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Abstract

This paper considers the redeployment problem for a fleet of ambulances. This problem is
encountered in the real-time management of emergency medical services. A dynamic model is
proposed and a dynamic ambulance management system is described. This system includes a
parallel tabu search heuristic to precompute redeployment scenarios. Simulations based on real-
data confirm the efficiency of the proposed approach.

Keywords : emergency vehicles, coverage models, tabu search heuristic, real-time.

Résumé

On considère dans cet article le problème de redéploiement d’une flotte d’ambulances. Ce
problème intervient lors de la gestion en temps réel d’un système de véhicules d’urgence. On
propose pour ce problème un modèle dynamique et l’on décrit un système de gestion en temps
réel de la flotte d’ambulance. Ce système comprend une méthode heuristique parallèle afin de
déterminer à l’avance des scénarios de redéploiement. Des simulations produites à partir de
données réelles confirment la pertinence de l’approche proposée.

Mots-clefs : véhicules d’urgence, modèles de couverture, heuristique avec recherche tabou,
temps réel.



1. Introduction

The main objective of emergency medical services (EMS) is to save lives but the potential of

such systems to reduce mortality is related to paramedics training and to the time needed by a

paramedic team to arrive on scene. In a real-time context, EMS managers are faced with two

main problems: an allocation problem and a redeployment problem. The allocation problem

consists of determining which ambulance must be sent to answer a call. The redeployment

problem consists of relocating available ambulances to the potential location sites when calls are

received. Basically, the redeployment problem can be viewed as an ambulance location problem.

Ambulances are assigned to potential sites to provide adequate coverage. In our case, we consider

two types of covering constraint. The absolute covering constraints require that all the demand be

satisfied by an ambulance within r2 minutes, and the relative covering constraints state that a

proportion α of the total demand is also within r1 minutes of an ambulance (r2 > r1). This type of

constraint is in agreement with the United States EMS Act of 1973 in which the standards are

r1 = 10 minutes and α = 0.95. In Montreal, ambulances are run by “Urgences Santé”  which uses

r1 = 7 minutes and α = 0.9 Desrosiers and Thibault [3]. A standard of r2 = 15 minutes is the

objective set by the company for the near future.

The redeployment problem differs from the standard ambulance location problem in several

respects. While location problems are usually solved at the strategic level, redeployment

problems are mainly operational and are solved dynamically in real-time, as EMS managers must

make almost instantaneous and simultaneous decisions relative to allocation and redeployment.

Also, in redeployment problems the current location of vehicles plays a key role, whereas

location problems are usually solved from scratch. Finally, a number of additional practical

constraints are also present. These include the following: 1) a limited number of ambulances can

be positioned at each site; 2) only a limited number of ambulances can be moved when a

redeployment occurs; 3) vehicles moved in successive redeployments cannot be always the same;

4) repeated round trips between two location sites must be avoided; 5) long trips between the

initial and final location sites must be avoided; 6) an assignment to a call should be avoided near

the end of a working shift; 7) at the end of a shift, the ambulance has to be moved closer to the
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central service point where the vehicles are based; 8) the breaks of paramedic teams have to be

taken into account.

To our knowledge, the redeployment problem has hardly been studied in the past. Most published

papers consider the static ambulance location problem only Marianov and ReVelle [11] for a

survey. This can be explained mainly by the limitations of past technology which did not allow

for real-time solutions of dynamic large-scale problems. The development of new

telecommunication and computer technologies now make the redeployment problem tractable

since the required data can be obtained and processed in real-time Brotcorne, Farand, Laporte and

Semet, [2]. For instance, the positions of vehicles are always available through a Geographic

Positioning System (GPS) and can be reported on a computerized map managed by a Geographic

Information System (GIS). From an operations research perspective, the advent of new solution

methodologies in the fields of parallel computing and metaheuristics opens new research avenues

and problems of realistic dimensions can now be solved in real-time. Interesting examples can be

found in the area of dynamic vehicle dispatching, for example Gendreau, Guertin, Potvin and

Taillard [4].  The use of parallel computing is particularly critical in contexts such as ours where

immediate response is required.  Not only does parallel computing achieve greater speed, but it

also enables the use of more sophisticated algorithmic approaches which would simply be

intractable within conventional computing environments.

The remainder of this paper is organized as follows. The model is presented in the next section.

In Section 3, a real-time ambulance management system is described. This is followed by

computational experiments in Section 4 and by some conclusions in Section 5.

2. A dynamic model

Over the past fifteen years, several coverage models have been put forward for the static

ambulance location coverage problem Hogan and ReVelle [8], ReVelle and Hogan [13], Ball and

Lin [1], Marianov and ReVelle [10], Gendreau, Laporte and Semet [5], Mandell [9].  In a major

departure from previous studies, the model we propose includes a dynamic dimension in the

sense that the solution it produces depends on the current state of the system. A comparison of

some recent models is provided in Table 1.



3

Table 1. Compar ison of seven ambulance location coverage models

Model Objective Coverage constraints Ambulances

Hogan and ReVelle
[8]

Maximize a linear combination
of demand covered at least
once and at least twice within
r1.

All demand covered within r2. One type of vehicle.
Total number given.

ReVelle and Hogan
[13]

Maximize the total demand
covered with an appropriate
number of ambulances.

None. One type of vehicle.
Total number given.
At most one ambulance per
site.

Ball and Lin [1] Minimize the sum of
ambulance fixed costs.

Proportion α of all demand
covered within r1.

One type of vehicle.
Decision variable.
No constraint on the number of
ambulances per site.

Marianov and ReVelle
[11]

Maximize the total demand
covered with an appropriate
site-specific number of
ambulances.

None. One type of vehicle.
Total number given.
Upper bound on the number of
ambulances per site.

Gendreau, Laporte and
Semet [5]

Maximize the total demand
covered at least twice within r1.

All demand covered within r2.

Proportion α of all demand
covered within r1.

One type of vehicle.
Total number given.
Upper bound on the number of
ambulances per site.

Mandell [9] Maximize the total demand
covered.

None. Two types of vehicle.
Upper bound on the number of
ambulances per site.
Ambulance availability is
restriced.

Gendreau, Laporte and

Semet (this paper)

Dynamically maximize the
total demand covered at least
twice within r1, minus a

penalty term to reflect the
change from the current state of
the system.

All demand covered within r2.

Proportion α of all demand
covered within r1.

One type of vehicle.
Total number given.
Upper bound (≥1) on the
number of ambulances per site.

The model we propose, called RPt, solves a version of the redeployment problem at time t. It

includes the following constraints listed in Section 1: 1) double covering constraints; 2)

constraints on the number of ambulances at each site; 3) constraints avoiding to move the same

ambulances repeatedly; 4) constraints avoiding round trips; 5) constraints avoiding long trips.

The objective is to maximize the backup coverage demand, i.e., the proportion of the demand

covered by at least two vehicles within a radius r1, minus a relocation cost. The first term of the

objective function is particularly appropriate in a real-time context since the zone covered by a

vehicle assigned to a call may still be covered by another ambulance after the call has been
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serviced. The second term ensures that the location plan remains fairly stable throughout the day.

The model is truly dynamic since it incorporates new information on the state of the system

received at each period t.

Formally, the problem is defined on a graph G = (V∪W, E) where V = { v1,...,vn}  and

W = { vn+1,...,vn+m}  are two vertex sets representing, respectively, demand points and potential

location sites and E = { (vi,vj): vi,vj ∈ V∪W, i < j}  is an edge set. Demand at vertex is equal to λi.

With each edge is associated a travel time tij. For vi ∈ V and vj ∈ W, define:

γ � � as a binary coefficient indicating whether tij ≤ r1 (γij = 1) or not (γij = 0) �
δ� � as a binary coefficient indicating whether tij ≤ r��� δij = 1) or not (δij = 0) �

The total number of available ambulances is given and equal to p (p ≤ m). The maximum number

of ambulances that can wait at vj ∈ W is pj . To model constraints iii), iv) and v), define a penalty

coefficient Mt
j�  associated with the relocation of ambulance �  = 1, …, p from its current site at

time t to location site vj ∈ W. These penalty coefficients reflect ambulance locations at time t as

well as information regarding previous redeployments before t. Thus the redeployment of an

ambulance that has been frequently moved in the past will be more heavily penalized. In the same

vein, round trips and ambulance relocations over a long distance will be discouraged. It is

important to realize that the Mt
j	  coefficients are updated at each period t. Finally, α is the

proportion of the total demand that must be covered by an ambulance located within r1 units.

We use the following variables: yj
  is a binary variable equal to 1 if and only if ambulance �  is
located at vj ∈ W and k

ix  is a binary variable equal to 1 if and only if vi  is covered at least k

times. The redeployment problem at time t is then:
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In this model, constraints (2) and (3) express the single and the double coverage requirements.

The absolute covering constraints (2) state that all demand must be covered within r2 units.

Constraints (3) and (4) express the relative covering requirements. Constraints (3) impose that a

proportion α of all demand is covered whereas constraints (4) state that the number of

ambulances located within r1 units should be at least one if 1
ix =1 or at least two if 2

ix = 1
ix =1.

Constraints (5) ensure that a demand point cannot be covered twice if it is not covered at least

once. Constraints (6) specify that each available ambulance must be assigned to a potential

location site. Finally, constraints (7) define an upper bound on the number of vehicles waiting at

a location site.

3. A real-time ambulance management system

The system we have developed enables real-time decisions to be made at two levels. The first is

the allocation problem which consists of determining which ambulance to send to a given call.

This is easily achieved through the application of some basic rules and does not require a heavy

optimization machinery. At the second level, the ambulance redeployment problem must be

solved in real-time repeatedly throughout the day.
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3.1 The allocation problem

The choice of an ambulance to answer a call depends on the nature of the call. Typically, when a

call occurs at the EMS dispatching center, the medical status of the patient is evaluated through a

standardized procedure which yields four levels of severity: 1) urgent calls requiring one

ambulance; 2) urgent calls requiring several ambulances; 3) less urgent calls; and 4) pending

calls. Urgent and less urgent calls are dealt with immediately and are subject to the absolute and

relative covering constraints. Pending calls mean that no allocation decision is immediately taken

since the patient state is not clear. Such calls are periodically revised.

Even if urgent and less urgent calls are subject to the same covering constraints, their priorities

differ. For urgent calls, one or several ambulances closest to the call location are dispatched. All

available ambulances are considered, not only those positioned at a fixed location, but also those

on their way to a new location. In the latter case, their current position is estimated by the

management information system. In the future, the exact position should be transmitted by the

GPS. In the case of less urgent call, a different criterion is used. For each possible allocation of an

ambulance within r2 minutes of the call location, the redeployment problem is solved and the

allocation yielding the best value of the first term of the objective function (demand covered

twice) is selected.

Usually an ambulance is definitively assigned to a call, but in practice the severity of a patient

state can lead to modify this rule. More precisely, a vehicle already assigned to a less urgent call

may be reassigned to an urgent call if the following two conditions are fulfilled: 1) the reassigned

ambulance is the closest ambulance; 2) there exists an ambulance capable of covering the less

urgent call within the remaining time. The second condition does not apply when there is no

ambulance able to cover the urgent call in time.

3.2 The redeployment problem

We have developed a parallel tabu search heuristic capable of providing high quality solutions.

This algorithm is based on a sequential tabu search algorithm previously proposed for a static
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ambulance location model Gendreau Laporte and Semet [5]. We now briefly sketch the

sequential method and then explain how we parallelized it.

A sequential tabu search heuristic

Gendreau, Laporte and Semet [5] consider a static ambulance location model where the objective

is to maximize the total demand covered twice while satisfying the double coverage

requirements. The problem is solved using tabu search Glover [6], a local search method which

moves at each iteration from a solution to one of its neighbours even if it causes a deterioration of

the value of the objective function. To avoid cycling, some solutions features are declared tabu

for a number of iterations. Several refinements of this general framework have been proposed

Glover and Laguna [7], and the method has been applied to a wide variety of contexts Osman and

Laporte [12].

The tabu search algorithm developed for the static ambulance location is initialized from a

rounded solution of the linear relaxation of the model. At any iteration, the solution may be

feasible or infeasible with respect to either covering constraint. Given a solution, a new solution

is obtained by moving a set of vehicles between potential location sites. This set is generated by a

so-called aspiration chain. This chain is constructed through the maximization of a meta-

objective function, which takes into account the covering constraints violations, and the model

objective function in a hierarchical fashion. More precisely, an ambulance is displaced from a

vertex to an unsaturated vertex (i.e., a vertex where the maximum number of waiting vehicles

has not been attained), and ambulances are moved in order to try to recover first the absolute

covering requirements and then the relative covering feasibility. Finally, an attempt is made to

increase the value of the objective function by performing non-tabu moves of ambulances. When

the best known solution has not been improved for a given number of iterations, a diversification

phase is applied. This phase is based on specific rules to initiate the aspiration chain generation

process. This tabu approach was tested on randomly generated instances and on instances

obtained from the Island of Montreal data. Computational results confirmed that near-optimal

solutions could be obtained within modest computing times (up to three minutes on a Sun

Sparcstation 1000).
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A parallel tabu search heuristic

While the sequential tabu search algorithm is perfectly adequate for the static location problem, a

more powerful tool is required for real-time problem solving where life or death decisions must

be made in the space of a few seconds several times a day. This is where the power of parallel

computing comes into play. To further speed up the decision process we have developed a

solution methodology that takes advantage of the available time between consecutive calls by

anticipating future decisions on the redeployment of the fleet. More precisely, for each available

ambulance, our approach consists of precomputing the relocation decisions associated with the

possible assignment of this ambulance to the next incoming call. Thus, when this call actually

occurs, an ambulance is assigned according to the rules described previously and the

precomputed redeployment scenario is applied. However, when two calls are received in a quick

succession, it may still happen with our approach that a fully precomputed solution will not be

available. In such a case, no redeployment takes place.

Our parallelization strategy is based on a master-slave scheme made possible by the availability

of a coarse-grained parallel environment (a network of SUN Ultra Sparc workstations). The

master manages mainly two data structures containing for each ambulance available 1) the value

of the total demand covered twice and 2) the future positions of the remaining ambulances. Given

the current position of the vehicles, these structures can always be initialized. Then, the master

distributes the optimization tasks among the slaves in a cyclic way according to increasing order

of the total demand covered twice. More precisely, a slave processor is allocated to improve the

redeployment strategy associated with an ambulance. The tabu search method is then used to

solve the redeployment problem starting from the current best known solution. To control the

CPU time allotted to computation of each strategy, the algorithm is run for a given number of

iterations. This number is set according to the frequency of calls, which is evaluated as a

smoothing average on the inverse of the delay between two consecutive calls. When all strategies

have been considered once, a new attempt to improve them is made with a larger number of

iterations. Thus, the optimization process is carried out on a full-time basis and the system can

provide its best known solution upon request.
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To improve the efficiency of the parallel optimization method, the assignment of tasks to slaves

takes into account some of the characteristics of the problem. First, even if redeployment

decisions are associated with an ambulance, these only depend on the current position of the

ambulance. Therefore, when two ambulances are waiting at the same location site, only one

relocation strategy has to be computed. Second, since some events are known in advance, (e.g.,

pending calls, ends of shift, etc), the associated strategies can be computed some minutes before

the event occurs. Finally, to increase the CPU time performance of the system, some data updates

can be performed in a parallel way. This occurs when a new ambulance enters the system at the

beginning of a shift, or when it becomes available after having completed its task. Then, both

data structures managed by the master must be updated, which can be achieved by distributing

the computation of the relocation strategies among the parallel processors.  These data structures

store the current solution and the solutions to the subproblems with one fewer ambulance.  Each

solution is stored as an object containing the ambulance sites and a list of the zones covered by

each site.  The updating process consists of first stopping the tabu processes and recovering from

them improved solutions for the subproblems on which they were working.  The relevant

solutions are modified accordingly in the data structure. Then, all solutions are adjusted to

account for the event that has just occurred.  When a new ambulance becomes available, the

current solution becomes the solution to the subproblem corresponding to this new vehicle.  In all

other solutions, the vehicle is simply added at its location. Conversely, when an ambulance is

allocated, the solution of its subproblem becomes the new current solution, and the initial

solution for each of the subproblems is simply derived by deleting the corresponding vehicle

from this new current solution. Note that in both cases the list of zones covered by the sites in

each solution must be adjusted to account for the addition or deletion of an ambulance.  Finally,

the tabu processes for the subproblems are restarted from the new initial subproblem solutions.

We have implemented two additional features to account for the characteristics of ambulance

dispatching operations. The first is related to multi-assignment of vehicles to a given call; the

second relates to ambulance reassignments. In the event of a multi-assignment, the closest

ambulances are dispatched. The redeployment scenarios corresponding to each dispatch are then

considered separately and all dispatched ambulances are removed from them. The resulting

scenario having the largest demand covered twice is selected and an attempt is made to improve
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it by requesting a slave to perform a few tabu search iterations. This is the only situation where a

redeployment scenario is computed (or modified) after receiving a call. In the case of an

ambulance reassignment, the second best ambulance capable of covering the less urgent call is

identified. The redeployment plan associated with this ambulance is computed in priority within

the parallelization scheme. However, since less urgent calls have to be covered within r2 minutes,

the ambulance able to cover the less urgent call in the remaining time may change. Thus,

following each dispatch, the second best ambulance is always determined. This process is

repeated until the ambulance assigned to the less urgent call arrives on the scene.

4. Computational results

The algorithm just described was coded in C++, and PVM was used for the parallel

implementation. We used a network of eight Sun Ultra-1/140 workstations (spec int95:5.87; spec

fp95:8.38; ram:64M; solaris 7 exploitation system). Six sets of test data were simulated using a

real-life call distribution provided by Urgences Santé. More specifically, we worked with the

morning call distribution shown in Table 2. The number c of calls generated on the six data sets

was 120, 120, 130, 130, 140, and 140, yielding an average of 130.

Table 2. Morning call distr ibution at Urgences Santé

Period t Proportion pt of morning calls

5:00-6:00 9 %

6:00-7:00 11 %

7:00-8:00 18 %

8:00-9:00 19 %

9:00-10:00 18 %

10:00-11:00 13 %

11:00-12:00 12 %

For each of the seven one hour periods t considered, calls were randomly generated according to

a Poisson distribution of mean λt = c pt . The spatial distribution of calls was obtained by using

2521 demand points on the Island of Montreal (Figure 1) corresponding to centroids of census

tracks, and represented by means of the Universal Transverse Mercator projection. Each of these
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points was then weighted by the track population in order to generate more calls in more densely

populated areas. The distribution of the four types of call described in section 3.2 was 80%, 3%,

10% and 7%. We assumed all type 2 calls required two ambulances. The number of available

ambulances was allowed to vary through the morning. Their speed also varied according to time

and each of the three city sectors shown in Figure 1. Realistic speed figures were obtained after

discussions with Urgences Santé managers. These values are provided in Table 3. The covering

radii were r1 = 7 minutes and r2 = 15 minutes and the proportion of the total demand to be

covered within r1 minutes was α  = 0.9.

Table 3. Number and speed of ambulances according to time and city sector

Speed (km/h)
Period t

Number of
ambulances Center East West

5h-6h 40 45 50 50

6h-7h 50 40 45 50

7h-8h 60 35 40 50

8h-9h 60 35 40 50

9h-10h 60 35 40 50

10h-11h 58 35 40 50

11h-12h 51 35 40 50

Our tabu search algorithm was run on each of the six data sets. In all simulations covering a

morning period of seven hours, all calls were covered within 15 minutes and 98% of urgent calls

(types 1 and 2) were covered within 7 minutes, with an average of 3.5 minutes, which is well

within the Urgences Santé desired response time of 7 minutes for 90% of urgent calls. Less

urgent calls were covered within 9 minutes on average. The algorithm was also very effective

since it succeeded in precomputing a strategy in 95% of all cases. The only cases where this was

not possible happened when two consecutive calls occurred within 32 seconds of each other. Out

of all calls, 38% required at least one ambulance relocation and 99.5% of all relocations involved

at most 5 ambulances, with an average of 2.08. This is an interesting result in the sense that our

algorithm contained no feature controlling the maximum number of relocated ambulances even if

this is one of the constraints taken into account in practice. Finally, to better assess the

effectiveness of our heuristic, we extracted 33 scenarios from the simulation data and the tabu
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search results were compared with an optimal solution computed by means of CPLEX. On the

average, the objective solution value produced by the heuristic was within 2% of the optimal

value.

Figure 1. Population distr ibution on the Island of Montreal
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In most parallel computing applications, the effectiveness of the parallelization scheme is

measured by comparing the time required by the parallel implementation of the algorithm at hand

with that of a sequential implementation, thus yielding a speedup index. However, this measure

does not really make sense in our context since the algorithm runs continuously in an attempt to

improve solutions. Therefore the parallel implementation does not run quicker for a fixed task,

but rather performs more work in a set amount of time. One way to derive a meaningful speedup

measure is to compare the overall amount of work performed by sequential and parallel variants

of our method. This can be measured by the number of tabu search iterations. To this end, we

have conducted experiments with one, two, four or eight workstations. The results of these

experiments are reported in Table 4. Along with the overall number of iterations performed in

each case, we report the average number of applications of the tabu search heuristic to

subproblems (scenarios) between two calls. These values indicate how well the real-time system

can handle the task of examining the possible scenarios between requests. To correctly interpret

these figures, recall that the tabu search heuristic can be applied more than once to a subproblem

between two requests. It is interesting to observe that unless eight processors are used, only a

fairly small fraction of the subproblems can be examined since in these experiments the average

number of unassigned ambulances is around 39. The number of applications of the tabu search

heuristic grows sublinearly with the number of processors. This could be expected since some of

the applications are interrupted when a new request arrives. The iteration counts indicate that the

overall amount of work performed is almost linear in the number of processors, thus confirming

the effectiveness of our parallelization scheme.

Table 4. Computational results with 1, 2, 4 and 8 processors

Number of
processors

Number of tabu
search iterations

Average number of
calls to tabu search
heuristic between

two calls

1   49,005  5.84

2 101,227 11.45

4 197,243 18.47

8 348,392 33.10
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5. Conclusion

We have developed a dynamic ambulance dispatching and redeployment system to assist real-

time decision-making. The main feature of the system lies in the precomputation of redeployment

scenarios that allows immediate decision making when calls are received. High quality solutions

as measured by coverage indicators are determined by means of a powerful tabu search engine

first developed for a static case. Computational efficiency is achieved through the use of a

parallelization strategy which is essential to the success of this application. Computational results

based on real data show that the proposed system can effectively solve real-life instances such as

those arising in Montreal.
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