
The complexity of circuit
evaluation over the natural

numbers

Pierre McKenzie, Université de Montréal
Klaus Wagner, Universität Würzburg

October 2002

Natural numbers: { 0, 1, 2, … }
Operations: { +, x, ∪, ∩, ¯ }
Computational problem:
Given: Circuit with natural number inputs,

natural number t
Question: Is t in the set computed at

the output gate of the circuit?

{ 7 } { 0, 1 }

{ 0, 7 }

{ 0, 7, 14 }

{ 2, 3, 4, 5, … }

{4,6,8,9,10,…}

{0,1,2,3,5,7,…}

{2,3,5,7,11,13,…}

{ 0, 1 }

Why care?
Circuits and formulas are everywhere
Natural numbers are everywhere

Includes Boolean: (∧, ∨,¬ ; {0,1})

Generalizes alternation

l (∩, ∪, ¯ ; {∅, N})

Generalizes monotonicity: (∩, ∪, +, x)

Why care? Past work:
SM73: { ∪ ∩ ¯ + } formula PSPACE-complete

{ ∪ +} formula NP-complete
Wa84: { ∪ + x } circuit in PSPACE
Ya00: { ∪ + x } circuit PSPACE-complete

McVoWa01:
counting proofs in boolean circuits is #P-compl.,
polynomial replacement systems

Is { ∪ ∩ + x } decidable?

Non-emptyness test for a set S is available:
0 ∈ {0} x S ?

Every even n > 2 is the sum of two primes iff

{2} x {0,1} ⊆ PRIMES + PRIMES

Inclusion test for S ⊆ T is available:

S ∩ T = ∅ ?

Formula for Goldbach’s conjecture

So { ∪ ∩ + x } still open !

NL

Some cases of circuits
{ ∪ ∩ ¯ + x }

{∪ ∩ + x } {∪ ∩ ¯ x } {∪ ∩ ¯ + }

PSPACE-hard and
decidable [SM73]

Clearly decidable, though numbers of expon.
many bits and sets of doubly expon. size

Does + always reduce to x ?
input a subcircuit for 2a

+ gate x gate
test number t subcircuit for 2t

t ∈ final S {2t} ⊆ new final S

Notes:
• fails when + and x are mixed
• { ∩ ¯ } needed to test containment, so also
fails for { ∩ +} circuits and {+} circuits

Some cases of circuits
{ ∪ ∩ ¯ + x }

{∪ ∩ + x } {∪ ∩ ¯ x } {∪ ∩ ¯ + }≥

Now, does x reduce to + ?
15 x 20 203151 x 223051

(0, 1, 1) + (2, 0, 1)
(0·20 +1·2m+1·22m) + (2·20 +0·2m+1·22m)

Problems:
1. Factoring is expensive
2. With +, must work over Nk ∪ {∞}

3. {300} contains numbers that are not
expressible as 2i3j5k

Some cases of circuits
{ ∪ ∩ ¯ + x }

{∪ ∩ + x } {∪ ∩ ¯ x } {∪ ∩ ¯ + }

{∪ ∩ x } {∪ ∩ + }

≥

{∪ ∩ x }-circuits
Any number computed is a multiple product
of the inputs … why not use the inputs as
‘primes’ in a reduction to {∪ ∩ + } ?

GCD-free basis problem:
Given: natural nonzero numbers a1, a2, a3, …, an.
Compute: pairwise relatively prime numbers
q1, q2, q3, …, qm such that each ak is expressible
as a product of the qi’s.

{∪ ∩ x }-circuits (continued)

Fact [BaSh96]:
GCD-free basis can be solved in poly time.

Simple poly time algorithm:
S← { a1, a2, a3, …, an }
while (∃ a,b ∈ S) such that g = gcd(a, b) > 1

S← S \ { a, b } ∪ { g, a/g, b/g }

{∪ ∩ x }-circuits (continued)

15 x 20 203151 x 223051

(0, 1, 1) + (2, 0, 1)
(0·20 +1·2m+1·22m) + (2·20 +0·2m+1·22m)

Problems:
1. Factoring is expensive
2. 0 x {…} ∞ + {…} (but ∞ unavailable)

3. {300} contains numbers that are not
expressible as 2i3j5k

{∪ ∩ x }-circuits (continued)

15 x 20 203151 x 223051

(0, 1, 1) + (2, 0, 1)
(0·20 +1·2m+1·22m) + (2·20 +0·2m+1·22m)

Problems:
1. Factoring is expensive
2. 0 x {…} ∞ + {…} (but ∞ unavailable)

3. {300} contains numbers that are not
expressible as 2i3j5k

{∪ ∩ x }-circuits (continued)

15 x 20 203151 x 223051

(0, 1, 1) + (2, 0, 1)
(0·20 +1·2m+1·22m) + (2·20 +0·2m+1·22m)

Problem:
1. Factoring is expensive
2. 0 x {…} ∞ + {…} (but ∞ unavailable)

3. {300} contains numbers that are not
expressible as 2i3j5k

{∪ ∩ x }-circuits (continued)

15 x 20 203151 x 223051

(0, 1, 1) + (2, 0, 1)
(0·20 +1·2m+1·22m) + (2·20 +0·2m+1·22m)

Soln: Replace each + {∞} in vector circuit by

+ { 0, M, M+1, M+2, M+3, …, M+∆ }
where M is larger than any accessible number
and ∆ = Mn . Then (∞ ∈ final S before) iff

(2M + ∆ ∈ final S after).2i3j5k

Some cases of circuits
{ ∪ ∩ ¯ + x }

{∪ ∩ + x } {∪ ∩ ¯ x } {∪ ∩ ¯ + }

{∪ ∩ x } {∪ ∩ + }

≥

≤

Some cases of circuits
{ ∪ ∩ ¯ + x }

{∪ ∩ + x } {∪ ∩ ¯ x } {∪ ∩ ¯ + }

{∪ ∩ x } {∪ ∩ + }

≥

≤

{∪ ∩ x } PSPACE-hard: sketch
Poly time reduction from Quantified 3SAT:
(∃x1∀x2∃x3 … Qxm) [H(x1 , x2 , x3, …, xm)] (*)
where

H(x1 , x2 , x3, …, xm) = H1 ∧H2 ∧H3 … ∧ Hn
Hj (x1 , x2 , x3, …, xm) = (x2 ∨ x5 ∨ x7)

Construct circuit C such that (*) holds iff

p1
3 p2

3 p3
3… pn

3 pn+1 pn+2 … pn+m ∈S(C)

Consider boolean assignment A = (0, 1, 1, …, 0).
Consider q pn+1

0 pn+2
1 pn+3

1… pn+m
0 ∈S(B):

p1 occurs in q iff [A satisfies H1]
p2 occurs in q iff [A satisfies H2]
… … … …
pn occurs in q iff [A satisfies Hn]

Boolean assignment (0, 1, 1, …, 0) satisfies H
iff

p1
3 p2

3 p3
3… pn

3 pn+1
0 pn+2

1 pn+3
1… pn+m

0 ∈S(Cm).

(∃xm) H(• , • , • , …, xm)
iff

H(• , • , • , …, 0) ∨ H(• , • , • , …, 1)
iff

p1
3 p2

3 p3
3… pn

3 pn+1
• pn+2

• pn+3
•… pn+m

0 ∈S(Cm)
or p1

3 p2
3 p3

3… pn
3 pn+1

• pn+2
• pn+3

•… pn+m
1 ∈S(Cm)

iff
p1

3 p2
3 p3

3… pn
3 pn+1

• pn+2
• pn+3

•… pn+m
1 ∈S(Cm-1)

(∀xm) H(• , • , • , …, xm)
iff

H(• , • , • , …, 0) ∧ H(• , • , • , …, 1)
iff

p1
3 p2

3 p3
3… pn

3 pn+1
• pn+2

• pn+3
•… pn+m

0 ∈S(Cm)
and p1

3 p2
3 p3

3… pn
3 pn+1

• pn+2
• pn+3

•… pn+m
1 ∈S(Cm)

iff
p1

3 p2
3 p3

3… pn
3 pn+1

• pn+2
• pn+3

•… pn+m
1 ∈S(Cm-1)

{∪ ∩ x } PSPACE-hard: end.

Eventually,
(∃x1∀x2∃x3 … Qxn) [H(x1 , x2 , x3, …, xm)]

iff
p1

3 p2
3 p3

3… pn
3 pn+1

1 pn+2
1 pn+3

1… pn+m
1 ∈S(C0).

Slight modification proves PSPACE-
hardness for {∪∩ ¯ x } formulas.

Some cases of circuits
{ ∪ ∩ ¯ + x }

{∪ ∩ + x } {∪ ∩ ¯ x } {∪ ∩ ¯ + }

{∪ ∩ x } {∪ ∩ + }

≥

≤

PSPACE upper bounds
{∪∩ ¯ x } ≤ {∪ ∩ ¯ + } "vector circuit" :

15 x 20 203151 x 223051

(0, 1, 1) + (2, 0, 1)

To handle complements:
1. Full prime decomposition into p1, p2, p3, …, pk.
2. "Vector circuits" over Nk+1 ∪ { ∞ } .

3. Automatically the number p1
* p2

* p3
*… pk

* q
maps to (*, *, *, …, *, # of prime factors in q).

{∪ ∩ ¯ + } vector circuits in PSPACE:

Idea: alternating polynomial time proof starting
at the output gate … but does it work?

Problem: verifying nonemptyness of the set
feeding into a + gate when ∞ is its output.

Lemma: Every nonempty set computed anywhere
in a {∪ ∩ ¯ + } vector-circuit over Nk∪ {∞ }

intersects { 1, 2, …, 2n+1 }k ∪ {∞ }.

Some cases of circuits
{ ∪ ∩ ¯ + x }

{∪ ∩ + x } {∪ ∩ ¯ x } {∪ ∩ ¯ + }

{∪ ∩ x } {∪ ∩ + }

PSPACE-
complete

NEXPTIME-
complete

{∪ ∩ + x } NEXPTIME-hard
3-line sketch:
1. New generic proof that nonemptyness for

(union, intersection, concatenation)-circuits
is NEXPTIME-hard.

2. Ensure that words in any computed set share
a common length.

3. Use + and x to pack the binary word w1 w2
tightly as consecutive bits in a number.

{∪ ∩ + x } in NEXPTIME
Alternating proof needs expon time, so instead:
1. Expand circuit into an exponential size formula
2. Guess a proof tree, ie a minimal tree including

• the output gate
• a single input to any connected ∪ gate

• both inputs to any ∩ or + or x gate

3. Guess for each edge in the tree a number less
than the product of all the formula inputs

4. Accept iff consistent

A nontrivial upper bound: {∪ x} in NP

{∪ x} ≤ {∪ +}, so suffices to show
{∪ +} in NP

• Can’t guess a « proof circuit » : why?
• Can’t expand into a formula: too big.

1

1
1 1

1

1
3

1 3 1

1 1
1 1

12
1010

1 1

1 1

{∪ +} in NP (continued)

Defn: A valuation assigns to each wire
and to each gate a natural number:

1. The output gate gets 1

2. Both input wires to a + gate get the + gate

3. The input wires to a union gate get values that
sum to the union gate

4. The output wires from any gate get values that
sum to the gate

1
1

0

1 1

102 1
13

0
0

0

1 1
1

2
2

2
2

2 2
22

2
2

2

4 1 1

{∪ +} in NP (continued)

Claim:
To each proof tree, in the huge formula

blown up from the circuit, corresponds
a (unique) valuation of the circuit.

To each valuation of the circuit
corresponds (at least one) proof tree
in the huge formula.

{∪ +} in NP (end)

NP algorithm:
1. Guess a valuation of the circuit
2. Sum the circuit inputs weighted

according to the valuation
3. Accept if sum equals test integer t

Some cases of circuits
{∪ ∩ + x }NEXPTIME-complete

{∪ ∩ ¯ x } {∪ ∩ ¯ + }
{∪ ∩ x } {∪ ∩ + }

PSPACE-
complete

{∪ x } {∪ + }NP-complete

{x + }

{x + } P-complete
In P:
1. Locate all 0-gates

• Non-zero inputs replaced by 1
• x replaced by AND, + replaced by OR

2. If not done then
– Delete 0-gates

– Evaluate rest and reject if a number bigger than t is
encountered

P-hard: using monotone Circuit Value Problem.

Some cases of circuits
{∪ ∩ + x }NEXPTIME-complete

{∪ ∩ ¯ x } {∪ ∩ ¯ + }
{∪ ∩ x } {∪ ∩ + }

PSPACE-
complete

{∪ x } {∪ + }NP-complete

{∩ + }Complete for C=L

{x + }P-complete

Class C=L

1. Class of the week (Fortnow Sept02 :-)
2. Languages of words on which a nondet

logspace machine has an equal number
of accepting and rejecting paths

3. Languages reducible to singular
matrices [AlOg 96]

{∩ +} C=L-complete
In C=L :
A. Reduce to {+} circuit equality:

1) Assume no empty intersection ever (else empty).
2) For each gate, build a separate {+} circuit computing

the gate value under assumption (1)
3) Build two {+} circuits having equal values iff the

circuit outputs t and assumption (1) holds.

B. Solve {+} circuit equality:
Modify the circuits so that their output values become
the number of paths from the output to some input

C=L-hard: view logspace machine configuration graph
as circuit, and use other C=L characterization

Some cases of circuits
{∪ ∩ + x }NEXPTIME-complete

{∪ ∩ ¯ x } {∪ ∩ ¯ + }
{∪ ∩ x } {∪ ∩ + }

PSPACE-
complete

{∪ x } {∪ + }NP-complete

{∩ + }Complete for C=L {+ }
{x + }P-complete

Some cases of circuits
{∪ ∩ + x }NEXPTIME-complete

{∪ ∩ ¯ x } {∪ ∩ ¯ + }
{∪ ∩ x } {∪ ∩ + }

PSPACE-
complete

{∪ x } {∪ + }NP-complete

{x + }P-complete

C=L-complete {+ } NL-complete {x }

Open
1. Decidability of { ∪ ∩ ¯ + x }
2. Some specific cases:

– P versus co-R for { ∩ + x }
– C=L versus P for { ∩ x }
– Some formulas

3. GCD-free basis versus GCD
Thanks to Steven Rudich for the blue color

NL

Encoding a case statement
on distinct cases: a1, a2, a3, …, ak+1.

For all 1 ≤∪∈∀∃⊆⊇∞¬∅
≡∼·≥−×÷∩∧∨≈ j ≤ k+1

¯,
For all 1 ≤∪∈∀∃⊆⊇∞¬∅
≡∼·≥−×÷∩∧∨≈ j ≤ k+1

¯,
define hj(X) = ∏i ≠ j (X – a

Enc a1, a2, a432, …, ak+1.

{ ∪ ∩ ¯ + x }-circuits

For all 1 ≤∪∈∀∃⊆⊇∞¬∅
≡∼·≥−×÷∩∧∨≈ j ≤ k+1

¯,
define hj(X) = ∏i ≠ j (X – a

{ ∪ ∩ ¯ + x }-circuits

	The complexity of circuit evaluation over the natural numbers
	Natural numbers: { 0, 1, 2, … } Operations: { +, x, [, \ , ¯ }Computational problem:
	Why care?
	Why care? Past work:
	Is { [\ + x } decidable?
	Formula for Goldbach’s conjecture
	Some cases of circuits{ [\ ¯ + x }
	Does + always reduce to x ?
	Some cases of circuits{ [\ ¯ + x }
	Now, does x reduce to + ?
	Some cases of circuits{ [\ ¯ + x }
	{ [\ x }-circuits
	{ [\ x }-circuits (continued)
	{ [\ x }-circuits (continued)
	{ [\ x }-circuits (continued)
	{ [\ x }-circuits (continued)
	{ [\ x }-circuits (continued)
	Some cases of circuits{ [\ ¯ + x }
	Some cases of circuits{ [\ ¯ + x }
	{ [\ x } PSPACE-hard: sketch
	{ [\ x } PSPACE-hard: end.
	Some cases of circuits{ [\ ¯ + x }
	PSPACE upper bounds
	Some cases of circuits{ [\ ¯ + x }
	{ [\ + x } NEXPTIME-hard
	{ [\ + x } in NEXPTIME
	A nontrivial upper bound: { [x} in NP
	{ [+} in NP (continued)
	{ [+} in NP (continued)
	{ [+} in NP (end)
	Some cases of circuits
	{ x + } P-complete
	Some cases of circuits
	Class C=L
	{ \ +} C=L-complete
	Some cases of circuits
	Some cases of circuits
	Open
	Encoding a case statementon distinct cases: a1, a2, a3, …, ak+1.
	Enc a1, a2, a432, …, ak+1. { [\ ¯ + x }-circuits

