The complexity of circuit evaluation over the natural numbers

Pierre McKenzie, Université de Montréal Klaus Wagner, Universität Würzburg

October 2002

Natural numbers: { 0, 1, 2, ... } **Operations:** $\{+, x, \cup, \cap, \}$ Computational problem: Given: Circuit with natural number inputs, natural number t Question: Is t in the set computed at the output gate of the circuit?

1 } Ű {0,7} 0, 7, 14 }

U { 0 } { 2, 3, 4, 5, {4,6,8,9,10 1,2,3,5,7 2,3,5,7,11,13,...}

Why care?

Circuits and formulas are everywhere Natural numbers are everywhere

Includes Boolean: (\land , \lor , \neg ; {0,1}) \simeq (\cap , \cup , $^-$; {Ø, N})

Generalizes alternation

Generalizes monotonicity: $(\bigcap, \cup, +, x)$

Why care? Past work: SM73: { $\cup \cap$ - + } formula PSPACE-complete $\{\cup +\}$ formula NP-complete Wa84: { \cup + x } circuit in PSPACE Ya00: $\{ \cup + x \}$ circuit PSPACE-complete McVoWa01: counting proofs in boolean circuits is #P-compl., polynomial replacement systems

Is $\{ \cup \cap - + x \}$ decidable?

Non-emptyness test for a set 5 is available: $0 \in \{0\} \times 5$?

Inclusion test for $S \subseteq T$ is available: $S \cap \overline{T} = \emptyset$? Every even n > 2 is the sum of two primes iff $\{2\} \times \overline{\{0,1\}} \subseteq PRIMES + PRIMES$

Formula for Goldbach's conjecture

	$MC(\mathcal{O})$	$MC(\mathcal{O})$		$\mathrm{MF}(\mathcal{O})$	$MF(\mathcal{O})$	
0	lower bound	upper bound	Thm.	lower bound	upper bound	Thm.
$\cup, \cap, -, +, \times$	NEXPTIME	?	6.4	PSPACE	?	5.5
$\cup, \cap, +, \times$	NEXPTIME	NEXPTIME	6.2	NP	NP	4.4
\cup , +,×	PSPACE	PSPACE	5.1	NP	NP	4.4
\cap , +,×	Р	co-R	8.3	-	DLOGCFL	9.2
$+, \times$	Р	Р	7.1	-	DLOGCFL	9.2
$\cup,\cap,^-, +$	PSPACE	PSPACE	5.5	PSPACE	PSPACE	5.1
$\cup, \cap, +$	PSPACE	PSPACE	5.5	NP	NP	4.4
U, +	NP	NP	4.4	NP	NP	4.4
∩, +	$C_{=}L$	$C_{=}L$	8.2	-	L	9.5
+	C ₌ L	$C_{=}L$	8.2	-	L	9.5
$[\cup,\cap,^-, \times$	PSPACE	PSPACE	5.5	PSPACE	PSPACE	5.5
\cup, \cap, \times	PSPACE	PSPACE	5.5	NP	NP	4.4
U, ×	NP	NP	4.4	NP	NP	4.4
∩, ×	C ₌ L	Р	8.4	_	L	9.5
×	NL	NL	8.5	_	L	9.5
∪,∩,-	Р	Р	7.2	$\rm NC^1$	$\rm NC^1$	9.3
U, N	Р	Р	7.2	-	$\rm NC^1$	9.4
U	NL	NL	9.1	-	NC^{1}	9.4
Ω	NL	NL	9.1	-	$\rm NC^1$	9.4

Some cases of circuits

 $\{ \cup \cap - + \times \}$

{Un+x} {Un - x} ({Un - x})

PSPACE-hard and decidable [SM73] Clearly decidable, though numbers of expon. many bits and sets of doubly expon. size

Does + always reduce to x?

input a	\rightarrow	subcircuit for 2 ^a
+ gate	\rightarrow	× gate
est number t	\rightarrow	subcircuit for 2 [†]
$t \in final S$	\rightarrow	$\{2^{\dagger}\} \subseteq$ new final S

Notes:

fails when + and × are mixed

• { \cap -} needed to test containment, so also fails for { \cap +} circuits and {+} circuits

Some cases of circuits {∪∩⁺x} {∪∩⁺x} {∪∩+x} {∪∩⁺x}≥{∪∩⁺}

Now, does x reduce to + ? $15 \times 20 \rightarrow 2^{0}3^{1}5^{1} \times 2^{2}3^{0}5^{1}$

 $\rightarrow (0, 1, 1) + (2, 0, 1)$ $\rightarrow (0 \cdot 2^{0} + 1 \cdot 2^{m} + 1 \cdot 2^{2m}) + (2 \cdot 2^{0} + 0 \cdot 2^{m} + 1 \cdot 2^{2m})$

Problems:

- 1. Factoring is expensive
- 2. With +, must work over $\mathbb{N}^{k} \cup \{\infty\}$
- {300} contains numbers that are not expressible as 2ⁱ3^j5^k

$\{\cup \cap x\}$ -circuits

Any number computed is a multiple product of the inputs ... why not use the inputs as 'primes' in a reduction to $\{ \cup \cap + \}$?

GCD-free basis problem: <u>Given</u>: natural nonzero numbers a_1 , a_2 , a_3 , ..., a_n . <u>Compute</u>: pairwise relatively prime numbers q_1 , q_2 , q_3 , ..., q_m such that each a_k is expressible as a product of the q_i 's.

<u>Fact</u> [BaSh96]: <u>GCD-free basis</u> can be solved in poly time.

Simple poly time algorithm: $S \leftarrow \{a_1, a_2, a_3, ..., a_n\}$ while ($\exists a, b \in S$) such that g = gcd(a, b) > 1 $S \leftarrow S \setminus \{a, b\} \cup \{g, a/g, b/g\}$

$$15 \times 20 \rightarrow 2^{0}3^{1}5^{1} \times 2^{2}3^{0}5^{1}$$

$$\rightarrow (0, 1, 1) + (2, 0, 1)$$

$$\rightarrow (0 \cdot 2^{0} + 1 \cdot 2^{m} + 1 \cdot 2^{2m}) + (2 \cdot 2^{0} + 0 \cdot 2^{m} + 1 \cdot 2^{2m})$$

Problems:

- 1. Factoring is expensive
- 2. $0 \times \{...\} \rightarrow \infty + \{...\}$ (but ∞ unavailable)
- 3. {300} contains numbers that are not expressible as 2ⁱ3^j5^k

Problems:

- 2. $0 \times \{...\} \rightarrow \infty + \{...\}$ (but ∞ unavailable)
- {300} contains numbers that are not expressible as 2ⁱ3^j5^k

 $15 \times 20 \rightarrow 2^{0}3^{1}5^{1} \times 2^{2}3^{0}5^{1}$ $\rightarrow (0, 1, 1) + (2, 0, 1)$ $\rightarrow (0 \cdot 2^{0} + 1 \cdot 2^{m} + 1 \cdot 2^{2m}) + (2 \cdot 2^{0} + 0 \cdot 2^{m} + 1 \cdot 2^{2m})$

Problem:

2. $0 \times \{...\} \rightarrow \infty + \{...\}$ (but ∞ unavailable)

$$15 \times 20 \rightarrow 2^{0}3^{1}5^{1} \times 2^{2}3^{0}5^{1}$$

$$\rightarrow (0, 1, 1) + (2, 0, 1)$$

$$\rightarrow (0 \cdot 2^{0} + 1 \cdot 2^{m} + 1 \cdot 2^{2m}) + (2 \cdot 2^{0} + 0 \cdot 2^{m} + 1 \cdot 2^{2m})$$

Soln: Replace each + $\{\infty\}$ in vector circuit by

+ { 0, M, M+1, M+2, M+3, ..., M+ Δ } where M is larger than any accessible number and $\Delta = M^n$. Then ($\infty \in$ final S before) iff (2M + $\Delta \in$ final S after).

$\{ \cup \cap x \}$ PSPACE-hard: sketch

Poly time reduction from Quantified 3SAT: $(\exists x_1 \forall x_2 \exists x_3 \dots Qx_m) [H(x_1, x_2, x_3, \dots, x_m)]$ (*) where $H(x_1, x_2, x_3, \dots, x_m) = H_1 \land H_2 \land H_3 \dots \land H_n$ $H_j (x_1, x_2, x_3, \dots, x_m) = (x_2 \lor \overline{x_5} \lor x_7)$

Construct circuit C such that (*) holds iff

 $p_1^3 p_2^3 p_3^3 \dots p_n^3 p_{n+1} p_{n+2} \dots p_{n+m} \in S(C)$

Consider boolean assignment A = (0, 1, 1, ..., 0). Consider $q p_{n+1}^{0} p_{n+2}^{1} p_{n+3}^{1} \dots p_{n+m}^{0} \in S(B)$: $p_{1} \text{ occurs in } q \text{ iff } [A \text{ satisfies } H_{1}]$ $p_{2} \text{ occurs in } q \text{ iff } [A \text{ satisfies } H_{2}]$ \dots $p_{n} \text{ occurs in } q \text{ iff } [A \text{ satisfies } H_{n}]$

Boolean assignment (0, 1, 1, ..., 0) satisfies H iff $p_1^3 p_2^3 p_3^3 \dots p_n^3 p_{n+1}^0 p_{n+2}^1 p_{n+3}^1 \dots p_{n+m}^0 \in S(C_m).$

$$(\exists x_{m}) H(\cdot, \cdot, \cdot, ..., x_{m})$$

$$iff$$

$$H(\cdot, \cdot, \cdot, ..., 0) \lor H(\cdot, \cdot, \cdot, ..., 1)$$

$$iff$$

$$p_{1}^{3} p_{2}^{3} p_{3}^{3} ... p_{n}^{3} p_{n+1} p_{n+2} p_{n+3} ... p_{n+m}^{0} \in S(C_{m})$$
or
$$p_{1}^{3} p_{2}^{3} p_{3}^{3} ... p_{n}^{3} p_{n+1} p_{n+2} p_{n+3} ... p_{n+m}^{1} \in S(C_{m})$$

$$iff$$

$$p_{1}^{3} p_{2}^{3} p_{3}^{3} ... p_{n}^{3} p_{n+1} p_{n+2} p_{n+3} ... p_{n+m}^{1} \in S(C_{m})$$

$$(\forall x_{m}) H(\cdot, \cdot, \cdot, ..., x_{m})$$
iff
$$H(\cdot, \cdot, \cdot, ..., 0) \land H(\cdot, \cdot, \cdot, ..., 1)$$
iff
$$p_{1}^{3} p_{2}^{3} p_{3}^{3} ... p_{n}^{3} p_{n+1} p_{n+2} p_{n+3} ... p_{n+m}^{0} \in S(C_{m})$$
and
$$p_{1}^{3} p_{2}^{3} p_{3}^{3} ... p_{n}^{3} p_{n+1} p_{n+2} p_{n+3} ... p_{n+m}^{1} \in S(C_{m})$$
iff
$$p_{1}^{3} p_{2}^{3} p_{3}^{3} ... p_{n}^{3} p_{n+1} p_{n+2} p_{n+3} ... p_{n+m}^{1} \in S(C_{m-1})$$

$\{ \cup \cap x \}$ PSPACE-hard: end.

Eventually, $(\exists x_1 \forall x_2 \exists x_3 \dots Qx_n) [H(x_1, x_2, x_3, \dots, x_m)]$ iff $p_1^3 p_2^3 p_3^3 \dots p_n^3 p_{n+1}^1 p_{n+2}^1 p_{n+3}^1 \dots p_{n+m}^1 \in S(C_0).$

Slight modification proves PSPACE-hardness for $\{\cup \cap x\}$ formulas.

PSPACE upper bounds $\{\cup \cap^{-}x\} \leq \{\cup \cap^{-}+\} \text{"vector circuit"}:$ $15 \times 20 \Rightarrow 2^{0}3^{1}5^{1} \times 2^{2}3^{0}5^{1}$ $\Rightarrow (0, 1, 1) + (2, 0, 1)$

To handle complements: 1. Full prime decomposition into $p_1, p_2, p_3, ..., p_k$. 2. "Vector circuits" over $N^{k+1} \cup \{\infty\}$.

3. Automatically the number $p_1^* p_2^* p_3^* \dots p_k^* q$ maps to (*, *, *, ..., *, # of prime factors in q).

$\{ \cup \cap^{-} + \}$ vector circuits in PSPACE:

Idea: alternating polynomial time proof starting at the output gate ... but does it work?

Problem: verifying nonemptyness of the set feeding into a + gate when ∞ is its output.

Lemma: Every nonempty set computed anywhere in a { $\cup \cap^-$ +} vector-circuit over N^k \cup { ∞ } intersects {1, 2, ..., 2ⁿ⁺¹}^k \cup { ∞ }.

$\{ \cup \cap + x \}$ NEXPTIME-hard

- 3-line sketch:
- New generic proof that nonemptyness for (union, intersection, concatenation)-circuits is NEXPTIME-hard.
- 2. Ensure that words in any computed set share a common length.
- 3. Use + and x to pack the binary word $w_1 w_2$ tightly as consecutive bits in a number.

$\{ \cup \cap + x \}$ in NEXPTIME

Alternating proof needs expon time, so instead:

- 1. Expand circuit into an exponential size formula
- 2. Guess a proof tree, ie a minimal tree including
 - the output gate
 - a single input to any connected \cup gate
 - both inputs to any \cap or + or × gate
- 3. Guess for each edge in the tree a number less than the product of all the formula inputs
- 4. Accept iff consistent

A nontrivial upper bound: $\{ \cup x \}$ in NP

- $\{\cup x\} \leq \{\cup +\}$, so suffices to show $\{\cup +\}$ in NP
- Can't guess a « proof circuit » : why?
- Can't expand into a formula: too big.

$\{\cup +\}$ in NP (continued)

Defn: A valuation assigns to each wire and to each gate a natural number:

- 1. The output gate gets 1
- 2. Both input wires to a + gate get the + gate
- 3. The input wires to a union gate get values that sum to the union gate
- 4. The output wires from any gate get values that sum to the gate

$\{\cup +\}$ in NP (continued)

Claim:

To each proof tree, in the huge formula blown up from the circuit, corresponds a (unique) valuation of the circuit. To each valuation of the circuit corresponds (at least one) proof tree in the huge formula.

If v is a +-gate then apply:

If v is a \cup -gate then apply:

If v is an input gate then apply:

-r copies of v ٧ ...

$\{\cup +\}$ in NP (end)

NP algorithm:

- 1. Guess a valuation of the circuit
- 2. Sum the circuit inputs weighted according to the valuation
- 3. Accept if sum equals test integer t

Some cases of circuits $\{\cup \cap + \mathsf{X}\}$ NEXPTIME-complete $\{ \cup \cap^{-} \times \}$ $\{ \cup \cap^{-} + \}$ PSPACE- $\{\cup \cap \mathsf{X}\}$ $\{\cup \cap +\}$ complete $\{\cup \mathsf{X}\}$ **{ ∪ + }** NP-complete **{ x + }**

{x + } P-complete

In P:

- 1. Locate all O-gates
 - Non-zero inputs replaced by 1
 - x replaced by AND, + replaced by OR
- 2. If not done then
 - Delete 0-gates
 - Evaluate rest and reject if a number bigger than t is encountered

P-hard: using monotone Circuit Value Problem.

Some cases of	circuits
NEXPTIME-complete	{∪∩+×}
PSPACE- {UNX}	{ ∪∩ + }
$complete \{ \cup \cap X \}$	{∪∩+}
NP-complete $\{\cup x\}$	{ U + }
P-complete	{ x + }
Complete for $C_{=}L$	{∩+}

Class C₌L

- 1. Class of the week (Fortnow Sept02 :-)
- 2. Languages of words on which a nondet logspace machine has an equal number of accepting and rejecting paths
- 3. Languages reducible to singular matrices [AlOg 96]

In C_{L} : $\{ \cap + \} C_{L}$ -complete

- A. Reduce to {+} circuit equality:
 - 1) Assume no empty intersection ever (else empty).
 - 2) For each gate, build a separate {+} circuit computing the gate value under assumption (1)
 - Build two {+} circuits having equal values iff the circuit outputs t and assumption (1) holds.
- B. Solve {+} circuit equality:
 Modify the circuits so that their output values become the number of paths from the output to some input

 C_L -hard: view logspace machine configuration graph as circuit, and use other C_L characterization

Some cases of	circuits
NEXPTIME-complete	{∪∩ + ×}
PSPACE- $\{\cup \cap \mathbf{x}\}$ complete $\{\cup \cap \mathbf{x}\}$	{U∩ + } {U∩ + }
NP-complete $\{\cup x\}$	{ U + }
P-complete	{ × + }
Complete for $C_{=L}$ {+}	{∩+}

Some cases	of circuits
NEXPTIME-comple	te $\{ \cup \cap + \mathbf{x} \}$
PSPACE- {Un	×} {∪∩+ }
complete {Ur	ר ×} {∪∩+ }
NP-complete {U	x } {∪+}
P-complete	{ ×+ }
C_L-complete { + }	NL-complete { × }

Open

- 1. Decidability of $\{ \cup \cap + x \}$
- 2. Some specific cases:
 - P versus co-R for $\{ \cap + \times \}$
 - C_{L} versus P for $\{ \cap X \}$
 - Some formulas
- 3. GCD-free basis versus GCD

Thanks to Steven Rudich for the blue color

	$MC(\mathcal{O})$	$MC(\mathcal{O})$		$\mathrm{MF}(\mathcal{O})$	$MF(\mathcal{O})$	
0	lower bound	upper bound	Thm.	lower bound	upper bound	Thm.
$\cup, \cap, -, +, \times$	NEXPTIME	?	6.4	PSPACE	?	5.5
$\cup, \cap, +, \times$	NEXPTIME	NEXPTIME	6.2	NP	NP	4.4
\cup , +,×	PSPACE	PSPACE	5.1	NP	NP	4.4
$\bigcap, \qquad +, \times$	Р	co-R	8.3	-	DLOGCFL	9.2
$+, \times$	Р	Р	7.1	-	DLOGCFL	9.2
$\cup,\cap,^-, +$	PSPACE	PSPACE	5.5	PSPACE	PSPACE	5.1
$\cup, \cap, +$	PSPACE	PSPACE	5.5	NP	NP	4.4
U, +	NP	NP	4.4	NP	NP	4.4
∩, +	$C_{=}L$	$C_{=}L$	8.2	-	L	9.5
+	C ₌ L	$C_{=}L$	8.2	-	L	9.5
$[\cup,\cap,^-, \times$	PSPACE	PSPACE	5.5	PSPACE	PSPACE	5.5
\cup, \cap, \times	PSPACE	PSPACE	5.5	NP	NP	4.4
U, ×	NP	NP	4.4	NP	NP	4.4
∩, ×	C ₌ L	Р	8.4	_	L	9.5
×	NL	NL	8.5	_	L	9.5
∪,∩,-	Р	Р	7.2	$\rm NC^1$	NC^{1}	9.3
U, N	Р	Р	7.2	-	$\rm NC^1$	9.4
U	NL	NL	9.1	-	NC^{1}	9.4
Ω	NL	NL	9.1	-	$\rm NC^1$	9.4

Encoding a case statement on distinct cases: a_1 , a_2 , a_3 , ..., a_{k+1} .

For all $1 \leq \cup \in \forall \exists \subset \supset \infty \neg \emptyset$ $\equiv \sim \geq - \times \div \cap \land \lor \approx j \leq k+1$ For all $1 \leq \bigcup \in \forall \exists \subseteq \supset \infty \neg \emptyset$ $\equiv \sim \cdot \geq - \times \div \cap \land \lor \approx j \leq k+1$ define $h_j(X) = \prod_{i \neq j} (X - a)$

Enc $a_1, a_2, a_{432}, \dots, a_{k+1}$. $\{ \cup \cap - + x \}$ -circuits For all $1 \leq \cup \in \forall \exists \subseteq \supset \infty \neg \emptyset$ $\equiv \sim \cdot \geq - \times \div \cap \land \lor \approx j \leq k+1$ define $h_i(X) = \prod_{i \neq j} (X - a)$ $\{ \cup \cap + X \}$ -circuits