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Scope and Purpose. Inspired by the findings about neurons, a n d
especially by some effective training procedures found in the late 70's,
neural networks have seen a resurgence in the research community. I t s
philosophy assumes simple but massive interconnected processing uni ts
as the basic structure for information processing. Problems that a r e
difficult to tackle with conventional symbolic-based techniques, seem t o
be more readily solvable with a neural network approach (e.g. perceptual
tasks, associative memory). This paper focuses on such a problem: t h e
dispatching of vehicles and crews. This kind of problem is found, for
example, in the context of parcel pick-up and delivery services or pr ior i ty
mail. The task of assigning a particular vehicle or driver to a new request
is done by a human dispatcher, and his(her) decision process typically
involves a lot of experience, judgment and expertise. We thus describe i n
this paper a neural network model that can learn to reproduce t h e
decision process of an expert dispatcher by using examples of his(her)
previous decisions.

A b s t r a c t .  Decision making with respect to the dispatching of vehicles
and crews is still mainly in the realm of human expertise. From our own
experience, it seems very difficult to explicitly model that expertise via a
symbolic approach. In this paper, we thus propose an alternative neura l
network model as a sub-symbolic and empirical alternative for modeling
the decision process of expert dispatchers. Preliminary results about t h e
ability of the network to reproduce various decision rules are reported.
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1. INTRODUCTION

The Vehicle Dispatching Problem (or Demand Responsive Dial-A-Ride
Problem) is concerned with the allocation of vehicles for servicing
customers requesting immediate service. Typical examples would b e
parcel pick-up and delivery services, priority mail or ambulance services.
The task of assigning a particular vehicle to a new request is done by a
human dispatcher, and his(her) decision process typically involves a lot of
experience, judgment and expertise. However, such capabilities are v e r y
difficult to formalize (e.g. explicit decision rules), since they requ i re
complex perceptual and cognitive abilities, like consideration of t h e
current location of each vehicle with respect to the location of the origin
and destination points of the new request. Given those premises,
automated knowledge acquisition techniques look as a promising way t o
avoid the knowledge acquisition bottleneck in this area.

Inspired by the findings about neurons, and especially by some
effective training procedures found in the late 70's, neural networks have
seen a resurgence in the research community [Rumelhart and McClelland
86a]. Its philosophy assumes simple but massive interconnected
processing units as the basic structure for information processing.
Problems that are difficult to tackle with conventional symbolic-based
techniques, seem to be more readily solvable with neural network models
(e.g. perceptual tasks, associative memory).

This paper focuses on such a problem: the dynamic dispatching of
vehicles and crews. We describe a neural network model that uses
examples of expert dispatcher decisions for training. Given a set of
attributes that describe typical dispatching situations and the decision
that has been taken (i.e. the vehicle chosen for servicing the new request),
a neural network is trained to assess the relative quality of each
candidate vehicle and select the vehicle with highest quality.

In the rest of the paper, we divide our discussion along t h e
following lines. Section 2 first defines more precisely the vehicle
dispatching problem. Section 3 then describes various ways of encoding
dispatching situations for a neural network model and discusses re lated
network structures. Section 4 reports on experimental results in var ious
decision contexts. Finally, concluding remarks are made in section 5.
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2.  THE VEHICLE DISPATCHING PROBLEM

In the Vehicle Dispatching or Dial-A-Ride Problem [Bodin et al. 83],
customers call a dispatcher for service request. Each customer specifies a
distinct pick-up and delivery location and, perhaps, a desired time for
pick-up or delivery. If all customers demand immediate service, t h e n
routing and scheduling is done in real time and the problem is referred t o
as the dynamic Vehicle Dispatching Problem. In such a demand
responsive system, the system is looked at when a new customer calls
into the dispatch office. At that time, some of the earlier customers have
been delivered to their destinations and, hence, are no longer considered.
The remaining customers who have requested service have been assigned
to a vehicle and are either on their way to their destination or are wait ing
for their pick-up. Moreover, at that time, the route and schedule for each
vehicle is known. The problem is thus to determine the assignment of t h e
new customer to a vehicle and the new route and schedule for the vehicle
that the customer is assigned to.

Currently, this problem is still mainly solved by human dispatchers.
Only a few algorithmic approaches have been designed for that class of
problems, the best known approach being Wilson’s heuristic [Wilson a n d
Covin 77] for a dial-a-ride transportation system in Rochester, NY. A
dynamic programming algorithm for the single vehicle case is also
described in [Psaraftis 80].

Our approach is quite different, since we are interested in building a n
adaptive system that can learn to reproduce the decision process of t h e
expert dispatcher it is trained with. In this way, such a system could
easily adapt to various dispatching environments. Since the decision
procedure can vary a lot from one organization to another, the system’s
adaptability looks here as a great asset.

Let us first assume that each one of the n available vehicles (drivers,
candidates) involved in the dispatching situation can  be characterized b y
a vector of m attributes (xi1, xi2,...,xim), i=1,2,...,n. Those attributes should
reflect, for each vehicle, the actual dispatching situation with respect t o
their current route and the new request to be serviced, like: the ex t ra-
mileage required for servicing the new request, the pick-up time, t h e
delivery time, additional delays incurred by the requests that are planned
to be serviced by that vehicle, etc.

The set of all candidates, each with its m attribute values, is called a
context for decision making. The objective of the dispatching process is
thus, given a context, to select a suitable candidate. The decision process
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can be modeled as a function F from the set of contexts C to the set of
candidate vehicles V:

F: C  V   where:
{c1,c2,...,cn}  C
ci = (xi1,xi2,..., xim),  i=1,2,...,n,  and
xij = attribute value j of vehicle i.

The dispatching function F should encode the human expertise and i t
is obviously very difficult, if not impossible, to define F analytically. Here,
we simply attempt to approximate it via a neural network model. In t h e
next section, we will first describe ways of encoding a dispatching
situation for a neural network. Then, the neural network’s structure a n d
training procedure will be discussed.

3.  DATA ENCODING

A)  Global encoding

The most obvious way to encode dispatching situations is to provide a
context to the network as an input vector of length (m x n), where m is
the number of attribute values for each vehicle and n is the number of
alternative vehicles in the context. We would then expect a relat ive
measure of quality for each vehicle as an output vector of length n.

We must however observe that a context is really an unordered se t
of n attribute vectors. Hence, the final outcome should not be affected b y
their ordering (e.g. providing the attribute values of vehicle i before o r
after the attribute values of vehicle j should have no effect on the final
decision).

In order to do so, we define a lexicographic ordering (ci1,..., cin) of the

n attribute vectors in each context, as follows:

put ci j  before cik  if and only if

there is some t in the range 1 ≤  t ≤  m such that
xi js  xiks,  1 ≤ s  t  and  xi j t  xikt

As an example, Figure 1 shows a three layer network for m=3. As w e
can see, there is a hidden unit for each group of m input units (a group
describes a single vehicle) and each hidden unit is only connected to one
group of input units. The hidden layer is however completely connected
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to the output layer and there is an output value oi j  for each group of

input values (xi j1,..., xi jm) that describe a vehicle, 1 ≤  j ≤  n.

Given n groups of input units (Ii j1,...,Ii jm) and the hidden units Hi j , 1 ≤
j ≤ n, we would then like to constrain the weights on the connections
between the input and hidden units in such a way that, for any given
attribute k, 1 ≤  k ≤  m, the weight value WH i j ,I i j k  is the same for all j. This

could be achieved via the "shared weights" approach of [Rumelhart et al.
86b].

In this way, it would be possible to encode the whole dispatching
context. However, the length of the input vector is (m x n) and this va lue
can quickly become very large for real life problems. It would thus b e
difficult to train the neural network without a huge training sample of
contexts. In order to avoid this problem, the next section describes
alternative ways of providing this information to the neural network.

Fig. 1 Global encoding
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B)  Local Encoding

Obviously, each attribute value xij  per se carries little meaning. For
example, if the extra-mileage of vehicle i for servicing the new request is
5 miles, it does not mean much without knowing the extra-mileage of t h e
other vehicles. Hence, the information that we need is disseminated over
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the whole context. Since the vector representation of a context is of length
(m x n), it would certainly be interesting to find a way to shift this global
information into local information for each individual vehicle (so that t h e
data associated with a given vehicle can be interpreted without direct
reference to the other vehicles). By doing so, we could then train t h e
network with input vectors describing each single vehicle, rather t h a n
input vectors describing the whole set of candidate vehicles. With only 2 5
distinct contexts and 10 alternative candidate vehicles in each context, i t
would already be possible to generate 25* 10 = 250 distinct input vectors
for training. Moreover, reducing the length of the input vector by a factor
of n allows us to train the network with much smaller training samples
(since the complete set of all possible input patterns is greatly reduced).

In the following, where we assume that the attribute values are all
greater or equal to zero, we describe two transformations of the data t h a t
allow us to shift a major part of the global information into a single
vehicle's input vector.

Translation.  Since we try to reproduce the preferences of the dispatcher
(one vehicle is preferred over all other available vehicles), one good w a y
of transforming the jth attribute value xij  of vehicle i is to translate i t
with respect to the best jth attribute value over all vehicles in the same
context, that is:

 xij ' = xij  - (mini xij )  or  xij' = (maxi xij ) - xij  ,  i=1,...,n;  j=1,..., m,

depending if the attribute value is a measure of cost (min) or profit (max).
By doing so, xi* j ' = 0 for the best vehicle i* with respect to the j th
attribute, and the remaining values xij ' (i  i*) in the context will r a n k
relative to the gap with the best value. Geometrically, this transformation
is simply a translation of each vehicle's input vector with respect to t h e
minimum (maximum) value of each attribute in the context. It readi ly
shows, for any given attribute, where a vehicle stands with respect to t h e
best attribute value in its context.

Normalization. We can then transform furthermore the above values b y
normalizing over the maximum gap in a context, that is:

xij '' = xij '/maxi  xij ' , if maxi xij '  0
= xij ' , otherwise

 i= 1,...,n;  j= 1,..., m.

This normalization facilitates input pattern comparisons across
distinct contexts. It should thus help the learning procedure in f inding
regularities over the set of training patterns.
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It is obviously possible that some globally available information
cannot be shifted to the local vehicle's input vector with the two
techniques described above. However, it seems that during training, some
patterns should now appear to be more clearly related with vehicles t h a t
are chosen by the dispatcher. For example, if the value of the jth a t t r ibute
is very important in the decision process, vehicles whose input vectors
show a jth attribute value close to zero are more likely to be chosen.
Conversely, those with a value close to 1 are less likely to be chosen. W e
thus hypothesize that the above transformations capture essential
information about the decision problem, and that they are sufficient for
training a neural network with only individual vehicle's input pa t te rns
(xi1'',..., xim'').

Figure 2 shows a two layer and a three layer network based on such
a local encoding of the data for m=3. The experiments described in t h e
next section relate to those network structures. We used either the two
layer or the three layer network depending on the linearity or non
linearity of the decision procedure (to be discussed later).

We assume that the neural network will learn to compute a qual i ty
function F" based on the attribute values that describe a dispatching
situation for a given vehicle. If vehicle i* is chosen over all other vehicles
in a given context then, ideally, the activation of the output unit should b e
greater for the input pattern (xi*1 ",..., xi*m ") of vehicle i* than for a n y
other vehicle in the same context, that is o1(i*) = F"(i*)  F"(i) = o1(i), for
all i  i* in the context.

x i1 x i2 xi3

o1

Fig. 2 Two layer and three layer networks
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The neural network output can be related here to the relat ive
selection frequency of a given pattern among all its occurrences in t h e
training sample. If there is enough information within a pattern for
decision making, then this pattern should be consistently selected (or no t
selected). If the information within the pattern does not include all t h e
information for decision making, then this pattern will be chosen in some
situations and not chosen in others. In such a case, the relative selection
frequency for the pattern will be between 0% and 100%. However, it is
expected that "good" and "bad" patterns should emerge with respectively
high and low selection frequencies (i.e. frequencies respectively well over
and under 50%), assuming that there is enough information in those input
patterns to make suitable decisions in most situations.

Training.  The training of the neural network was done via the back-
propagation learning algorithm of Rumelhart et al., using the well known
sigmoid activation function for each unit i [Rumelhart and McClelland 86b,
Jones and Hoskins 87]:

1/ 1 + e-x(i)   where x(i) =  θi  + ∑j  wij  *  aj,

θi =  input bias of unit i.
ai =  activation value of unit i.
w i j =  connection weight

between j and i.

The input patterns provided to the neural network were vectors of
attribute values describing dispatching situations for individual vehicles,
as defined above. For evaluating the error signal, the desired output w a s
set to 1 when the vehicle was selected by the expert and it was set to 0
otherwise.

It should be noted that such a binary desired output can look a litt le
bit artificial, since we do not necessarily want the neural network’s
response to be 1 for a selected vehicle and 0 for a non selected one. W e
simply want the neural network’s output to be higher for the selected
vehicle than for any other non selected vehicle in the same context. This
is a typical case where it is easy to know if the neural network is right o r
wrong (by applying the neural network to all vehicles in a context a n d
comparing the output for the vehicle chosen by the expert with t h e
outputs for the other vehicles), but the desired or target output is no t
really known. We are thus currently investigating alternative approaches,
such as reinforcement learning [Barto and Anandan 87], so as to try t o
improve the results that we obtained with the binary target outputs.
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As an example, one alternative is to define the error signal as follows.
For a non selected vehicle (i.e. not chosen by the expert), the error signal
is set to the difference between the output for this vehicle's input pa t te rn
and the output for the selected vehicle in the same context, based on t h e
current neural network's weights. If this value is negative, however (i.e.
the neural network is right and the output for the current vehicle is lower
than that of the selected vehicle), then the error is set to 0 and no training
takes place. For a selected vehicle (i.e. chosen by the expert), the e r ro r
signal is set to the difference between the largest output of all non
selected vehicles in the same context and the output for the selected
vehicle, based on the current neural network's weights. Once again, if th is
value is negative (i.e. the neural network is right and the output for t h e
selected vehicle is higher than that of any other vehicle in the same
context), the error signal is set to 0 and no training takes place.

With such an error signal, however, the error measure (mean
squared error) is not anymore a differentiable function with respect t o
the set of weights. In order to overcome this difficulty, we first s imply
replaced the classical error signal "desired output - current output" by t h e
above error signal into the backpropagation formulas. Unfortunately, t h e
results were not as good as those obtained with the binary outputs. W e
are thus looking for a differentiable function that would approximate in a
satisfactory way the new error measure, so as to preserve the gradient
descent behavior of the backpropagation algorithm. This is one of t h e
topics that we are currently investigating.

Section 4 will now present the results that we have obtained with t h e
binary target outputs.

4.  EXPERIMENTAL RESULTS

We ran three different experiments in order to get some insight
about the ability of a neural network to reproduce systematic and h u m a n
decision processes. In each case, the data were previously collected f rom
an operations day of a courier company serving an urban area. The two
first preliminary experiments were based on a priori decision rules. W e
felt that it would be useless to try to reproduce the decision making
process of an expert, if the neural network model would fail to reproduce
even simple systematic decision rules. In the last experiment, we asked
an expert at the Centre de Recherche sur les Transports (CRT) of Montreal
University to take the dispatching decisions.

 In the first two experiments, we took 25 distinct contexts with 1 0
vehicles in each context for training and testing, that is, 25* 10 = 2 5 0
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training and testing patterns. We used m=3 distinct attribute values for
characterizing a dispatching situation for a given vehicle, namely ex t ra-
mileage (expressed in time units), pick-up time and delivery t ime.
The results are discussed below.

1)  Experiment 1: The Minimum Value Rule.

The first rule that we tried to reproduce is quite simple: select t h e
vehicle whose extra-mileage is minimum in a given context. Since t h e
translated and normalized extra-mileage value of all selected vehicles is
0, it is easy to see that the classes of selected and non selected vehicles
are linearly separable in the attribute or input space (assuming that i n
case of equality, all vehicles with the same minimum value in a context
are selected). We thus easily reproduced this decision process with a two
layer neural network model (cf. fig. 2a).

After training, we observed a very large negative weight for ex t ra-
mileage, and weights close to zero for the two remaining attributes. 100%
accuracy was achieved both for training and testing contexts. It should
however be noted that the same results could have been obtained with a
classical linear regression model.

2)  Experiment 2: The Neighborhood Rule.

The second rule is more complex. We first identify a subset of
qualified vehicles in a given context, by considering all vehicles with a n
extra-mileage value within 5 minutes of the minimum value in t h e
context (i.e. all vehicles with an extra-mileage value in the "neighborhood"
of the best value). Then, for all vehicles satisfying the first condition, w e
select the vehicle with minimum pick-up time in the context. In case of
equality, all vehicles with the same minimum value are chosen. It can b e
easily shown that the classes of selected and non selected vehicles are no t
anymore linearly separable.

At first, we used a standard three layer feedforward network for
training, where units of layer i are linked to units of layer i-1 and i+1 (if
any). During the course of experiments however, it just happened that w e
got better results by adding direct connections between the input uni ts
and the output unit (as depicted in figure 2b). Connecting the inputs
directly to the output increases the number of free parameters and allows
the network to use the direct connections for linearly separable features
while reserving the hidden connections for the non linearly separable
ones.
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Figure 3 shows a typical learning curve for the neighborhood ru le
with a standard three layer feedforward neural network s t ructure
(backprop. net. 2) and a structure with direct links between input a n d
output units (backprop. net. 1). At our first training attempt with t h e
latter structure, we got 23 decisions right out of 25 for the training se t
and 21 out of 25 for the testing set. However, the magnitude of the e r ro r
was very large for two erroneous contexts in the testing set (i.e. t h e
output for the vehicle that should have been selected was quite low w i th
respect to the vehicle with highest output). In both contexts, the vehicle
to be selected by the neighborhood rule was a "borderline" case, in t h e
sense that the gap between its extra-mileage value and the best value i n
its context was just slightly under 5 minutes.

Such results were an indication that the neural network did no t
clearly learn the decision rule and that our training set failed to provide
some useful examples (such as "borderline" cases). We thus added the two
borderline cases to the set of training contexts, and trained the neura l
network anew. At the end of that process, we got only 2 wrong decisions
during testing and the magnitude of the error was greatly reduced.
Moreover, the vehicle with highest output in both erroneous contexts
related to a vehicle that should have ranked second according to t h e
neighborhood rule and, as such, it was not really a bad choice. 

Figure 4 summarizes the testing results for this experiment. For each
one of the 25 contexts, we show the three highest ranked vehicles. Note
that the vehicles satisfying the neighborhood rule are underlined and t h a t
the character "X" is shown at the end of the context line when t h e
network is wrong (i.e. when the neural network's highest ranked vehicle
is not underlined). In most contexts, only one vehicle satisfies t h e
neighborhood rule, but in a few cases there is a tie between two or even
three vehicles (contexts 1, 13, 18).

As we can see in the figure, an underlined vehicle is ranked first o r
second by the neural network in each context. Note also that for one
erroneous context (context 22), the underlined vehicle is very close to t h e
highest ranked vehicle, while in the other case (context 15) the error is
somewhat more important.
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Context # Outputs Wrong (X) Context # Outputs Wrong (X)

1
    0 .996    
0 .980
    0 .787    

1 4
    0 .874    
0 .807
0.794

2
    0 .735    
0 .545
0.001

1 5
0.724
    0 .544    
0 .000

X

3
    0 .982    
0 .462
0.000

1 6
    0 .996    
0 .067
0.000

4
    0 .992    
0 .421
0.029

1 7
    0 .739    
0 .605
0.287

5
    0 .691    
0 .000
0.000

1 8
    0 .995    
    0 .968    
0 .000

6
    0 .995    
0 .052
0.000

1 9
    0 .972    
0 .643
0.000

7
    0 .996    
0 .895
0.742

2 0
    0 .822    
0 .022
0.000

8
    0 .996    
0 .213
0.000

2 1
    0 .807    
0 .048
0.014

9
    0 .996    
0 .000
0.000

2 2
0.995
    0 .993    
0 .241

X

1 0
    0 .986    
0 .761
0.180

2 3
    0 .996    
0 .153
0.001

1 1
    0 .963    
0 .337
0.000

2 4
    0 .996    
0 .872
0.000

1 2
    0 .643    
0 .421
0.000

2 5
    0 .822    
0 .022
0.000

1 3
    0 .997    
    0 .995    
    0 .840    

Fig. 4    Results of Experiment 2
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By analyzing the final set of weights, some interesting findings
emerged (c.f. Figure 5). First, we can see that the direct link from t h e
extra-mileage input unit xi1" to the output unit is largely negative. The
same observation applies for the link leading to the lower hidden unit.
The total effect is thus to strongly inhibit the output unit as extra-mileage
increases.

Fig. 5 Prominent weights
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We can also observe that the link from the input unit for earl iest
pick-up time (xi2") to the lower hidden unit is positive, but the link f rom
that hidden unit to the output unit is largely negative. Hence, the total
effect is to inhibit the output unit when pick-up time increases. Since
those weights are not as large as for extra-mileage, the total inhibition is
somewhat less important. It seems that this weight pattern is a way for
the neural network to model the strongest effect of extra-mileage o n
vehicle selection (since extra-mileage is first used for filtering the set of
candidate vehicles).

3)  Experiment 3: Human Decision Process

Based on those preliminary results, we then decided to go on with a
more "realistic" experiment. In this last setting, where a human w a s
involved, we took 100 distinct contexts with 10 vehicles in each context
for training and testing (i.e. 100* 10 = 1000 training and testing patterns).
A larger set of attributes, modeling service quality preferences, was also
used for describing the dispatching situations.

First, we introduced a limit on the delay between a customer's call
and its pick-up and delivery. This limit was set to 30 minutes for p ick-up
and 90 minutes for delivery. Any service time exceeding those u p p e r
bounds was considered undesirable. Accordingly, we added the following
four attributes to the three original ones: delay over 30 minutes for t h e
pick-up at the new customer, delay over 90 minutes for the delivery a t
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the new customer, sum of additional delays for the pick-ups at t h e
customers already included in the route (given that the new request is
now in the route) and, finally, sum of additional delays for the deliveries
at the customers already included in the route. Since it is advisable t o
equally share the service among vehicles, we also introduced t h e
difference between the current number of customers serviced by a given
vehicle and the average number of customers serviced by all vehicles i n
the same context. Hence, eight different attribute values were used for
describing a dispatching situation for a given vehicle. Based on those
values, a vehicle routing expert had to select the best vehicle in each one
of the 100 training and testing contexts.

The neural network structure for this experiment is the one depicted
in figure 2b, except for the fact that the number of input units w a s
increased from three to eight.

Since the number of contexts is four times larger than in the first two
experiments, we do not show here the detailed results of this experiment.
Instead, we summarize those results in Figure 6 by showing the neura l
network's rankings of the vehicles selected by the expert for both t h e
training and testing data after 10,000 and 40,000 training iterations.
Figure 6 thus shows how many vehicles selected by the expert w e r e
ranked first in their context by the neural network, how many w e r e
ranked second, etc. Those results were obtained after respectively 4 hours
and 16 hours of run time on a SPARC workstation by setting the learning
rate to 0,01 and the momentum term to 0,9.

As we can see, the best results with respect to the training set w e r e
obtained after 40,000 training iterations. In such a case, the neura l
network provided the same response than the expert in 89% of t h e
contexts, as compared with 79% after 10,000 iterations. For the test ing
set, all selected vehicles were ranked in the first four by the neura l
network after only 10,000 training iterations. Even if the correlation
between the neural network's responses and the expert's responses d id
increase from 72% to 78% after 40,000 training iterations, it should b e
noted that, in the latter case, two selected vehicles are now ranked
seventh and another one is ranked eighth! Such a result can be a n
indication that the neural network adjusted so well to the training se t
after 40,000 iterations that its generalization capabilities were slightly
impaired.

Even if the neural network did not perfectly reproduce the decision
process of the expert, we observed that its choices were never really b a d
(i.e. when the neural network's highest ranked vehicle is not the one
selected by the expert, this vehicle is anyway a choice that makes sense)
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and, in that respect, the trained network is behaving appropriately and do
not provide "foolish" responses.

Fig. 6    Neural Network's Rankings of Vehicles chosen by the Expert

We immediately see the usefulness of such a network as a n
intelligent filter for extracting the best vehicles within a group of
alternative vehicles. Such a restricted subgroup could then be presented
to the human expert for the final selection. In that way, the neura l
network would greatly ease the decision process of the dispatcher, b u t
would not remove the need for a final human intervention.

5.  CONCLUSION

Overall, the results presented above indicate that the neural ne twork
paradigm looks quite interesting for solving dynamic Dial-a-Ride
problems and that a neural network-based expert dispatcher system is

Rank Training set
10,000 iter.

Testing set Training set
40,000 iter.

Testing set

1 s t 7 9 7 2 8 9 7 8

2 n d 1 2 1 8 5 1 2

3 r d 6 7 4 7

4 t h 1 3 0 0

5 t h 1 0 1 0

6 t h 1 0 1 0

7 t h 0 0 0 2

8 t h 0 0 0 1

9 t h 0 0 0 0

1 0 t h 0 0 0 0
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feasible. In that respect, we would like to make here a few addit ional
remarks.

First, it is important to observe that the vehicle routing exper t
involved in the last experiment had to take decisions based on an a priori
set of attributes. Since this expert was not a professional dispatcher, she
accepted to take decisions based on such data. However, it is not clear if a
real dispatcher would have accepted our metrics for describing
dispatching situations. It is thus an interesting problem in itself t o
determine (with the expert dispatcher) the measures that should be used
so as to allow good decisions to be taken. Since no professional dispatcher
was available, we had to "skip" this phase and a priori determine those
metrics, to the best of our knowledge.

The experiments have also shown the importance of providing t h e
neural network with a training set that covers a range of dispatching
situations that are representative of the whole set of possible situations. A
way to identify "weaknesses" within a training set, is to generate
alternative sets of data and use them to discover situations for which t h e
trained neural network does not perform well. Those situations are t h e n
added to the original training set and the neural network is trained a n e w
with the enlarged set. In a real setting, however, the neural ne twork
would be linked to a dispatcher taking decisions in real time. The neura l
network would thus use each new decision to incrementally adjust i ts
weights. After training over a sufficiently long time, it would be possible
to assume that the training data are representative of the cur rent
dispatching environment and include most (if not all) typical dispatching
situations.

Finally, we would like to emphasize again the flexibility of the neura l
network approach. Such flexibility is very attractive in our context,
because neural networks can be trained in various dispatching
environments, and dynamically adapt to them during their training phase.
The three distinct experiments that we performed were quite i l lustrative
in that respect. This adaptive behavior is certainly a major asset, a s
compared with the classical expert system approach where the decision
rules must be "a priori" determined and tailored to each specific context.
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