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Natural numbers: { O, 1, 2,_... }
Operations: {+,x,U, N, }

Computational problem:

Given: Circuit with natural number inputs,
natural number t

Question: Is tin the set computed at
the output gate of the circuit?









Why care?

Circuits and formulas are everywhere
Natural numbers are everywhere

Includes Boolean: (/\, VvV, , {0,1})
~ (M, U, 7 {0,N})

Generalizes alternation

Generalizes monotonicity: (ﬂ, U, +, x)



Why care? Past work:

SM73:{U N~ +} formula PSPACE-complete
{ U +} formula NP-complete

Wa84: { U + x } circuit in PSPACE

Ya00: {U + x } circuit PSPACE-complete

McVoWaOl:
counting proofs in boolean circuits is #P-compl.,

polynomial replacement systems



Is {UnNn + x}decidable?

Non-emptyness test for a set S is available:
O € {0}xS ?

Inclusion test for S C T is available:
SsNT=107?
Every even n > 2 is the sum of two primes iff
{2} x {0,1} C PRIMES + PRIMES




Formula for Goldbach's conjecture

Q. | R PRIMES

So{un ~— + x}still open!
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Some cases of circuits
{UnNn™ + x}

PSPACE-hard and

decidable [SM73]

Clearly decidable, though numbers of expon.
many bits and sets of doubly expon. size



Does + always reduce to x ?

input a

+ gate

test number
t € final S

9

9
9
9

subcircuit for 2¢
X gate

subcircuit for 27
{2T} C new final S

Notes:

* fails when + and x are mixed

* { N ™ } needed to test containment, so also
fails for {N +} circuits and {+} circuits




Some cases of circuits
{UnNn™ + x}

T T

{Un+x} {Un x}={un™+}




Now, does x reduce to + ?

15x20-> 29351 x 22308
> (0,1,1) + (2,0,1)
> (0-20+1:2M+1-22M) + (2:20+0-2M+1.22M)

Problems:
1. Factoring is expensive

2. With +, must work over NK U {00}

3. {300} contains numbers that are not
expressible as 2i3i5K




Some cases of circuits
{UnNn™ + x}

T T

{Un+x} {Un x}={un™+}




{UNx}-circuits

Any number computed is a multiple product
of the inputs ... why not use the inputs as
'primes’ in a reductionto{UN +} ?

GCD-free basis problem:
Given: natural nonzero numbers a;, a,, as, ..., a,.
Compute: pairwise relatively prime numbers

d1, 92, 93, .-, 9, SUch that each q, is expressible
as a product of the g;'s.




{UnNx}-circuits (continued)

Fact [BaSh96]:
GCD-free basis can be solved in poly time.

Simple poly time algorithm:

S+ {aq,a,,a; .., a,}
while (3 a,b € S) such that g = gcd(a, b) > 1
S+~ S\{ab} U{g, a/g, b/g}




{UnNx}-circuits (continued)

15x20-> 29351 x 22308
> (0,1,1) + (2,0,1)
> (0-20+1:2M+1-22M) + (2:20+0-2M+1.22M)

Problems:

1. Factoring is expensive
2. 0x{.} =2 oo+{.} (but oo unavailable)

3. {300} contains numbers that are not
expressible as 2!3J5K




{UnNx}-circuits (continued)

15x20-> 29351 x 22308
> (0,1,1) + (2,0,1)
> (0-20+1:2M+1-22M) + (2:20+0-2M+1.22M)

Problems:

2. 0x{.} =2 oo+{.} (but oo unavailable)

3. {300} contains numbers that are not
expressible as 2!3J5K




{UnNx}-circuits (continued)

15x20-> 29351 x 22308
> (0,1,1) + (2,0,1)
> (0-20+1:2M+1-22M) + (2:20+0-2M+1.22M)

Problem:

2. O0x{.} =2 oo+{.} (but oo unavailable)



{UnNx}-circuits (continued)

15x20-> 29351 x 22308
> (0,1,1) + (2,0,1)
> (0-20+1:2M+1-22M) + (2:20+0-2M+1.22M)

Soln: Replace each + {00} in vector circuit by

+{0, M\, M+1, M+2, M+3, .., M+A }
where M is larger than any accessible nhumber
and A = M" . Then (oo & final S before ) iff

(2M + A &€ final S after).



Some cases of circuits
{UnNn™ + x}

T T

{Un+x} {Un x}={un™+}

N/

{Unx} < {un=+}




Some cases of circuits
{UnNn™ + x}

T T

{Un+x} {Un x}={un™+}

N

{Unx} < {un=+}




{UNnx}PSPACE-hard: sketch

Poly time reduction from Quantified 3SAT:
(3x,Vx,3x5 ... Qx,,) [H(X1, X5, X3, ..., X)] (%)

where
H(xy, X5, X3, .. X)) = HHAH> AH5 o A H,

Hi (X1, X2, X3, s Xpp) = (X2 V X5 V X7)

Construct circuit C such that (*) holds iff

P13 P23 P33--. pn3 pn+1 pn+2 pn+m < S(C)



Consider boolean assignment A = (0, 1,1, ..., 0).
Consider q p,.1° Pre2! Prestee Prem’ € S(B):

p;occursing iff [ A satisfies H, ]
pooccursing iff [ A satisfies H, ]

Bn occurs in q iff [ A satisfies H, ]



Boolean assignment (0O, 1, 1, ..., O) satisfies H
iff
P13 P23 P33--- pn3 pn+1O pn+21 pn+31"- Pn+mO < S(Cm)°



Gx,)H(: .-, .. %)
iff
H(+,*,*,.,0) Vv H(-,*,*,...1)

iff

P1° P2° P35> P’ Pret Pre2 Pre3 - Prem- € S(Cp)

or Ps P2° P3®.c Pr’ Pret Pre2 Pres -« Prem' € S(Cpp)
iff

P13 P23 P33--- pn3 pn+1. pn+2. pn+3.-" pn+m1 = S(Cm—l)

e




(vx ) HC* o0, X))

iff
H(*,*,+,..0) A H(+,*,*, ... 1)

iff

P P23 P3°.. P’ Pret Prez Pres - Prem> € S(Cpy)

and  p;3 p2° P33... Pr® Pret Prez Pres - Prem’ € S(Cpp)
iff

P13 P23 P33--- pn3 pn+1. pn+2. pn+3."' pn+m1 S S(Cm-l)

e

(L.




{UnNnx}PSPACE-hard: end.
Eventually,
(3x,Vx,3x5 ... Qx,) [H(X;, X5, X3, ..., X,)]
iff
P1® P23 P3°... P’ Pret’ Prez! Pres’ e Prem: € S(Co).

Slight modification proves PSPACE-
hardness for {UN~ x} formulas.



Some cases of circuits
{UnNn™ + x}

T T

{Un+x} {Un x}={un™+}

N

{Unx} < {un+}




PSPACE upper bounds

{Un—x} < {Un~+}"vector circuit" :

15x20-> 203151 x 223051
> (0,1,1) + (2,01

To handle complements:

1. Full prime decomposition into p;, p,, P3. ... Pk.
2. "Vector circuits" over NK1 U {0},

3. Automatically the number p;" p," ps ... Pk g
maps to ( *,*,*, .., ™, # of prime factors inq).



{UN~ +} vector circuits in PSPACE:

Idea: alternating polynomial time proof starting
at the output gate .. but does it work?

Problem: verifying nonemptyness of the set
feeding into a + gate when o0 is its output.

Lemma: Every nonempty set computed anywhere
ina{U N~ +}vector-circuit over NKU {00}

intersects {1, 2, ..., 2n+ }k U {0}



Some cases of circuits

{un™ + x}
NEXPTIME-
complete
E{’Urwxﬂ {(Un—x} {Un—+)
PSPACE-

complete

{Unx} {UnNn+}



{UnN +x} NEXPTIME-hard

3-line sketch:

1. New generic proof that nonemptyness for
(union, intersection, concatenation)-circuits
is NEXPTIME-hard.

2. Ensure that words in any computed set share
a common length.

3. Use +and x to pack the binary word w; w,
tightly as consecutive bits in a number.



{Un+x}in NEXPTIME

Alternating proof needs expon time, so instead:
1. Expand circuit into an exponential size formula

2. Guess a proof tree, ie a minimal tree including

« the output gate
« asingle input to any connected U gate

both inputs to any [ or + or X gate

3. Guess for each edge in the tree a number less
than the product of all the formula inputs

4. Accept iff consistent



A nontrivial upper bound: {U x} in NP

{Ux} <{U +}, so suffices to show
{U+}in NP

Can't guess a « proof circuit » : why?
Can't expand into a formula: too big.






{U +}in NP (continued)

Defn: A valuation assigns to each wire
and to each gate a natural number:

1. The output gate gets 1

2. Both input wires to a + gate get the + gate

3. The input wires to a union gate get values that
sum to the union gate

4. The output wires from any gate get values that
sum to the gate






{U +}in NP (continued)
Claim:
To each proof tree, in the huge formula

blown up from the circuit, corresponds
a (unique) valuation of the circuit.

To each valuation of the circuit
corresponds (at least one) proof tree
in the huge formula.



If v is a +-gate then apply:

<—r copies of v




If v i3 a U-gate then apply:

- 1+ copies of v




If v is an input gate then apply:

~—r copies of v




{U+}in NP (end)
NP algorithm:

1. Guess a valuation of the circuit

2. Sum the circuit inputs weighted
according to the valuation

3. Accept if sum equals test integer



Some cases of circuits
NEXPTIME-complete {UnNn+x}

psPACE- {UN x} {un +}
complete {Unx} {un=+}

NP-complete {U X} {U+}

{x+}




{x +} P-complete

In P:
1. Locate all O-gates

* Non-zero inputs replaced by 1
x replaced by AND, + replaced by OR

2. If not done then

— Delete 0-gates

— Evaluate rest and reject if a number bigger than tis
encountered

P-hard: using monotone Circuit Value Problem.



Some cases of circuits
NEXPTIME-complete {UnNn+x}

psPACE- {UN x} {un +}
complete {Unx} {un=+}

NP-complete {U X} {U+}

P-complete { X + }

Complete for C_L {Nn+]}




Class C_L

1. Class of the week (Fortnow Sept02 :-)

2. Languages of words on which a nondet
logspace machine has an equal number
of accepting and rejecting paths

3. Languages reducible to singular
matrices [AlOg 96]



{Nn+}C.L-complete
InC.L:
A. Reduce to {+} circuit equality:
1) Assume no empty intersection ever (else empty).
2) For each gate, build a separate {+} circuit computing
the gate value under assumption (1)
3) Build two {+} circuits having equal values iff the
circuit outputs t and assumption (1) holds.

B. Solve {+} circuit equality:
Modify the circuits so that their output values become
the number of paths from the output to some input

C_L-hard: view logspace machine configuration graph
as circuit, and use other C_L characterization



Some cases of circuits
NEXPTIME-complete {UnNn+x}

psPACE- {UN x} {un +}
complete {Unx} {un=+}

NP-complete {U X} {U+}

P-complete { X + }

Complete forc.L {+} {N+}




Some cases of circuits
NEXPTIME-complete {UnNn+x}

psPACE- {UN x} {un +}
complete {Unx} {un=+}

NP-complete {U X} {U+}

P-complete { X + }

C.L-complete {+} | NL-comple’re{ x}l




Open
1. Decidabilityof {U N~ + x}

2. Some specific cases:
- Pversus co-Rfor{N + x}

- C_.L versusPfor{Nx}

-  Some formulas

3. GCD-free basis versus GCD

Thanks to Steven Rudich for the blue color
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Encoding a case statement
on distinct cases: qa;, a,, as, ..., Q.1

For all 1 SU€VIC Doo—l)
=~>—X+NAV= j < k+1

For all 1 <UEVICDoo—(
=~>—xX+NAVR j < k+1

define h(X) = [T, (X - a



EHC a,, a,, da3»

R R

{un ™ + x}-circuits

For all 1 sUEV=

C Doo-()

=~ >— X +NAVA | < kel

define h(X) = [T;.; (X - a

{UnNn +

X }-circuits
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