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Scope and Purpose. Inspired by the findings about neurons, and
especially by some effective training procedures found in the late 70's,
neural networks have seen a resurgencein the research community. Its
philosophy assumessimple but massive interconnected processing units
as the basic structure for information processing. Problems that are
difficult to tackle with conventional symbolic-based techniques, seem to
be more readily solvable with aeural network approach (e.g. perceptual
tasks, associative memory). This paper focuses on such a problem: the
dispatching of vehicles and crews. This kind of problem is found, for
example, in the context of parcel pick-up and delivery serviceriority
mail. The task of assigning a particular vehiade driver to a new request
is done by a human dispatcher, and his(her) decision process typically
involves a lot ofexperience,judgment and expertise. We thus describe in
this paper a neural network model that can learn to reproduce the
decision process of an expert dispatcher by using examples of his(her)
previous decisions.

Abstract. Decision making with respect to the dispatching of vehicles
and crews is still mainly in the realm of human expertise. From our own
experience, it seems vergifficult to explicitly model that expertise via a
symbolic approach. In this paper, we thus propose an alternative neural
network model as a sub-symbolic and empirical alternative for modeling
the decision process of expert dispatchers. Preliminary results about the
ability of the network to reproduce various decision rules are reported.



1. INTRODUCTION

The Vehicle DispatchingProblem (or Demand ResponsiveDial-A-Ride
Problem) is concerned with the allocation of vehicles for servicing
customers requesting immediate service. Typical examples would be
parcel pick-up and delivery services, prioritpail or ambulance services.
The task of assigning a particular vehicle to a new request is done by a
human dispatcher, and his(her) decision process typically involvést af
experience, judgment and expertise. However, such capabilities are very
difficult to formalize (e.g. explicit decision rules), since they require
complex perceptual and cognitive abilities, like consideration of the
current location of each vehicle with respect to the location of the origin
and destination points of the new request. Given those premises,
automated knowledge acquisition techniques look as a promising way to
avoid the knowledge acquisition bottleneck in this area.

Inspired by the findings about neurons, and especially by some
effective training procedures found in the late 7Qigural networks have
seen a resurgencein the research community [Rumelhart and McClelland
86a). Its philosophy assumes simple but massive interconnected
processing units as the basic structure for information processing.
Problems that are difficult to tackle with conventional symbolic-based
techniques, seem to be more readily solvable with neoedivork models
(e.g. perceptual tasks, associative memory).

This paper focuses on such a problem: the dynamic dispatching of
vehicles and crews. We describe a neural network model that uses
examples of expert dispatcher decisions for training. Given a set of
attributes that describe typical dispatching situations and the decision
that has been taken (i.e. the vehicle chosen for servicing the new request
a neural network is trained to assess the relative quality of each
candidate vehicle and select the vehicle with highest quality.

In the rest of the paper, we divide our discussion along the
following lines. Section 2 first defines more precisely the vehicle
dispatching problem. Section 3 then describes various ways of encoding
dispatching situations for a neural network model and discussesrelated
network structures. Section 4 reports on experimental results in various
decision contexts. Finally, concluding remarks are made in section 5.



2. THE VEHICLE DISPATCHING PROBLEM

In the Vehicle Dispatching or Dial-A-Ride Problem [Bodin et al. 83],
customers calla dispatcher for service request. Each customer specifies a
distinct pick-up and delivery location and, perhaps, a desired time for
pick-up or delivery. If all customers demand immediate service, then
routing and scheduling is done in real time and the probiemeferred to
as the dynamic Vehicle Dispatching Problem. In such a demand
responsive system, the system is looked at when a new customer calls
into the dispatch office. At that time, some of the earlier customers have
been delivered to theidestinations and, hence, are no longer considered.
The remaining customers who have requested service bhae& assigned
to a vehicle and are either on their way to their destinatiorarerwaiting
for their pick-up. Moreover, athat time, the route and schedule for each
vehicle is known. The problem is thus ttetermine the assignmentof the
new customer to a vehicle and the new route and schedul¢he vehicle
that the customer is assigned to.

Currently, this problem is still mainly solved by human dispatchers.
Only a few algorithmic approacheshave been designed for that class of
problems, the best known approach being Wilson’s heuristic [Wilson and
Covin 77] for a dial-a-ride transportation system in Rochester, NY. A
dynamic programming algorithm for the single vehicle case is also
described in [Psaraftis 80].

Our approach is quite different, since we are interested in building
adaptive system that can learn to reproduce the decision process of the
expert dispatcher it is trained with. In this way, such a system could
easily adapt to various dispatching environments. Since the decision
procedure can vary a lot from one organization to another, the system’s
adaptability looks here as a great asset.

Let us first assume that each ooéthe n available vehicles (drivers,
candidates) involved in the dispatching situatioan be characterizedby
a vector of m attributes {x, xij2,...,Xim), i=1,2,...,n.Those attributes should
reflect, for each vehicle, the actual dispatching situation with respect to
their current route and the new request to be serviced, like: the extra-
mileage required for servicing the new request, the pick-up time, the
delivery time, additional delays incurred by the requests that are plannes
to be serviced by that vehicle, etc.

The set ofall candidates,each with its m attribute values, is called a
context for decision making. The objective of the dispatching process is
thus, given a context, to select a suitable candidate. The decision process



can be modeled as a function F from the set of contexts C to the set of
candidate vehicles V:

F: C->V where:

{c1c2,...n} £C
¢Gi = (Xi1,%Xi2,..., Xm), i=1,2,...,n, and
Xjj = attribute value j of vehicle i.

The dispatching function F should encotlee human expertise and it
is obviously very difficult, if not impossible, talefine F analytically. Here,
we simply attempt to approximate it via a neural network model. In the
next section, we will first describe ways of encoding a dispatching
situation for a neural network. Then, the neural network’s structure and
training procedure will be discussed.

3. DATA ENCODING

A) Global encoding

The most obvious way to encode dispatching situations is to provide &
context to the network as an input vector of length (m x n), where m is
the number of attribute values for each vehicle and n is the number of
alternative vehicles in the context. We would then expect a relative
measure of quality for each vehicle as an output vector of length n.

We must however observe that a context is really an unordered set
of n attribute vectorsHence,the final outcome should not be affected by
their ordering (e.g. providing the attribute values of vehicle i before or
after the attribute values of vehicle j should have no effect on the final
decision).

In order to do so, we define a lexicographic ordering,(c, q,) of the
n attribute vectors in each context, as follows:

put g;j before ¢¢ if and only if

there is some t in the range<lt< m such that
Xijs = Xiks: l<s<t and Xjt < Xikt

As an example, Figure 1 shows a three lapetwork for m=3. As we
can see, there is a hidden unit for each group of m input units (a group
describes a single vehicle) and each hidden unit is only connectedto one
group of input units. The hidden layer is however completely connected



to the output layer and there is an output value Ojj for each group of
input values (}ﬁl,---, ij) that describe a vehicle, 4j < n.

Given n groups of input units ij(i,---,lijm) and the hidden units i]—,l 1<

] < n, we would then like to constrain the weights on the connections
between the input and hidden units in such a way that, for any given
attribute k, 1< k< m, the weight value Wij,lijk is the same for all j. This

could be achieved via the "shared weights" approach of [Rumelhart et al.
86Db].

In this way, it would be possible to encode the whole dispatching
context. However, thdength of the input vector is (m x n) and this value
can quickly become very large for real life problems. It would thus be
difficult to train the neural network without a huge training sample of
contexts. In order to avoid this problem, the next section describes
alternative ways of providing this information to the neural network.
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Fig. 1 Global encoding

B) Local Encoding

Obviously, each attribute value xjj per se carries little meaning. For
example, if the extra-mileage of vehiclefor servicing the new request is
5 miles, it does not mean muchithout knowing the extra-mileage of the
other vehicles. Hence, the information that we need is disseminatedover



the whole context. Since the vector representation of a conterf isngth
(m x n), it would certainlybe interesting to find a way to shift this global
information into localinformation for each individual vehicle (so that the
data associatedwith a given vehicle can be interpreted without direct
reference to the other vehicles). By doing so, we could then train the
network with input vectors describing each single vehicle, rather than
input vectors describing the whole set of candidate vehicWégh only 25
distinct contexts and 10 alternative candidate vehicles in each context, it
would already bepossible to generate 25+10 = 250 distinct input vectors
for training. Moreover, reducing the length of theput vector by a factor
of n allows us to train the network with much smaller training samples
(since the complete set of all possible input patterns is greatly reduced).

In the following, where we assume that the attribute values are all
greater or equal to zero, we describe ttwvansformations of the data that
allow us to shift a major part of the global information into a single
vehicle's input vector.

Translation. Since we try to reproduce the preferencesof the dispatcher
(one vehicleis preferred over all other available vehicles), one good way
of transforming the jth attribute value xjj of vehicle i is to translate it
with respect to the best jth attribute value over all vehicles in the same
context, that is:

Xij' = Xj - (min; xij) or Xi' = (max xij) - Xij i=1,...,n; j=1,..., m,

depending if the attribute value is a measure of cost (min) or profit (max).
By doing so, xjxj' = 0 for the best vehicle i* with respect to the jth
attribute, and the remaining values xjj' (i = i*) in the context will rank
relative to the gap with thdest value. Geometrically, this transformation

iIs simply a translation of each vehicle's input vector with respectto the
minimum (maximum) value of each attribute in the context. It readily
shows, for any given attribute, where a vehid®nds with respectto the
best attribute value in its context.

Normalization. We can then transform furthermore the above values by
normalizing over the maximum gap in a context, that is:

Xjj" = xj'/max xjj' , if max xjj'= 0
= Xjj' , otherwise
i=1,...,n; j=1,..., m.

This normalization facilitates input pattern comparisons across
distinct contexts. It should thus help the learning procedure in finding
regularities over the set of training patterns.



It is obviously possible that some globally available information
cannot be shifted to the local vehicle's input vector with the two
technigues described above. However, it sedims during training, some
patterns should now appedo be more clearly related with vehicles that
are chosen by the dispatcher. For example, if the value ofitthattribute
IS very important in the decision process, vehicles whose input vectors
show a jth attribute value close to zero are more likely to be chosen.
Conversely, thosewith a value closeto 1 are less likely to be chosen.We
thus hypothesize that the above transformations capture essential
information about the decision problem, and that they are sufficient for
training a neural network with only individual vehicle's input patterns
(Xi1",.--, Xm").

Figure 2 shows a twdayer and a three layer network based on such
a local encoding of the data for m=3. The experiments described in the
next section relate to those network structures. We used either the two
layer or the three layer network depending on the linearity or non
linearity of the decision procedure (to be discussed later).

We assumethat the neural network will learn to compute a quality
function F" based on the attribute values that describe a dispatching
situation for a given vehicle. If vehiclé is chosenover all other vehicles
iIn a given context then, ideally, the activation of the output unit shdudd
greater for the input pattern (xj*1",..., Xj*m") of vehicle i* than for any
other vehicle in the same context, that is o1(i*) = F"(i*) » F"(i) = o1(i), for
all i = i* in the context.
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Fig.2  Two layer and three layer networks



The neural network output can be related here to the relative
selection frequency of a given pattern among all its occurrencesin the
training sample. If there is enough information within a pattern for
decision making, therthis pattern should be consistently selected (or not
selected). If the information within the pattern does not include all the
information for decision making, thethis pattern will be chosenin some
situations and not chosenin others. In such a case, the relative selection
frequency for the pattern will be between 0% and 100%. However, it is
expected that"good" and "bad" patterns should emerge with respectively
high and low selection frequencies (i.Bequenciesrespectively well over
and under 50%), assuming that there is enough informaitiothose input
patterns to make suitable decisions in most situations.

Training. The training of the neural network was done via the back-
propagation learning algorithm of Rumelhart et al., using the well known
sigmoid activation function for each unit i [Rumelhart and McClelle&@lb,
Jones and Hoskins 87]:

1/ 1 + eXx(i)  where x(i) = 6j +Zj Wij * g,

i = Iinput bias of unit i.
aj = activation value of unit i.
wijj = connection weight

between j and 1i.

The input patterns provided to the neural network were vectors of
attribute values describing dispatching situations for individual vehicles,
as defined above. For evaluating the error signal, the desired output was
set to 1 when the vehicle was selected by the expert and it was set to 0
otherwise.

It should be noted thasuch a binary desired output can look a little
bit artificial, since we do not necessarily want the neural network’s
responseto be 1 for a selected vehicle and 0 for a non selected one. We
simply want the neural network’s output to be higher for the selected
vehicle than for any other non selected vehicle in the same context. This
IS a typical case where it is easy to knawthe neural network is right or
wrong (by applying the neural network to all vehicles in a context and
comparing the output for the vehicle chosen by the expert with the
outputs for the other vehicles), but the desired or target output is not
really known. We are thus currentlynvestigating alternative approaches,
such as reinforcement learning [Barto and Anandan 87], so as to try to
iImprove the results that we obtained with the binary target outputs.



As an example, one alternative is to define the error signalobsws.
For anon selected vehicle (i.e. not chosenby the expert), the error signal
iIs set to the difference between the output fbis vehicle's input pattern
and the outputfor the selected vehicle in the same context, based on the
current neural network's weights. If this value is negative, however (i.e.
the neural network is right and the output for the current vehicléovser
than that of the selected vehicle), then the error is set to O and no trainin
takes place. For a selected vehicle (i.e. chosen by the expert), the error
signal is set to the difference between the largest output of all non
selected vehicles in the same context and the output for the selected
vehicle, based on the current neural networksights. Once again, if this
value is negative (i.e. the neural network is right and the output for the
selected vehicle is higher than that of any other vehicle in the same
context), the error signal is set to O and no training takes place.

With such an error signal, however, the error measure (mean
squared error) is not anymore a differentiable function with respect to
the set of weights. In order to overcome this difficulty, we first simply
replaced the classical error signal "desired output - current outputthley
above error signal into the backpropagationformulas. Unfortunately, the
results were not as good as those obtained with the binary outputs. We
are thus looking for a differentiable functiothat would approximate in a
satisfactory way the new error measure, so as to preserve the gradient
descent behavior of the backpropagation algorithm. This is one of the
topics that we are currently investigating.

Section 4 will now present the results that we have obtained tiigh
binary target outputs.

4. EXPERIMENTAL RESULTS

We ran three different experiments in order to get some insight
about the ability of a neural networto reproduce systematic and human
decision processes.In each case,the data were previously collected from
an operations day of a courier company serving an urban area. The two
first preliminary experiments were based on a priori decision rules. We
felt that it would be uselessto try to reproduce the decision making
process of an expert, if the neurmaktwork model would fail to reproduce
even simple systematic decision rules. In the last experiment, we asked
an expert at the Centre de Recherche surTlemnsports (CRT)of Montreal
University to take the dispatching decisions.

In the first two experiments, we took 25 distinct contexts with 10
vehicles in each context for training and testing, that is, 2510 = 250
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training and testing patterns. We used m=3 distinct attribute values for
characterizing a dispatching situation for a given vehicle, namely extra-
mileage (expressed in time units), pick-up time and delivery time.
The results are discussed below.

1) Experiment 1: The Minimum Value Rule.

The first rule that we tried to reproduce is quite simple: select the
vehicle whose extra-mileage is minimum in a given context. Since the
translated and normalized extra-mileage value of all selected vehicles is
0, it is easy to see that the classesof selected and non selected vehicles
are linearly separable in the attribute or input space (assuming that in
case of equality, all vehicles with the same minimum value in a context
are selected). Wehus easily reproduced this decision processwith a two
layer neural network model (cf. fig. 2a).

After training, we observed a very large negative weight for extra-
mileage, and weights close tero for the two remaining attributes. 100%
accuracy was achieved both for training and testing contexts. It should
however be noted thathe same results could have been obtained with a
classical linear regression model.

2) Experiment 2: The Neighborhood Rule.

The second rule is more complex. We first identify a subset of
gualified vehicles in a given context, by considering all vehicles with an
extra-mileage value within 5 minutes of the minimum value in the
context (i.e. all vehicles with an extra-mileage value in the "neighborhood"
of the best value). Then, for all vehicles satisfying the first condition, we
select the vehicle with minimum pick-up time in the context. In case of
equality, all vehicles withthe same minimum value are chosen.It canbe
easily shown that the classes of selected and non seleeteidles are not
anymore linearly separable.

At first, we used a standard three layer feedforward network for
training, where unitsof layer i are linked to units of layer i-1 and i+1 (if
any). During the course of experiments howeverjugt happenedthat we
got better results by adding direct connections between the input units
and the output unit (as depicted in figure 2b). Connecting the inputs
directly to the output increases the number of free parametersaldows
the network to use the direct connectionsfor linearly separable features
while reserving the hidden connections for the non linearly separable
ones.



Figure 3 shows a typical learning curve for the neighborhood rule
with a standard three layer feedforward neural network structure
(backprop. net. 2) and a structure with direct links between input and
output units (backprop. net. 1). At our first training attempt with the
latter structure, we got 23 decisions right out of 25 for the training set
and 21 out of 25for the testing set. However, the magnitude of the error
was very large for two erroneous contexts in the testing set (i.e. the
output for the vehiclethat should have been selected was quite low with
respect to the vehicle with highest output). In both contexts, the vehicle
to be selected by the neighborhood rule was a "borderline" case,in the
sense that thegap between its extra-mileage value and the best value in
its context was just slightly under 5 minutes.

Such results were an indication that the neural network did not
clearly learn the decision rule and that our training set failed to provide
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some useful examples (such as "borderline” cases). We thus addetdvohe

borderline casesto the set of training contexts, and trained the neural
network anew. Atthe end of that process,we got only 2 wrong decisions
during testing and the magnitude of the error was greatly reduced.
Moreover, the vehicle with highest output in both erroneous contexts
related to a vehicle that should have ranked second according to the
neighborhood rule and, as such, it was not really a bad choice.

Figure 4 summarizes the testingsults for this experiment. For each
one of the 25 contexts, we show the three highest ranked vehicles. Note
that the vehicles satisfying the neighborhood rule are underlined thad
the character "X" is shown at the end of the context line when the
network is wrong (i.e. when the neural network's highest ranked vehicle
is not underlined). In most contexts, only one vehicle satisfies the
neighborhood rule,but in a few casesthere is a tie between two or even
three vehicles (contexts 1, 13, 18).

As we can see in the figure, an underlined vehicle is ranked first or
second by the neural network in each context. Note also that for one
erroneous context (context 22), the underlined vehiclevasy closeto the
highest ranked vehicle, while in the other case (context 15) the error is
somewhat more important.



Context #| Outputs [Wrong (X) Context #| Outputs [ Wrong (X)
0.996 0.874
1 0.980 14 0.807
0.787 0.794
0.735 0.724
2 0.545 15 0.544 X
0.001 0.000
0.982 0.996
3 0.462 16 0.067
0.000 0.000
0.992 0.739
4 0.421 17 0.605
0.029 0.287
0.691 0.995
S 0.000 18 0.968
0.000 0.000
0.995 0.972
6 0.052 19 0.643
0.000 0.000
0.996 0.822
7 0.895 20 0.022
0.742 0.000
0.996 0.807
8 0.213 21 0.048
0.000 0.014
0.996 0.995
9 0.000 22 0.993 X
0.000 0.241
0.986 0.996
10 0.761 23 0.153
0.180 0.001
0.963 0.996
11 0.337 24 0.872
0.000 0.000
0.643 0.822
12 0.421 25 0.022
0.000 0.000
0.997
13 0.995
0.840

Fig. 4

Results of Experiment 2
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By analyzing the final set of weights, some interesting findings
emerged (c.f. Figure 5). First, we can see that the direct link from the
extra-mileage input unit xj1" to the output unit is largely negative. The
same observation applies for the link leading to the lower hidden unit.

The total effect is thus to strongly inhibit the output ua# extra-mileage
increases.

Fig. 5 Prominent weights

We can also observe that the link from the input unit for earliest
pick-up time (x2") to the lowerhidden unit is positive, but the link from

that hidden unit to the output unit is largely negative. Hence, the total
effect is to inhibit the output unit when pick-up time increases. Since
those weightsare not as large as for extra-mileage, the total inhibition is
somewhat less important. It seemsthat this weight pattern is a way for
the neural network to model the strongest effect of extra-mileage on
vehicle selection (since extra-mileage is first used for filtering the set of
candidate vehicles).

3) Experiment 3: Human Decision Process

Based on those preliminary results, we then decided to go on with a
more "realistic" experiment. In this last setting, where a human was
involved, we took 100 distinct contexts with 10 vehicles in each context
for training and testing (i.e. 1600 = 1000training and testing patterns).
A larger set of attributes, modeling service quality preferences,was also
used for describing the dispatching situations.

First, we introduced a limit on the delay between a customer's call
and its pick-up and delivery. This limit was se&t 30 minutes for pick-up
and 90 minutes for delivery. Any service time exceeding those upper
bounds was considered undesirable. Accordingly, we added the following
four attributes to the three original ones: delay over 30 minutes for the
pick-up at the new customer, delay over 90 minutes for the delivery at

13



the new customer, sum of additional delays for the pick-ups at the
customers already included in the route (given that the new request is
now in theroute) and, finally, sum of additional delays for the deliveries
at the customers already included in the route. Since it is advisable to
equally share the service among vehicles, we also introduced the
difference between the curremtumber of customers serviced by a given
vehicle and the average number of customers serviced by all vehicles in
the same context. Hence, eight different attribute values were used for
describing a dispatching situation for a given vehicle. Based on those
values, a vehicle routing expeftad to select the best vehicle in eachone
of the 100 training and testing contexts.

The neural network structure for thisxperiment is the one depicted
in figure 2b, except for the fact that the number of input units was
increased from three to eight.

Since the number of contexts is four times larger than infits¢ two
experiments, we do not show here the detaitedults of this experiment.
Instead, we summarize those results in Figure 6 by showing the neural
network's rankings of the vehicles selected by the expert for both the
training and testing data after 10,000 and 40,000 training iterations.
Figure 6 thus shows how many vehicles selected by the expert were
ranked first in their context by the neural network, how many were
ranked second, etc. Those results were obtained after respectively 4
and 16 hours of rurtime on a SPARCworkstation by setting the learning
rate to 0,01 and the momentum term to 0,9.

As we can see, the best results with respect to the training set were
obtained after 40,000 training iterations. In such a case, the neural
network provided the same response than the expert in 89% of the
contexts, as compared with 79% after 10,000 iterations. For the testing
set, all selected vehicles were ranked in the first four by the neural
network after only 10,000 training iterations. Even if the correlation
between the neural network's responsesand the expert's responsesdid
increase from 72% to 78% after 40,000 training iterations, it should be
noted that, in the latter case, two selected vehicles are now ranked
seventh and another one is ranked eighth! Such a result can be an
indication that the neural network adjusted so well to the training set
after 40,000 iterations that its generalization capabilities were slightly
impaired.

Even if the neural network did not perfectly reproduce the decision
process of the expert, webserved that its choiceswere never really bad
(i.,e. when the neural network's highest ranked vehicle is not the one
selected by theexpert, this vehicle is anyway a choice that makes sense)

14
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and, in that respect, the trained network is behaving appropriately and di
not provide "foolish" responses.

Rank Training set| Testing set Training set| Testing set
10,000 iter. 40,000 iter.
1st 79 72 89 78
2nd 12 18 5 12
3rd 6 I 4 I
4th 1 3 0 0
5th 1 0 1 0
6th 1 0 1 0
7th 0 0 0 2
8th 0 0 0 1
9th 0 0 0 0
10th 0 0 0 0
Fig. 6 Neural Network's Rankings of Vehicles chosen by the Expert

We immediately see the usefulness of such a network as an
intelligent filter for extracting the best vehicles within a group of
alternative vehicles. Such a restricted subgroup could then be presented
to the human expert for the final selection. In that way, the neural
network would greatly ease the decision process of the dispatcher, but
would not remove the need for a final human intervention.

5. CONCLUSION

Overall, the results presented above indic#tat the neural network
paradigm looks quite interesting for solving dynamic Dial-a-Ride
problems and that a neural network-based expert dispatcher system is
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feasible. In that respect, we would like to make here a few additional
remarks.

First, it is important to observe that the vehicle routing expert
involved in the last experiment had to take decisidnased on an a priori
set of attributes. Since this expert was not a professional dispatcher, she
accepted to take decisions based on such data. Howevey,ndt clear if a
real dispatcher would have accepted our metrics for describing
dispatching situations. It is thus an interesting problem in itself to
determine (with the expert dispatchethe measuresthat should be used
so as to allow good decisions te taken. Since no professional dispatcher
was available, we had to "skip" this phase and a priori determine those
metrics, to the best of our knowledge.

The experiments have also shown the importance of providing the
neural network with a training set that covers a range of dispatching
situations that are representative of the whole set of possible situations.
way to identify "weaknesses" within a training set, is to generate
alternative sets of data andse them to discover situations for which the
trained neural network does not perform well. Those situations are then
added to the original training setnd the neural network is trained anew
with the enlarged set. In a real setting, however, the neural network
would be linked to a dispatcher taking decisionsin real time. The neural
network would thus use each new decision to incrementally adjust its
weights. After training over a sufficiently long time, it would be possible
to assume that the training data are representative of the current
dispatching environment and include most (if not all) typical dispatching
situations.

Finally, we would like to emphasize again tliexibility of the neural
network approach. Such flexibility is very attractive in our context,
because neural networks can be trained in various dispatching
environments, and dynamically adapt to them during their training phase
The three distinctexperiments that we performed were quite illustrative
in that respect. This adaptive behavior is certainly a major asset, as
compared with the classical expert system approach where the decision
rules must be "a priori" determined and tailored to each specific context.
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