypercube model
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(Larson, 1974, 1975; Burwell, McKnew and Jarvis, 1992), an iterative optimization algo-
rithm (Jarvis, 1975; Fitzsimmons and Srikar, 1982), or simulation (Davis, 1981; Goldberg,
1990a).

Several articles are devoted to the estimation of the busy fraction associated with
the whole system or with a specific vertex j € W. Thus, Batta, Dolan and Krishnamurty
(1989) have developed the Adjusted MEXCLP Model (AMEXCLP) in which each term
of the objective function (38) is multiplied by a correction factor that accounts for the
fact that ambulances do not operate independently, but may be viewed as servers in a
queueing system to which the hypercube model (Larson, 1974) can be applied to compute
busy fractions. Whereas Batta et al. assume the same busy fraction for the entire system,
Marianov and ReVelle (1994) propose the Queueing Probabilistic Location Set Covering
Problem (QPLSCP) in which busy fractions are site specific. These authors compute the
minimum number b; of ambulances necessary to cover a demand point i € V in such a
way that the probability of all of them being simultaneously busy does not exceed a given
threshold. This number is then used as an input in MALP II.

Ball and Lin (1993) have developed an extension of LSCM, called Rel-P, that incor-
porates a linear constraint on the number of vehicles required to achieve a given reliability
level. The model contains binary variables z ;. equal to 1 if and only if k£ ambulances are
located at vertex j € W, and constants c;j equal to the cost of locating & vehicles at site j.
An upper bound p; is imposed on the number of ambulances located at site j. Their model
is as follows:

(Rel-P) Minimize Z Z CikTjk (51)

j€J 1<k<p;

subject to Z xjp <1 (jeWw) (52)
1<k<p;

Z Z AjkT ik > bi (Z c V) (53)

JEW; 1<k<p;
Tk € {0, 1} (j € W, 1<k< pj). (54)

In constraints (53), the constants a;, and b; are computed to ensure that given the number
of ambulances covering demand point ¢, the probability of being unable to answer a call
does not exceed a certain value. The computation of the a;; and b; coefficients are in fact
carried out by using an upper bound on that probability.

Finally, Mandell (1998) describes a two-tiered system in which ALS and BLS units
are to be located. The system is inclusive in the sense that ALS units can provide BLS
services. The probability that a call originating at vertex ¢ € V is adequately served
depends on the number h of ALS units within travel time 74 of i, the number k of ALS
units within 2 of 7, and the number ¢ of BLS units within 2 of i, where 74 > 8. Using
a queueing model, Mandell computes the associated probability 6;,.¢. The problem is to
locate p* ALS units and p? BLS units in W. Let xf(mf) be the number of ALS (BLS)
units located at site j € W. Also define binary variables y;,1¢ equal to 1 if and only if A ALS
units are located within r# of 7, k ALS units are located within r? of i, and ¢ BLS units are
located within 72 of i. Letting WA = {j € W : t;; <rA} and WP = {j € W : t;; < B},
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the range of yinre goes from 0 to h; = min{p?, [WA|} for h, from 0 to k; = min{h, p, [WE|}
for k, and from 0 to ¢; = min{p®,|W2P|} for ¢. The Two-Tiered Model (TTM) proposed
by Mandell is to maximize the expected covered demand:

hi ki 4
(TTM)  Maximize » Y ) > di Oinke Yinke (55)

1€V h=1 k=0 ¢{=0

subject to Z hz Zyzhlcé < Z x (ieV) (56)

h=1 k=0 (=0 jeEWd

Zkzzymke< Z (ieV) (57)

k=1 h=k{={y ]EW"

ZEZZ%M > (i€V) (58)

f=1 h=1k=0 jews,

hi ki 4

SN yike <1 (ieV) (59)

h=1 k=0 t=¢,

d aft<p? (60)

JEW

> af <pP (61)

JEW

Yinke € {0, 1} (ieV,0<h<hi 0<k<k,
0<0<) (62)

zf,zf € {0,1} (j e W), (63)

where ¢y = 1 if k = 0 and ¢y = 0 if £ > 0. Constraints (56)-(58) ensure that the values
taken by the coverage variables y;prs are consistent with the number of located ALS and
BLS units. Constraints (59) mean that at most one combination h, k and ¢ units of different
types is used for any demand point 7.

6 A dynamic model

When siting emergency vehicles, relocation decisions must periodically be made in order
not to leave areas unprotected. This was recognized by Kolesar and Walker (1994) who
designed a relocation system for fire companies. The ambulance relocation problem is
more difficult to tackle since it has to be solved more frequently at very short notice.
More powerful solution methodologies are called for in this case. With the development
of faster heuristics and advanced computer technologies, it is now possible to quickly solve
the ambulance location problem in real-time. What this means is that a new ambulance
redeployment strategy can be recomputed at any time ¢, using the available information.
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As far as we are aware, only one such model exists in the area of ambulance relocation.
It was developed by Gendreau, Laporte and Semet (2001) and makes use of the Double
Standard Model put forward by the same authors in 1997 (see Section 4). In addition to the
standard coverage and site capacity constraints, the model takes into account a number of
practical considerations inherent to the dynamic nature of the problem: 1) vehicles moved
in successive redeployments cannot always be the same; 2) repeated round trips between
the same two location sites must be avoided; 3) long trips between the initial and final
location sites must be avoided.

The ambulance relocation problem is solved at each instant ¢ at which a call is
registered. The dynamic aspect of the redeployment model is captured by time dependent
constants M t[ equal to the cost of repositioning, at time ¢, ambulance ¢ from its current site
to site 7 € W. This includes the case where site j coincides with the current location of the
ambulance, i.e., M;z = 0. The constant M;e captures some of the history of ambulance ¢. If
it has been moved frequently prior to time ¢, then M]t-é will be larger. If moving ambulance
? to site j violates any of the above constraints, then the move is simply disallowed. Binary
variables y;, are equal to 1 if and only if ambulance ¢ is moved to site j. The Dynamic
Double Standard Model at Time t (DDSM?) can now be described:

p
(DDSM?) Maximize »  diz? — > Y Mly; (64)
eV JEW £=1
p
subject to Z Zng >1 (ieV) (65)
JEWZ £=1
Z dzle >« Z di (66)
eV eV
p
S Yuwezalta? eV (67)
JjeEW} £=1
x? < 77 (ieV) (68)
JEW
p
> vy <p (JeW) (70)
(=1
zi,7; € {0,1} (ieV) (71)
ngE{O,l} (.7€VV7 E:l,_..,p). (72)

Apart from the variables y, ¢, all variables, parameters and constraints of this model can
be interpreted as in the static case. The objective function is the demand covered twice
within 71 time units, minus the sum of penalties associated with vehicle moves at time ¢.
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To solve DDSM?, Gendreau, Laporte and Semet have developed a fast tabu search
heuristic implemented on parallel processors. This algorithm runs non-stop and continu-
ously computes the best possible redeployment plans associated with the current positions
of ambulances, in response to each potential anticipated ambulance request. In other
words, the algorithm computes the best relocation plan for all A, where h represents the
next ambulance assigned to answer a call. In effect, a table is built in which each line
h contains a solution to DDSM?. When h becomes known, the associated redeployment
strategy can readily be applied. If the elapsed time between two successive requests is
sufficiently long, all possible redeployments plan can be computed in time for the next
request. Otherwise, a suitable redeployment solution may not be available when needed
and no redeployment then takes place. Several secondary features relative to the relative
urgency of calls, rerouting of ambulances on their way to a call, etc. are incorporated into
the system.

The system was run on a network on eight parallel Sun Ultra—1/140 workstations
and tested on six problems generated using real data sets from the Island of Montreal. In
these test problems, between 120 and 140 calls were randomly generated from 5 a.m. to 12
noon, according to a Poisson distribution. There are 2521 aggregated demand points on
the Island of Montreal, and between 40 to 51 available ambulances, depending on the time
of day. The covering standards used were r; = 7 minutes and ro = 15 minutes. Speeds
varying between 35 and 50 km/h were applied. Results obtained on the six test problems
show that the parallel tabu search algorithm was capable of precomputing a redeployment
strategy in 95% of all cases. It failed when two calls arrived within less than 32 seconds of
each other. Out of all calls, 38% required at least one ambulance relocation and 99.5% of all
relocations involved at most five ambulances, with an average of 2.08. Comparisons with
exact solutions obtained by CPLEX on a sample of scenarios show a maximal departure
of 2% from optimality.

7 Summary and conclusions

There has been an important evolution in the development of ambulance location and
relocation models over the past thirty years. The first models were very basic and did not
take into account the fact that some coverage is lost when an ambulance is dispatched to
a call. Nevertheless, these early models served as a sound basis for the development of all
subsequent models. The question of ambulance non-availability was addressed in two main
ways. Deterministic models yield solutions in which demand points are overcovered, but the
actual availability of ambulances is not considered. Probabilistic models work with the busy
fraction of vehicles, which can be estimated in a number of ways, including sophisticated
queueing calculations. Dynamic models have just started to emerge. They can be used to
periodically update ambulance positions throughout the day. Tests have shown that such
models can work in practice provided that fast heuristics exist and sufficient computing
power are available. We summarize in Tables 1 and 2 the main available deterministic and
probabilistic models for ambulance location and relocation.

As noted by Marianov and ReVelle (1995) the development of ambulance location
and relocation models will likely parallel the growth of information technologies. We
anticipate that much of the evolution will take place in the field of dynamic models which



13

G—2000-53 — Revised

Les Cahiers du GERAD

*Tu urgym

‘urre) Ajeuad

quowrAo[dopelr '  snurua

“TOATS *991s Iod seduR[ | POIsAOD puRWLD [[B JO © | ‘Tu UIYHIM SDIM) SB[ (,INSaq) # euLt,

Ioquny | -ique Jo Joqunu | uorpiodold — '%u UIYHM | 8 POISAOD PURWIOP oY) | j@ [9pPOJN PIepuels (1007) 10uag pue

‘odAy ou() | oYy uo punoq roddp Pa1oA0D puewap [y OZIWIXeW A[[RoTeuA(] d[qnNO(] STwRUA(T o110dR ‘NRDIPUSY)
“T4 urgym
“TWOATS *9918 Iod SeOUR[ | POISAOD pURWIOD [[B JO © “T UT)IM

Isquny | -nqure Jo Jequinu | uorIodold . UM )M | 90IM) 9JSBS[ I8  POISAOD ‘(INSA) TPPOIN (L66T) 1ouTag puR

‘0dAy ouQ | o1y uo punoq Ioddn POISA0D puRWLD [V pUBWIOP OY) SZIWIXBIA pIepuelg a[qno( o110de] ‘neaIpuor)
*90IM]) IO 90UO POISAOD
"TOATS puewop 913} Jo uorjeulq (zdoDVd

Joquun N -991s Tod eoure[ *90u0 3seo] Je Jurtod | -UI0D B IO ‘92IM} POISAOD pue 1JOOVH) (9861)

‘odA) ou() | -que SUO ISOW Iy purRwWop RS I8A0)) pueWLp o1} SZIWIXRIA ‘dTOIN POUIPOIN 9[[PA9Y puR URSOH
"90U0 URY[) SIOUW PAISAOD
“UOATS sjutod puewsp Jo I9q
Joquun -991s Tod eoue[ *90u0 3seo] Je Jurtod | -WINU oY} USY) ‘pPOISAOD (1861)
‘odAy ou() | -nqure ouo jsoW Iy pURWIOD DR I9A0)) | PURWOP oY) OZIWIXRIN ‘dIOIN PPUIPOIN W91 pUR UIYSB(]
(LIATA) enbruypar,
“TWOATS "posn o ued so91s d Jueteoerduy
stoquny | A[uQ) -o91s 1od soue| 'POI2A0D -juetudinbry
‘sodA) omT, | -Nqure ouO j)sour Yy *OUON pUBRWIOP oY) 9ZIWIXRIA ‘woryeoorT-AoR | (6L6T) IV 0 SuI[[Iyos
‘pojes
“O[ st g Jt poreaol 9q
‘woAl8 | A[uo ued y odAT, 9918 ‘(INVAL)
stoquiny | Iod od£9 oes Jo soue| ‘POISA0D [OPOIAl UOTIRIO[[Y
‘sodA) omT, | -Nqure ouO j)sour Yy *OUON pUBRWIOP oY) 9ZIWIXRIA quotndinbsy wepue], | (6L6T) v 20 SUI[IYoS
“UOALS (dTOIN)

Joquun N -991s Tod eoure[ 'PoIoA0D we[qoI UOIJedOT (7261)
‘odAy ou | -nqure ouo jsowW Iy *OUON PUBRWIOD ST} 9ZITWIXRIA SULIOA0)) [RWIXRIN | O[[PASY PUR Y2Iny))
"pajruIunL (NDST)

JdquuIn N -991s 10d Qoue[ *90uo 9809 e Jurod ‘seouR[NqUIR [PPOIN Sur1eA0)) (1261) wewdiog
‘odAy ou | -nqure ouo jsOW Yy puRWOp [ORd I9A0)) | JO ISqUINT S} SZITIUII 109G UOIJed0T pue uremg ‘o[[oA9Y

S911S UOI)RI0] SJUTRIISUOD
seouRINqUIY uo SjureIISuo)) a3eaaA0)) aArdalqO [OPOIN souauejay

S[OpOW OIWRUAD PUR OI)R)S ONSIUIULINOP JO ATRWING :T 9[e],




14

G—2000-53 — Revised

Les Cahiers du GERAD

R ETNE
sloquuny ‘woY}
‘Topowt Surtenonb |-sAs  eArSnOUT 9918 Jod ‘puBRwIoOp [€307 ‘(NLL) (8661)
e dursn pajndwo)) 'sod£) om T, | odA) yoes uo spunog ‘9UON | pojoadxe oy} ezIwIXRIN [OPOIN POIaL] -OM T, [EISLEIA
“yurod
puewop yoeo (dDST1dD)
10§ pondurod 0 gsea] Je Aiqeqoid ws[qOo1J SULIBAO)) (7661)
‘syutod puewop punoq Iemory ® )M POIDAOD pURIIDP 19§ UOIJRI0T O19) O[PAPY
0] SUIpI0dde  SOLIRA ‘a0dAy su( "OUON "OUON [®909 oY) dZIWIXR]\ | -SI[IqR(O1 Sulensng) | pur AOURLIRIA
‘spoads Surkiep (dTOXHNLL) (v66T)
"ON[RA UDAIY) "90UR[| "UDALS IDCUUILN "POISA0D purRwWOP JdTOXAN opreulog
-qure oes IoJ oureg ‘od Ay suQ "OUON "OUON] | p10adxo o1} oZIWIXBIN quepuadep owil],| pue apadey]
"L uTgym
‘porr ‘poyIun PoI9A0D
-od Asnq uwo pend Toquun N [ 9IS J® SO0 | pURWP [[® JO *§1S00 POXY 9dUR[N(Q (d-19¥) (¢661)
-wod punoq Jtoddn ad£y suQ | -uenqure “d jsowr 3y | © uorpiodol | -wre Jo wWNS 9Y} SZIWTUI A INDST PPYIPOJN | ury pue [eyg
“s[[eo

Jo sodA) om T,

‘sonuIm Y3

“ON[RA UDAIY) "90UR[ | "UOAIS IOqUINN -0918 Jod ootre| UMM POISAOD pURIDP JTOXHAN | (90661) v 22
-qure oes I0J oureg ‘odAy ouQ | -nque ouO JsOW Iy "oUON] | po1oadxe oY) OZIWIXBIN pojsnlpy 319qplon)
“yuapuadap (6861)
-UI jOU  SeDUR[MUIY A)Inureuysrrs
qutod pueWdp TORO | "UAAIS IoqUINN *POIOAOD pURTIOP (dTOXHANY) pue
0] SUIPIOdDR  SOLIRA ‘adAy su() "OUON QUON] | pogoadxe oy oziwIxe]N | JTOXHIN peisulpy | uejoq ‘ejyeg
"0 Jsed] je Aqiqeqord (I ITVIN)
‘jutod pURWOP [ORS | UIALS IOqUINN ® 1M POISAOD PURWLP | WO[OIJ UoIpedoo] A1 | (686T) UeSOH
09 SUIpIoddR SOLIRA odAy au() "OUON "OUON [107 O} SZIWIXRN | -[IqR[IEAY WNWIXR]\ | PUR S[[OAY
0 Lypqeqoad (I dTVIN)
"91IS UOIPed0] | "USALS JoqUInN] ® )M POISAOD PURWLP | WS[qOId U010 A1| (686T) Urv3oH
reryuajod [e 10j sureg od Ay auQ "OUON "OUON [870} ) SZIWIXRN | -[IqR[IeAY WINWIXR]N | pPue 9[[OAdY
(patpeax (dTOXHAN)
sAempe) uoAIS we[qoIq
“OT[RA UDALY) "00UR[ punoq 1addn "POIOAOD pURTIOD uOT1yed0T SULIDAO))
-IiquIe [oee I0J oureg "od£y suQ "OUON "9UON | peyoadxe o1 ozIWIXR]N | pojdedxy wnuwixe]y | (€861) unised
potaad S91]IS UOIJRDO[ | SIUTRIISUOD
Asng | seduenqUIy uo sjureI)suo)) adeaor0) aA1109lqQO [PPOIN 9dUuUoI9JY

sfopout o1ysifiqeqoid Jo Arewming :g d[qe],




Les Cahiers du GERAD G-2000-53 — Revised 15

are not only dependent on sophisticated system technologies, but also on the availability of
fast and accurate search heuristics. In addition, we expect that advanced algorithms in the
area of stochastic programming with recourse (see, e.g., Birge and Louveaux, 1997) and
new techniques for dynamic shortest path computations (see, e.g., Pallottino and Scutella,
1998) will soon become standard ingredients of dynamic models. In the first case, the idea
is to incorporate into the models the expected cost incurred when no suitable ambulance
is available to answer a call, as opposed to just imposing a probabilistic constraint in the
model. In the second case, variations in travel times during the day should be reflected in
shortest path computations used in repeated applications of the dynamic model.
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