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Classification: Computational complexity

Abstract. The problem of testing membership in the subset of the natural numbers produced at the
output gate of a {U,N,” , +, x } combinational circuit is shown to capture a wide range of complexity clas-
ses. Although the general problem remains open, the case {U,N, +, x} is shown NEXPTIME-complete,
the cases {U,N,”, x}, {U,N, x}, {U,N, +} are shown PSPACE-complete, the case {U, +} is shown NP-
complete, the case {N, +} is shown C=L-complete, and several other cases are resolved. Interesting auxi-
liary problems are used, such as testing nonemptyness for union-intersection-concatenation circuits, and
expressing each integer, drawn from a set given as input, as powers of relatively prime integers of one’s
choosing. Our results extend in nontrivial ways past work by Stockmeyer and Meyer (1973), Wagner
(1984) and Yang (2000).

1 Introduction

Combinational circuits permeate complexity theory. Countless lower bounds, complexity class
characterizations, and completeness results involve circuits over the boolean semiring (see [Vo00]
among many others). Circuits and formulas over more general structures have been studied as
well (see for a few examples [BCGR92, BM95, CMTV98, BMPT97, AJMV98, AAD00)).

In this paper, we study circuits operating on sets of natural numbers. Qur universe of natural
numbers includes 0 and is simply called the set N of numbers from now on. Next to the boolean
semiring, the semiring of numbers is certainly the most fundamental, and two results involving
number arithmetic have appeared recently: iterated number multiplication was finally shown
to belong to uniform TC® [He01, ABHO1, CDL] and (U, +, x)-circuit evaluation was shown
PSPACE-hard [Ya00].

In the boolean setting, the AND and the OR operations combine to capture alternation (in,
say, simulations of alternating Turing machines by circuits). In the setting of numbers, perhaps
the closest analogs to the AND and the OR become the N and the U. To make sense, this
requires an adjustment: since gates will now compute sets of numbers, a +-gate and a x-gate
having input gates computing S; C N and Sy C N then compute {a +b: a € S1,b € So} and
{a xb:a € S1,b € Sy} respectively.



Another reason to study {U, N, +, x }-circuits over N is that they obey some form of monotonicity
condition: if the set S C N carried by an input gate is replaced by a larger set S’ D S, then the
set computed at the output gate of the circuit can only become larger (never smaller). This is
reminescent of monotone boolean functions (a boolean function is monotone if flipping an input
from 0 to 1 can never change the output from 1 to 0), for which significant complexity bounds
are known. Are the circuit and formula evaluation problems over subsets of {U, N, +, x} related
to monotone boolean function complexity?

The problem studied in this paper is the following, which we think of as combining number
arithmetic with some form of alternation: given a number b and a {U,N,™ , +, X }-circuit C' with
number inputs, does b belong to the set computed by the output gate of C'7 We call this problem
MC(U,Nn,” ,+, x), and we call MF(U,N,” ,+, x) the same problem restricted to formulas. Note
that a complement gate ~ applied to a finite set S C N computes the infinite set N\ S. Hence, in
the presence of complement gates, the brute force strategy which would exhaustively compute all
the sets encountered in the circuit fails. The notation for restricted versions of these problems,
for instance MC(U, 4), is self-explanatory (see section 2).

Beyond the results mentioned above, it was known prior to this work that the problem MF(U, +)
is NP-complete [SM73], that MF(U,N,™ , +) and MF(U,™ , +) are PSPACE-complete [SM73], and
that MC(U, +) is in PSPACE [Wa84].

Adding results from the present paper, we obtain Table I. We highlight here some of the intere-
sting results or techniques:

- The problem MC(U, N, +, x) is NEXPTIME-complete. As an intermediate step, we prove
that determining whether a union-intersection-concatenation circuit over a finite alphabet
produces a nonempty set is also NEXPTIME-complete.

- The problem MC(U, N, x) is PSPACE-complete.

- The problem MC(U, N, x) reduces in polynomial time to MC(U,N, +), which is thus also
PSPACE-complete. This reduction is possible because the following problem is solvable in
polynomial time [BS96]: given as input a set S of numbers excluding 0, compute a set T’
of pairwise relatively prime numbers and express each m € S as a product of powers of
the numbers in 7.

- The problem MC(U, +) is NP-complete. This is a nontrivial improvement over the former
PSPACE upper bound.

- The problem MC(N,+) is C_L-complete, and so is the problem of testing whether two
MC(+)-circuits are equivalent.

The hardest problem we consider is MC(U, N,” , +, X). As will be seen, we do not have an upper
bound for this problem and it may well be undecidable. In fact, we will see that Goldbach’s
conjecture is easily expressible as an instance of MC(U,N,™,+, x). On the other hand, Table I
shows that its various restrictions hit upon a wealth of complexity classes.

2 Definitions and Known Results

A circuit C = (G, E, g¢) is a finite directed acyclic graph (G, E) with a specified node g¢, the
output gate. The gates with indegree 0 are called the input gates.



We consider different types of arithmetic circuits. Let O C {U,N,”,+, x}. An O-circuit C =
(G,E,gc,a) is a circuit (G, E, gc) whose gates have indegree 0, 1, or 2 and are labelled by the
function a : G — O UN in the following way: Every input gate g has a label a(g) € N, every
gate g with indegree 1 has the label a(g) = —, and every gate g with indegree 2 has a label
a(g) € {U,N,+, x}. For each of its gates g the arithmetic circuit C computes a set I(g) C N
inductively defined as follows:

If g is an input gate with label a then I(g) =4ef {a}-

If g is +-gate with predecessors g1, go then I(g) =ger {k+m : k € I(g1) Am € I(g2)}-

If g is x-gate with predecessors g1, g2 then I(g) =ger {k-m : k € I(g1) Am € I(g2)}.

If g is a U-gate with predecessors g1, go then I(g) =ger I(g1) U I(go).

(
If g is a N-gate with predecessors g1, g2 then I(g) =qer I(g1) N I(g2)-

If g is a ~-gate with predecessor g; then I(g) =qef N\ I(g1).

The set computed by C is I(C) =qet I(gc)- If I(g) = {a} then we also write I(g) = a. An
O-formula is an O-circuit with maximal outdegree 1. For O C {U,N,™ ,+, x} the membership
problems for O-circuits and O-formulae are

MC(O) =qef {(C,b) : C is an O-circuit and b € N such that b € I(C)}
and

MF(O) =get {(F,b) : F is an O-formula and b € N such that b € I(F)}.

For simplicity we write MC(oy, ... o0,) instead of MC({o1,...0,}), and we write MF(oy,...0;)
instead of MF({o1,...0.}).

Example 2.1 (Prime numbers) A circuit PRIMES such that I(PRIMES) is the set of prime
numbers is obtained by defining the subcircuit GE2 as 0U 1 and defining PRIMES as GE2 N
(GE2 x GE2). Hence the problem of primality testing easily reduces to MF(U,N, ™, x).

Example 2.2 (Goldbach’s conjecture) Consider the circuit GOLDBACH defined as (GE2x2)N
(PRIMES + PRIMES). Then I(GOLDBACH) is empty iff every even number greater than 2 is
expressible as a sum of two primes. Hence Goldbach’s conjecture holds iff 0 € 0 x GOLDBACH”
is a positive instance of MC(U,N, ™, +, X).

If not otherwise stated, the hardness results in this paper are in terms of many-one logspace
reducibility. We assume any circuit and formula encoding in which the gates are sorted topologi-
cally and in which immediate predecessors are readily available (say in ACO). Viewed as graphs,
circuits and formulas are not necessarily connected. Numbers are encoded in binary notation.

The following results are known from the literature:

Theorem 2.3 1. [SM73] The problem MF(U,+) is NP-complete.
2. [SM73] The problems MF(U,N,”,+) and MF(U,”,+) are PSPACE-complete.
3. [Wa84] The problem MC(U, +) is in PSPACE.
4. [Ya00] The problem MC(U, +, x) is PSPACE-complete.



In [Wa84] it is shown that the problem MC(U,+) restricted to (U, +)-circuits for which every
+-gate has at least one input gate as predecessor is NP-complete.

By De Morgan’s laws we have

Proposition 2.4 For every O C {+, x},

1. MC({u,n,” YU O) =18 MC({u,” } UO) =126 MC({n," } U O).
2. MF({U,n,” } U O) =12 MF({U,” } U O) =12 MF({n,” } U O).

Hence we can omit MC({U,” } UO), MC({n,” }UO), MF({U,” } UO), and MF({n,” } UO)
from our exhaustive study.

3 Multiplication versus Addition

In this section we will establish a relationship between the complexity of the membership
problems for (O U {x})-circuits and (O U {+})-circuits, for O C {U,N,” }. To this end we
need the following problem. Let gcd(a, b) be the greatest common divisor of the numbers a, b > 1.

Gcd-Free Basis (GFB)

Given: Numbers a1, a9,...,a, > 1.

Compute: Numbers m > 1, ¢1,...,qm > 2, and e11, ..., enm > 0 such that
ged(gi,qj) =1 for i # j and a; = H;n:1 qj“ fori=1,...,n.

Despite the fact that factoring may not be possible in polynomial time, the following is known
(see [BS96)):

Proposition 3.1 Gcd-Free Basis can be computed in polynomial time.

As an auxiliary tool we need the generalized membership problems MC*(O) and MF*(0O) for
arithmetic circuit and formulae, resp., with addition. These problems deal with elements of N U
{o0}, for an m > 1 prescribed on input, where the addition on m-tuples is defined componentwise
and a + 00 = 00 +a = 00 + 00 = oo for every a € N”. Note that polynomial space many-
one reducibility is understood to be performed by polynomial space computable polynomially
bounded functions.

Lemma 3.2 1. For O C {U,N}, the problem MC(O U {x}) is polynomial time many-one
reducible to the problem MC*(O U {+}).

2. For O C {U,N}, the problem MF(O U {x}) is polynomial time many-one reducible to the
problem MF*(O U {+1}).

3. For O C {U,N,™ }, the problem MC(O U {x}) is polynomial space many-one reducible to
the problem MC*(O U {+}).

4. For O C {U,N,” }, the problem MF(O U {x}) is polynomial space many-one reducible to
the problem MF*(O U {+}).

In each of the 4 cases above, if we make the added hypotheses that if the prime number de-
compositions of the inputs and of the “target number” b are known, then the complexity of the
reduction drops down to logspace many-one.



Proof. 1. Let O C {U,N}, let C be a (O U {x})-circuit with the input gates wui,...,us,
and let b € N. Observe that the absence of + in C entails that any number in I(C) is
expressible as a monomial in the inputs. Compute in polynomial time (Proposition 3.1)
numbers ¢qi,...,¢m > 2 and eqq,...,€4m,€1,--.,6m > 1 such that ged(gi,q;) = 1 for i # 7,
a(u) = I, q;“ for i = 1,...,s such that a(y;) > 0 and b = []- q;j if b > 0. Let

j=1
M =ger { H;"Zlq;-jj :di,...,dyn >0} CNandlet 0 : MU{0} - N" U{oo} be defined by
a(Il7%, q;-jj ) =def (d1,...,dn) and o(0) = oco. Obviously, o is a monoid isomorphism between

(M U {0}, x) and (N™ U {oco},+). Because M U {0} is closed under X, the set of numbers
computed by any gate in C is included in M U {0}. Furthermore, the following holds for any
51,5 C MU {0}:
o(S1x8) = o(S1)+o
U(Sl U 52) = J(Sl) Uo
U(Sl N SQ) = O’(Sl) No

The reduction therefore consists of converting C' into a (O U {+})-circuit C’ which has the
same structure as C' where a x-gate in C becomes a +-gate in C' and an input gate u; gets
label o(a(u;)). An induction using the three identities above shows that for all a € M U {0}
the following holds: ¢ € I(v) in C < o(a) € I(v) in C'. This concludes the proof because
be MU{0}.

2. Same as above because the construction preserves the circuit structure.

3. and 4. If we have complementation then it is no longer true that every number computed
within C has a decomposition into q1, ..., . To salvage the above construction, the isomor-
phism o must therefore be extended to convey information about N\ M. A slick way to do
this is to begin from the full prime decomposition of the numbers u1,...,us,b and to trade
the former isomorphism for a homomorphism. Indeed let ¢,..., ¢m,@m+1,Gm+2, ... be the se-
quence of all primes in natural order, and let g1, ..., g, exhaust at least all the distinct prime
divisors of a(u1),...,a(us),b. For every number []2, q;-ij € N\ {0} define o(T]32, q;lj) =def
d,
(dl,...,dm,zj>m d;j), and define o(0) =qer 00. Let M =ger { H;nzl qi’ 1di,...,dp >0 }CN

and K; =gef {Hj>m qjj : Zj>m d; =i} for i > 0. Because the full prime decomposition was used,
o is a well-defined monoid homomorphism from (N, x) onto (N™*! U{co},+), where ¢(0) = oo
and o(M x K;) = (N*"®{i}) for i > 0 (® denotes direct product). Notice that M = M x Kj

and that o is one-one on this part, so that the following holds for any 51,53 C M:

o(81x82) = a(51)+0(5),
o(S1USs) = o(S1)Uo(S2),
o(M\S) = o(M)\o(S)).

The reduction then again consists of converting C into a (O U {+})-circuit C’ having the same
structure as C where a x-gate in C becomes a +-gate in C' and an input gate u; gets label
o(a(u;)). Let e; =ger (0,...,0,7) € N**1 for § > 0.

Claim. For every gate v in C there exist T C {0} and Sy, S1,S2, -+ C M such that I(v) =
T UU;»o(Si x K;) in C and I(v) = o(T) U U;50(0(Si) + &) in C.

Proof of the Claim. The proof is by induction on the structure of C. Without loss of generality
assume that C has no N-gates.

Let v be an input gate. If a(v) = 0 then I(v) = {0} UU,;5¢(0 x K;) in C and I(v) = {oo} =
o({0}) UU;»o(0 (D) +e) in C".



For a x-gate or a U-gate v let v; and vy be the predecessor gates, and for a ~-gate v
let v; be the predecessor gate. By the induction hypothesis there are 77,75 C {0} and
S3,51,53,...82,8%,82,--- C M such that I(v;) = T, UU;5o(ST x K;) in C and I(v,) =
o(Ty) U Ui (0(ST) + &) in € for 1= 1,2. -
For a U-gate v we obtain in C:
Ifv) = I(vi)UI(v2) = (T1UU;5(Si x Ki)) U (T2 UU;50(S7 x Ki))

= (T1UD)UU;»o((S} USY) x K;))
and in C':
Ifv) = I(v1) UI(v2) = (0(T1) UU;5o(0(S]) + i) U (0(T2) UUino(0(S7) + i)

= 0(T1 U T2) U UiZO(J(Sil U S;Z) + 61).

For a ~-gate v we obtain in C":

I{v) = I(v1) = T1 UU;»o(S] x Ki) = {0} \ T1) UU;»o (M \ S}) x K;)
and in C”:
Ifv) = I(v1) =0(T1) UU;5e(0(S}) +e:)
= ({00} \ o(T1)) UUj5o(N" ® {i}) \ (o(S}) + €:))
= o({0} \T1) UU;o((N™ ® {0}) \ 0(S})) + i)
= ({0} \T1) UlU;solo(M \ St + ei).
For a x-gate v we obtain in C':
Ifv) = I(v) x I(v2) = (T1 UU;5(Si x Ki)) x (T2 UU;50(S7 x Ki))
= TUU;»o((Uj=o(Sf x S7-5)) x Ki)
where T' = ((T1 x Ty) U (T X UiZO(SZ-2 x K;)) U (T % Uizo(Sil x K;))), and in C":

I(v) = I(v)+I(v2) = (0(T1) UU;»o(a(S)) + i) + (0(T2) UU;50(0(S7) + €:))
= ((o(T1) +o(T2)) U (a(T1) + U;»0(0(S7) + i) U (0(T2) + U;(a(S}) +e:)))
, UUiso(Uj=o(a(S)) +a(SE;) +e:))
= 0o(T) UU;so Ujzo(0(S] x S7;) +ei) = o(T) UUiso((Ujzo 0(Sf x S7;)) + ei)
= o(T)U Uz'zo(‘f(U;:o(Sg1 X 51'279')) + €;)-

This completes the proof of the claim.

Now we prove that there holds a € I(v) in C < o(a) € I(v) in C' for every gate v and every a €
N. By our claim there exist 7 C {0} and Sp, S1,S2,--- € M such that I(v) = TUJ;5,(S: X K;)
in C and I(v) = o(T) U U;50(c(S:) + €;) in C'. We consider two cases. In the case a = 0 we
obtain: B

0elI(v)inC & T={0} & o(T)={x} & c0€lI(v)inC" < o(0) € I(v) in C".
In the case a =[], q;-ij we obtain (define d =gef D, dj):
d; . d; d;
[[j>19/ €I(v) in C & [li5197 € Uino(Si X Ki) & [I;5145" € Sax Kq
> >1% > T ALz
& Jljtig € Sa & oL, q77) € o(Sa)
d; d:
& o([ljL14") +ea €0(Sa) +ea & o([lj5197) € 0(Sa) +ea
d; = 4 .
& o([l;>197) € Uno(a(Si) te) & o(Ilj»19;°) € I(v) in C".

Applying the equivalence a € I(v) in C & o(a) € I(v) in C' to the output gate yields the
desired reduction. The polynomial space is needed to perform the prime decomposition (a pos-



sibly weaker reducibility, like a many-one polynomial time reduction with an NP oracle, would
suffice). O

In some cases the generalized membership problems used above are logspace equivalent to their

standard versions:

Lemma 3.3 Let {U} C O C {uU,Nn}.

1. MC*(O U {+}) =12 MC(O U {+}).

2. MF*(O U {+}) =18 MF(O U {+}).

Proof 1. Let C be a (O U {+})-circuit processing m-tuples of natural numbers. For every gate
v of C and every (ay,...,am) € I(v) we have N =g 2!€! > a; for i = 1,...,m. We consider
an (O U{+})-circuit C’ which has the same structure as C' but an input with label (ay,...,ay)
in C gets label 7", a;-N*~! in C’, and an input u with label oo is fed with an (O U {+})-
formula F(C) such that I(u) = {N™,N™+1,N™+2,...,N™+ N™1} in C'. (For example,
define G(0) =gef (0U1), G(n+1) =gef (0U2") + G(n), and F(C) =gt (N™ + G((m+1)-|C]))-)
Now we obtain for every gate v:
(at,...,am) €I(w) in C & Y7 a;-N*"!' € I(v) in C'
where (a1,...,am) € I(v) in C implies Y _1*, a;-N*"1 < N™.
Moreover, if v is a level-i-gate in C (input gates being level-0-gates) then (by induction on 4):
o €I(v) in C & [2¢- N™ N™+N™1] C I(v) in C".
Hence, we have for every gate v:
o € I(w)inC & N™+N™ € I(v) in C'.
This yields one of the desired reductions. The other is obvious.

2. Here we proceed in the same way but we have N =g¢r |C| > a for every a € I(v). O

4 NP-Complete Membership Problems

Lemma 4.1 The problem MF(U,N,+, X) is in NP.

Proof Let F = (G, E,gr,a) be a {U,N,+, x}-formula, and let b € N. Observe that M =gef
L1, input gate of #(@(v) + 1) is an upper bound on every number in Uy zutc of # 1(9). The NP-
algorithm just works as follows: Guess nondeterministically a number < M to every gate of F.
Then check whether these numbers really prove that b is in I(gr). O

The following is a nontrivial improvement over the known PSPACE upper bound for MC(U, +):

Lemma 4.2 The problems MC(U,+) and MC(U, X) are in NP.

Proof. Let C = (G, E,gc,a) be a {U, +}-circuit such that go is the only gate of C' with
outdegree 0, and let T be the result of unfolding C into a tree. A subtree T of T is called
computation tree of C iff

- the output gate of T¢ is in T,



- both predecessors of a +-gate of 17" are in ', and
- exactly one predecessor of a U-gate of T' is in T'.

Hence T describes one of the many ways to compute a number from I(C).

A gate g in C corresponds to several copies of it in T (and hence also in a computation tree T’
of C). Let Scr(g) be the number of copies of g in T In the same way, an edge in C' corresponds
to several copies of it in T (and hence also in a computation tree T of C). Let ¢ r(e) be the
number of copies of e in T'.

Defining s(C,T) =qef > a(g)-Bc,r(9)

input gate g of C
we obtain immediately I(C) = {s(C,T) : T is a computation tree of C'}.
A function 8 : GU E — N is a valuation function of the C' if the following holds:

- IB(QC) = ]-a
- if g is a +-gate with the incoming edges e; and es then B(g) = B(e1) = B(es),
- if g is a U-gate with the incoming edges e; and ez then 8(g) = B(e1)+F(e2),
- if g is a gate with the outgoing edges e1,...e; then 8(g) = B(e1)+-..+06(ex).
For a valuation function 8 of C define s(C, 8) =qef > a(g)-B(g).
input gate g of C

T~

Claim 1:If T is a computation tree of C then there exists a valuation function £ of C' such that
s(C,B) =s(C,T).
Proof. This is easy because B¢ has the desired properties.

Claim 2: If B is a valuation function of C' then there exists a computation tree T" of C such that

s(C,T) =s(C, B).

Proof. For a valuation function 8 of C there can be many computation trees T' of C such that
Ber = B and hence s(C,T) = s(C, ). We construct one of them by applying the following
replacement rules to the gates v of C' (starting with the predecessors of the output gate and
going upward). The labels at the gates and edges represent the -values.

If v is a +-gate then apply:

r+s — ? ? < r+scopiesof v

8



If v is an input gate then apply:

c++ () =—r copiesof v
i

W"/ Rﬁg
r r
After the application of a rule to a gate v the following holds:
- the definition of a computation tree applies to the copies of v,
- the number of copies of v is 5(v), and
- for every incoming edge e to v, the number of copies of e is 3(e).

In such a way we obtain B¢ = S and hence s(C,T) = s(C, ). This completes the proof of
Claim 2.

Now we obtain I(C) = {s(C,B) : B is a valuation function of C}, and hence a € I(C) &
3B(B is a valuation function of C' and s(C, 8) = a). However, the latter property is in NP. This
completes the proof of MC(U,+) € NP. From this, Lemma 3.2, and Lemma 3.3 we obtain
MC(U, x) € NP. 0

Lemma 4.3 MF(U, x) is NP-hard.

Proof. We prove the NP-hardness of MF(U,x) by showing 3-SAT <8 MF(U, x). Let
H(zi,...,2m) = /\;-L:1 H; where every Hj is a clause with three literals. Further, for j > 1,
let p; be the j-th prime. For 1 = 1,...,m define a; =gef [[, in H; Pj and b; =def [[4 in H; Pi-
Obviously, H € 3-SAT « [];_, p3 e I([Ti% (e U bi) 11—, (1 Up; U p3)). O

As an immediate consequence of the preceding lemmas and Theorem 2.3.1 we obtain:

Theorem 4.4 The problems MF(U,N, +, x), MF(U,N, +), MF(U, N, x),
MF (U, +, x), MF(U, x), MC(U,+), and MC(U, x) are NP-complete.

5 PSPACE-Complete Membership Problems

Lemma 5.1 The problems MF(U,N,~, x), MC(U, N, x), and MC(U,N,+) are PSPACE-hard.

Proof. We present a logspace many-one reduction from the PSPACE-complete quantified boo-
lean 3-CNF formula problem to MF(U,N,~, x) and MC(U, N, x). Since in these constructions
we use only numbers whose prime number decompositions are known, the latter reduction can
be converted by Lemma 3.2 and Lemma 3.3 into a logspace many-one reduction to MC(U, N, +).

Let Qiz1...QmamH(z1,...,2m) be a quantified boolean 3-CNF formula such that H =
;-‘:1 Hj, the formulae Hj,...H, are clauses with three literals each, and Q... @y, € {3,V}.

For k = m,m—1,...1,0 we construct a (U, N, x)-circuit (a (U,N,”, x)-formula, resp.) Cj such
that for all ay,...,ax € {0,1} the following holds:

n k m
Qr+1%k+1 - - QmrmH(0a, ..., Qky Tpt1, - .., Trm) & Hpg’ . szim . Hpm—i € I(Cy) (%)
j=1 =1 i=k+1

9



where p; is the ¢-th prime.

Then, for k = 0, we obtain Q121 ... QmzmH(z1,...,2m) & H;-lzlp;? T Prti € I(Ch), the

desired reduction.

For k = m we define a; =gef Pnti - le in H; Pj and b; =gef HzT in 1; Pj for s = 1,...,m, and

Crm =det [[121(ai Ub;) - T[j_ (1 Up; U p3)- Tt is easy to see that H(ai,...,am) & H?le? .
m i

Hi:1 PZ‘H € I(Cm)'

Now, for the step from &k to k—1, assume (*). In the case Q; = 3 we have:

3Tk Qp1Tks1 - - QmTmH (a1, 1, Thy Thg 15 - - -, Tm) &
& Qri1Thy1--- QuTmH (a1, .., 061,0,Tpp1,- -, TV
VQk+1Tk+1 - - - QmTmH (a1, ... k1,1, T 11, -+ -, Tm)

k-1 oy k=1 o

g H;'L:1 p?e : H1:1 pZ“H- : H;ik—kl Pnti € I(Cy) V Hjn':1 p;’ : Hi:1 pﬁﬂ- : H;n:k Pnti € 1(Ch)
k=1 _a; _

& Ty 0 - TIimy pys - 1Tk oo € T((Ch X pryk) U Cr) = T(Chy)

where Cix_1 =gef Ck X (Pnyk U 1). Since Cy appears only once in the definition of Ck_1, this
works for the circuit case as well as for the formula case.

In the case Qr =V the reasoning becomes:

VI Qri1Tk11 -+ - QmTmH (1, - -, k1, Ty Ty 15+ -+, Trn) &
& Qri1Thy1 -+ QuTmH (a1, 0p1,0,Tpq1, - -, Tr)A
ANQk+1Tk41 - - QmTmH (1, ... ap-1,1, T 11, - -+, Tm)

k—1 i k—1 i
g H?:1 p3 : Hi:l pzﬂ- : H;ilﬁ—l Pnti € I(Cr) A H?:1 p;’ : Hi:1 pz-H' : H;ik Pnti € I(Cy)

& T1 P2 - T1 pys - Tk Prsi € I((Cr X Ppak) N Ck) = I(Ci)

where Cx_1 =gef (Cx X pnax) N Ck. Since C appears twice in the definition of Cy_ this works
only for the circuit case. For the formula case we continue as follows:

k—1 i -
< 7 (H?:1 p;’ : Hi:1 pz.q.i : H:ilﬁ—l Pnyi € I(Cy)V
k—1 i an
VIToy - TIS p3i - T puss € 1)
& = (Il p? - TIE #5%s T pnsi € T(Ck X (prix U 1))
A H;'Z:1 p? . Hf:_f pgfw : H:’;k Pn+i € I(C_k X (pryr U1)) = I(Cy1)

where Cp_1 =gef C_k X (pn—|—k U 1). O

Lemma 5.2 For every gate g of a generalized (U,N,” ,+)-circuit, if I1(g) # O then I(g) N
({0,1,...,2I€+1m U {o0}) # 0.

Proof. Let C = (G, E, g¢, a) be a generalized (U,N,” ,+)-circuit over N U {oo}. By De Mor-
gan’s law we can assume that C has no N-gates. For the gates g of C' we define inductively
0(9) =def max{a; : i = 1,...,m} for an input gate g with a(g) = (a1,...,am), 0(g) =qer 0 for
an input gate g with a(g) = oo, 0(9) =dger 0(91) + 0(g2) + 1 for U-gates and +-gates g with
predecessors g1 and go, and o(g) =qef 0(g1) for ~-gates g with predecessor g;. Obviously we have
o(g) < 2/ for every gate g. Let [a] =ger {0,1,...,a}™ U {co} for a € N. The lemma follows
directly from
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o I(g9) Clo(g)] or [o(g)] C I(g) for every gate g

which we will prove by induction.
1. For an input gate g we have I(g) C [o(g)]-
2. Let g be a U-gate with predecessors ¢g; and gs.

Case 1: If I(g1) C [0(g1)] and I(g2) C [0(g2)] then

I(g) = I(g1) UI(g2) € [max(o(g1),0(g2))] € [o(9)]-
Case 2: If [0(g1)] C I(g1) or [0(g2)] C I(g2) then

[0(9)] € [max(o(g1),0(g2))] € I(g1) U I(g2) = I(g)-
3. Let g be a ~-gate with predecessor g .
Case 1: If I(g1) C [0(g1)] then [o(g)] € [0(g1)] € I(g1) =
Case 2: If [o(g1)] C I(g1) then I(g) = I(g1) C [o(g1)] C [0
4. Let g be a +-gate with predecessors g; and go.
Case 1: If I(g1) C [0(g1)] and I(g2) C [0(g2)] then

I(g) = I(g1) + I(g2)  [o(g1)] + [0(g2)] = [o(91) + o(g2)] < [o(9)]
Case 2: If I(g1) = 0 and [0(g2)] C I(g2) then

I(g) = I(g1) + I(g2) =0+ I(g2) =0 C [o(9)]-
Case 3: If I(g1) = {oc} and [0(g2)] C I(g2) then

I(g) = I(g1) + I(g2) = {00} + I(g2) = {0} C [o(g)]-
Case 4: If (a1,...,am) € I(91) C [0(g1)] and [o(g2)] C I(g2) then

I(g).
(9)]-

I(g) = I(g1) + 1(92) {(a1,-..,am)} +[o(g2)]
2 {(olgr),---,0(91))} + [o(g2)] 2 [o(91) + a(g2)] 2 [o(g)]-
Case 5: If [0(g1)] C I(g1) and [o(gg)] I(g2) then
I(g9) = I(g91) + I(g2) 2 [o(91)] + [0(g2)] 2 [0(91) + o(g2) + 1] = [o(9)]- .

Lemma 5.3 The problem MC*(U,N,” ,+) is in PSPACE.

Proof. For a generalized {U,N,” , +}-circuit C = (G, E, gc, @) and b € N™ U {oc}, the following
alternating polynomial time algorithm defines on each of its accepting subtrees a proof that
b € I(F). Moreover, in every step on every path the algorithm defines g € G, a € N" U{o0}, and
o(g) € {0,1}. Afterwards, i.e. in the computation tree above this configuration, the algorithm
checks whether a € I(g) if o =1 and a & I(g) if 0 = 0.

For a gate g of indegree 2 let g1 and g2 be the predecessors of g, for a gate g of inde-
gree 1 let g1 be the predecessor of g. The justification for choosing c¢; and ce below from
M =4 {0, 1,...,2/¢+13™ 4 {00} is provided by Lemma 5.2.
1. g:=gp;a:=b;0=1
2. while g is not an input gate do:
2.1. if g is a +-gate and ¢ = 1 then: choose existentially c¢1,ce € M such that a = c¢1 +¢g;
choose universally i € {1,2}; g := g;; a := ¢
2.2. if g is a +-gate and ¢ = 0 then: choose universally c1,co € M such that a = ¢; + ¢g;
choose existentially 7 € {1,2}; g :==¢;; a :=¢;
2.3. if g is a U-gate with o = 1 then: choose existentially 7 € {1,2}; g := g;
2.4. if g is a U-gate with o = 0 then: choose universally i € {1,2}; g := g;
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2.5. if g is a N-gate with o = 1 then: choose universally i € {1,2}; g := g;
2.6. if g is a N-gate with o = 0 then: choose existentially 7 € {1,2}; g := g;
2.7. if gisa ~-gate then: g:=¢g1;0=1—0

3. if g is an input gate then: if (0 =1 & a = «a(g)) then accept else reject .

Since every proof of b € I(F) is considered on one accepting subtree of this algorithm, the latter
really checks whether b € I(F). O

As a direct consequence of Lemma 5.1, Lemma 5.3, and Lemma, 3.2 we obtain:

Theorem 5.4 The problems MC*(U,N,” ,+), MC(U,Nn,” ,+), MC(U,n,+), MC(U,N,™, x),
MC(U,N, x), and MF(U,N,”, %) are PSPACE-complete. The problem MF(U,N,”,+, x) is
PSPACE-hard.

6 Beyond PSPACE

As an auxiliary tool to prove the main results of this section we introduce the following (U, N, -)-
circuits which compute finite sets of words. Such a circuit C only has gates of indegrees 0 and
2. Every input gate (i.e., gate of indegree 0) g is labelled with a word from a given alphabet
¥*, and every gate of indegree 2 is labelled with U, N, or - (concatenation). For each of its
gates g, the circuit computes a set I(g) C X* inductively defined as follows: If ¢ is an input
gate with label v then I(g) =qer {v}. If ¢ is an w-gate (w € {U,N,-}) with predecessors g;, gr
then I(g) =get I(g1) wI(g,). Finally, I(C) =qe I(gc) where g¢ is the output gate of C. A
(U,N,-)-circuit C is called special if for every gate g of C there exists a o(g) € N such that
I(g) C %79 and the following holds for every gate g with predecessors g; and go: If ¢ is a
N-gate or a U-gate then o(g) = o(g1) = o(g2), and if g is a --gate then o(g9) = o(g1) + o(g2)- Let
NE(U,N,-) be the nonemptyness problem for special (U, N, -)-circuits, i.e., NE(U,N,-) =gt {C :
C is a special (U, N, -)-circuit such that I(C) # 0}.

Lemma 6.1 The problem NE(U,N,-) is NEXPTIME-hard.

Proof. We describe a logarithmic space many-one master reduction from NEXPTIME to
NE(U, N, ). More specifically, given a nondeterministic one-tape Turing machine M which runs
in exponential time, we construct in logarithmic space for every input z a special (U, N, -)-circuit
Cy such that: M accepts z if and only if I(Cy) # 0.

Let B be the tape alphabet of M including the blank symbol J, let A C B be the input alphabet,
and let S be the set of states including the initial state sy and the accepting state s;. Without
loss of generality we may assume that M starts with the head in tape cell 1 which carries the
leftmost input symbol, that M never moves its head left to tape cell 1 and that it accepts with
the head in tape cell 1 and an empty tape and then working stationary. Furthermore, let p be
a polynomial such that every computation path of M on input z has at most 2P(%)) steps.

Next we see how to describe configurations and computations of M on an input z of length
n as words over the alphabet ¥ =4 B U S U {X} where X be a new symbol. A situati-
on which occurs during M’s work on input z can be completely described by the configura-
tion ™Mby ...b;i_18bibit1 ... bypny™® meaning that by,...bypn) are the symbols in the tape cells
1,...,2P() resp., and that the head scans tape cell i with the state s. An accepting compu-
tation of M on input z can be described by the sequence cyc; ... copn) Of such configuratons
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where ¢y = IZSO:CDQP(H)*"IZ, Cop(n) = ®31D2p(n), and ¢; is a successor configuration of ¢;_; for
i=1,...20(n) (i.e., ¢; is a configuration which describes a possible successor situation of the si-
tuation described by ¢;_1). Let comp,, (z) C (™ +1)-2""+3) 1 the set of all such descriptions
of computations of M on input x.

In what follows we will construct in logarithmic space a special (U, N, -)-circuit C, such that
I(Cy) = comp,,(z). Then, M accepts z < comp,,(z) # 0 < I(Cy) # 0, and we are done.

Obviously, if ¢ is a successor configuration of ¢ then ¢ and ¢’ can differ by at most three
symbols, i.e., there are u,v € ¥* and a,b,c,a’,b’,c’ € ¥ such that ¢ = uabcv, ¢ = ua't/c'v, and
abca'b'c’ € Py where Py; C %6 is defined by the program of M. Let Ry =get {(uabcv, ua'b'c'v) :
u,v € X* A abca'b'c’ € Py}

Now we can write down comp,,(z) as
comp s (x) = firstpas(z) Nnextas(z) Nlastys(z) where

firstpr () =get {®30x|12”(")—”|z} L 2P (270 43)
(all strings of length (2P(®) + 1)(2P(™ + 3) which start with the
correct configuration)

next ar () =def {€0C1 - - - Coptny * |€i| = 2P 43 A (¢i_1,¢) € Ry}
(all strings of length (2°P(™ + 1)(2P(") 4 3) which have the
correct next configuration property)

last ps () =det n2/ M (27 43) {IZslﬂzp(")IZ}
(all strings of length (2P() +1)(2P(™) 4 3) which end with the
correct configuration)

We now define sets E(k) and K, (k) for a € 3, and we show how to construct in logarithmic
space (in the length of the parameter k) special (U, N, -)-circuits which compute them.

E(k) =ges 2"
because of E(0) = {e}, E(2k) = E(k) - E(k), and E(2k+1) = E(k) - E(k) - Z.

Ko(k) =gef {a*} fora € X
because of K,(0) = {e}, K4(2k) = Ky(k) - Ko(k), and K,(2k+1) = K, (k) - K,(k) - {a}.
Now we can write:

firstar(z) = {Rsoz} - Ko(2PM™ —n) - {R} - B(2P() . (2p(1) 1.3))

lastyr(z) = E(2P(M) . (2P(M) 1.3)) - {Rs;} - Kn(2PM) - {X}

which shows that special (U, N, -)-circuits can be constructed in logarithmic space (in the length
of z) which compute firsty;(z) and lastps(z). To do the same with nextys(z) we define some
auxiliary sets with parameter k € N, and we show how to construct in logarithmic space (in the
value of the parameter k) special (U, N, -)-circuits which compute them.

D(k,m) =qet {wow : |w| = 2™ A |v] = 2F—2m 43} C £2+2"+3
for m =0,1,...,k — 1 because of D(k,0) = U,cs{a} - E(25+2) - {a} and
D(k,m+1) = (D(k,m) - E(2™)) N (E(2™) - D(k,m)).

S(k,m) =ger {wow' : |w| = [w'| = 2" 4+3 A [u] = 26—2™ A (w,w') € Ry} C B2 +2"+6
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for m =0,1,...,k because of
S(k,0) = Uses Upwep,, ((aw - E(2f—1) - aw') U (wa - E(2F—1) - w'a)) and S(k,m+1) =
((D(k,m) - E(2™+3)) N (E(2™) - S(k,m))) U ((S(k,m) - E(2™)) N (E(2™+3) - D(k,m))).
S(k) =qet {ww' : w,w' € T* Afw| = |w'| = 2643 A (w,w') € Ry} C 525746
because of S(k) = S(k, k).
R(k,m) =gef {wows ... wom : wi—yw; € S(k) fori=1,...,2m} C n@m+1)(25+3)
because of R(k,0) = S(k) and
R(k,m+1) = (R(k,m) - E((2F+3)2™)) N (E((2"+3)2™)) - R(k, m)).
Finally we obtain nexts(z) = R(p(n),p(n)). O

Theorem 6.2 The problem MC(U, N, +, x) is NEXPTIME-complete.

Proof. 1. To prove MC(U,N,+,x) is NEXPTIME-hard we show NE(U,N,-) <log
MC(U, N, +, x). For w € {0,1}* let bin~!(w) be that natural number whose binary description
is w (possibly with leading zeros), and for L C {0,1}* let bin™! (L) =q¢f {bin~*(w) : w € L}.

Given a special (U,N,-)-circuit C' we construct in logarithmic space a (U,N, +, X)-circuit C’
such that I(C') = bin }(I(C)). The circuit C' basically has the same structure as C: An
input gate in C' with label w becomes an input gate in C’ with label bin~!(w), a U-gate in
C becomes a U-gate in C', and a N-gate in C' becomes a N-gate in C'. A --gate g in C' with
predecessor g1, go such that I(g2) C {0,1}* is replaced in C’ by a subcircuit which computes
bin~!(I(g1)-I(g2)) = (2¥ xbin~!(I(g1)))+bin"!(I(g2)). The 2* can be computed by an (U, N, x)-
circuit C" which has the same structure as C' but instead of an input w it has the input 2%,
and instead of a --gate it has a x-gate. Here it is important that C is a special (U, N, -)-circuit.

Now, I(C) #0 < I(C") £ 0 < 0 € ({0} x I(C")).

2. To see that MC(U, N, +, x) is in NEXPTIME, simply unfold a given (U, N, +, X)-circuit into
a (possibly exponentially larger) (U, N, +, X)-formula and apply the NP-algorithm from Lemma
4.1. [l

Corollary 6.3 The problem NE(U,N,-) is NEXPTIME-complete.

As an immediate consequence of Theorem 6.2 we obtain also:

Theorem 6.4 The problem MC(U,N,” ,+, X) is NEXPTIME-hard.

Remark. Since MC(U,N,”, 4+, x) =l MC(u,N,~,+, X) these problems cannot be in
NEXPTIME unless NEXPTIME = co-NEXPTIME. In fact, there is evidence suggesting that
MF(U,N,” ,+, X) might not be decidable. Indeed, Christian Glafier in Wiirzburg was the first
to observe that there is a simple {U,N,” ,+, x }-formula G (see the Example 2.2 in Section 2)
having the property that (G,0) € MF(U,N, , +, x) if and only if Goldbach’s Conjecture is true.
Hence, a decision procedure for MF (U, N, , 4, x) would provide a terminating algorithm to test
Goldbach’s Conjecture; this would be surprising.

7 P-Complete Membership Problems
Theorem 7.1 The problem MC(+, X) is P-complete.

14



Proof. To prove MC(+, x) € P, let C be a (+, X)-circuit and b € N. Any gate in C computes a
singleton. If I(C) = {b} then I(g) = {a} such that a > b for some gate g can only occur if this a
is multiplied with 0 in a subsequent gate. Hence b+1 does the same job as a in this computation.
Therefore a polynomial time algorithm to decide I(C) = {b} consists in just evaluating C but
replacing every a > b with b + 1.

The hardness proof is by showing that the P-complete monotone boolean circuit value problem
[Go77] can be reduced to MC(+, x). To do so we convert a monotone boolean circuit C into
a (+, x)-circuit C" of exactly the same structure where every boolean input 0 (1, resp.) in C
becomes the integer input 0 (1, resp.) in C’, every V-gate in C becomes a +-gate in C’, and
every A-gate in C' becomes a X-gate in C'. It is easy to see that v evaluates to 0 in C if and
only if 0 € I(v) in C'. Hence, C evaluates to 0 if and only if 0 € I(C"). O

Theorem 7.2 The problems MC(U,N) and MC(U,N,”) are P-complete.

Proof. To prove MC(U,N,”) € P, let C be a (U,N,” )-circuit and b € N. Define S =gf
Uy input gate 1(v)- We prove that (*) for every gate v there are sets P,N C S such that
I(v) = PUN. Then we can compute in polynomial time all I(v) from the inputs down to
the output by storing only the sets P and N.

To see (*) let P, Py, N1,No C S and observe (P, U N1) U (P, UNy) = (PLUP,) U (N N Ny),

(P1 Uﬁl) N (PQUE) = ((P1 ﬂPQ) U (P1 \N2) U (PQ\Nl)) U (N1 UNQ), and P1 UE = N1 \P1

The hardness proof is by showing that the P-complete monotone boolean circuit value problem
can be reduced to MC(U,N). To do so we convert a monotone boolean circuit C into a (U,N)-
circuit C’ of almost the same structure where every input gate in C' with boolean value 1 becomes
an input gate in C’ with integer value 1, every input gate in C' with boolean value 0 becomes
an N-gate in C' with two input gates with labels 0 and 1, resp., as predecessors, every V-gate
in C becomes a U-gate in C’, and every A-gate in C becomes a N-gate in C'. It is easy to see
that v evaluates to 0 in C if and only if I(v) = 0 in C', and v evaluates to 1 in C if and only if
I(v) = {1} in C". Hence, C evaluates to 1 if and only if 1 € I(C"). O

8 Circuits with Intersection as the Only Set Operation

Circuits with intersection as the only set operation are special in the sense that every no-
de computes a singleton or the empty set. Thus these circuits bear some relationship to cir-
cuits of the same type without intersection. For O C {+, x} define EQ(O) =ger {(C1,C2) :
C1, Cy are O-circuits such that I(Cy) = I(Cs)}.

Lemma 8.1 1. MC(N,+) <8 EQ(+)

2. MC(N, +, X) =8 EQ(+, x)

Proof. 1. Let C be a (N, +)-circuit with output gate gc. Without loss of generality, every
predecessor of a MN-gate is a +-gate having outdegree 1. For a gate g of C, let Cy be that
(4)-circuit which arises from C by defining g as the output gate and by removing all N-gates
h where all gates fed with the output of A are now fed with output of the right predecessor
of h. Further, let C' be the (+)-circuit which arises from C by replacing every N-gate by a
+-gate and every input by 0. Finally, let Cj be the (+)-circuit constructed from C' and C,
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as follows: Cut the vertices going into g in C’, and identify gate g of C' with gate g of C,.
The output gate of Cy is the output gate gc of C'. If n(g) is the number of paths in C' from
g to gc then we have I(Cg) = n(g) - I(Cy). Let A be the set of all N-gates from which g¢ is
accessible in C. Observe that C; and C’; can be computed in logarithmic space and that, if
I(left predecessor of h) = I(right predecessor of h) for every gate h € A then I(g) = I(C,) for
every gate g of C from which g¢ is accessible. For b € N let C'(b) be the circuit which consists
only of an input gate with label b. We obtain:

beI(C) & bel(Ch) N Apea witn predecessors h1,h2 1(Chy) = I(Ch,)
< be I(Cgc) A /\h is a N-gate with predecessors h1,h2 I(Cllu) = II(C;LQ) ,
A I(Cgc) = I(C(b)) A /\h is a N-gate with predecessors hi,h2 I(Chl) = I(ChQ)

Thus it is sufficient to show that there exists a logarithmic space algorithm converting the
(+)-circuits Cy, ... C, Cf,...C] into (+)-circuits C, C' such that

I(C)=1(C") & (I(C;) = I(C)) for i = 0,1,...7).

Defining N =gef 22-i=0 [Cil+2i=0 [Cil we get a < N—1 for a € U}_, I(C;) UU}_, I(C!). Now it is
easy to construct (+)-circuits C, C' such that I(C) = Y_I_, I(C;)-N* and I(C") = Y_I_, I(C!)-N".
However, for ag,...,ar,bg,...,by € {0,1,... N—1} there holds Y>.I_;a;-N* = > _ b;-N! &
(a; =b; for i =0,1,...7).

2. The Slﬁg-part is very similar to the proof of Item 1. Here it is sufficient to show that there
exists an logarithmic space algorithm converting the (+, X)-circuits Cy, ... Cy,Cj,...Cl into
(4, x)-circuits C, C" such that

I(C)=I(C") & (I(C;) =I(C]) for i = 0,1,...7).

Defining N =gep 22i=0 |Cil+Xi=0 || we get a < 2V —3 for a € U_y I(C;) U Ui_, I(C!). Now
it is easy to comstruct (+, x)-circuits C,C’ such that I(C) = H:ZO(I(Ci)—l-Q)Ni and I(C') =
HZT:O(I(CZ{)+2)N1. However, for ag,...,ar,b,...,br € {2,3,...2Y 1} there holds []}_, aZNi =
[T Y < (a;i=b; fori =0,1,...7).

=0 "1
For the >m8-part observe I(C) = I(C") < 0 € ((I(C) NI(C")) x {0}). O
For the following we need the complexity classes #L and C_L. For a nondeterministic logarithmic
space machine M, define ny;(z) as the number of accepting paths of M on input z. The class

#L precisely consists of these functions nps. A set A is in C_L if and only if there exist f € #L
and a logarithmic space computable function g such that z € A & f(z) = g(z) for every z.

Observe that this definition is equivalent to: A set A is in C_L if and only if there exist f,g € #L
such that x € A & f(z) = g(z) for every z. For a survey on these and other counting classes
see [A1197].

Theorem 8.2 MC(N,+), MC(+), and EQ(+) are <i%8-complete for C_L.

Proof. 1. For the membership in C_L it is sufficient to prove that EQ(+) € C=-L (Lemma 8.1).
For a (+)-circuit C, let C’' be that circuit which arises from C by adding a new input gate gy
labelled with 1 and replacing every old input gate with label a by a (+)-circuit computing a
from the sole input gate g;. Consequently,

I(C) = I(C'") = the number of paths in C’ from the input to the output,
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and hence I is a #L-function. For given (4)-circuits C7,Cs define the #L-functions f,g by
f(Cl,CQ) =def I(Cl) and 9(01,02) =def I(CQ) Now, (01,02) S EQ(-l-) -~ f(Cl,CQ) =
g(Cl, Cg)

2. For the C_L-hardness of MC(+) let A € C_L. By definition there exist a function f € #L
and a logarithmic space computable function g such that z € A < f(z) = g(z). Let M be a
nondeterministic logspace Turing machine such that f(z) is the number of accepting paths of
M on input z. Let further C,, be the transition graph of M on input z. If we consider C,, to be
a (+4)-circuit whose accepting and rejecting nodes are inputs with labels 1 and 0 respectively,
then we have I(C;) = {f(x)}. Consequently

€A & f(z)=9g(z) & g(z) € I(Cs) & (Cs,9(x)) € MC(+). O
Theorem 8.3 1. The problem MC(N,+, x) is in co-NP. !

2. The problem MC(N, +, X) is P-hard.

Proof. 1. Because of Lemma 8.1 it is sufficient to prove EQ(+, X) € co-NP. Let C,C" be
(4, x)-circuits. For every gate g of C or C' there holds I(g) < 92l C1+IEL By the Chinese
Remainder Theorem we obtain

I(C) = I(C") < Vb(b < 2ICHIC 5 1(C) = I(C") modulo b).
Since b < 2/C1HCl we can evaluate the circuits C and C' modulo b in polynomial time.

2. This is a direct consequence of Theorem 7.1 O

Theorem 8.4 1. The problem MC(N, x) is in P.

2. The problem MC(N, x) is C_L-hard.

Proof. 1. By Lemma 3.2 it suffices to prove that MC*(N,+) is in P. Let C be a {N, +}-circuit
processing values from N™ U {oo}. There is at most one m-tuple or oo in I(v) for every gate v.
The size of these m-tuples is polynomial in the size of the input. So we can evaluate C step by
step in polynomial time.

2. For the C=L-hardness of MC(N, x) let A € C-L. Hence there exist functions fi, fo € #L
such that z € A & fi(x) = fo(z). For i = 1,2, let M; be a nondeterministic logspace Turing
machine such that f;(z) is the number of accepting paths of M; on input z. Let further C¥ be
the transition graph of M; on input z. If we consider C7 to be a (x)-circuit whose accepting
nodes are inputs with label 2 then we have I(C¥) = {2/i(*)}. Consequently

z€A & fi(z)=folz) & I(CY) =I(C5) & 0€ ((I(CT)NI(CT)) x {0}). O
Theorem 8.5 The problem MC(x) is NL-complete.

Proof. 1. To prove the hardness we reduce the NL-complete graph accessibility problem GAP
for directed acyclic graphs to the problem MC(x). Let G = (V, E) be a directed acyclic graph
and s,t € V be the source and target vertices, resp. Without loss of generality assume every
vertex has indegree 0 or 2 and that s has indegree 0. Now convert G into a (x)-circuit C' by
labelling every vertex with indegree 2 by X, the source vertex s by 0 and all other vertices with

!Christian GlaBer, Wiirzburg, recently proved that MC(N, 4, X) is in co-R.
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indegree 0 by 1. We obtain
(G,s,t) € GAP & there is a path in G from s to t < 0 € I(C) & (C,0) € MC(x).

2. Now we describe a many-one reduction from MC(x) to the iterated multiplication decision
problem IMD =g {(a1,...ar,b) : a1,...ar,b € NAT[]_,a; = b} via a function which is
logspace computable with an oracle from NL. Since IMD € L ([CDL], or better yet, uniform
TC® [ABHO1, He01]) we obtain MC(x) € LNV, However, LN = NL.

Let C be a (x)-circuit and b € N. Let gy, . .. g, be the input gates of C, let g be the output gate
of C, and let n(C, g,¢') be the number of different paths in C' from gate g to gate g’. Obviously,
n € #L, and we obtain I(C) = []I_, I(g;)™(©9::9¢). Defining s(i) =qef min{n(C, g, gc), |b|+1}
for i =1,...,r we obtain

be I(C) & b= H;‘:]- I(gi)n(c’g%gc) = b= H;l:l I(gz)s(l)
< (I(q1),---,1(q1)s---,I(gr),--.,I(gr),b) € IMD

~ J .~ ~

v

s(1) 5(r)

The latter tuple of numbers is generated as follows: for ¢ = 1,...r and k = 1,...,|b|+1 ask
n(C, gi,g9c) > k, which are queries to a NL-set [ARZ99]. (This owes to the fact that only small
k, i.e. k whose values are polynomially bounded in the length of the input, are considered.) If
such a query n(C, g;,gc) > k is answered in the affirmative, output I(g;), and finally output b.
O

9 Further Results

Theorem 9.1 The problems MC(U) and MC(N) are NL-complete.

Proof. Upper bounds. For a U-circuit C and b € N | there holds b € I(C) if and only if there
exists a path in C from an input gate with label b to the output gate. This can be checked by
an NL-algorithm.

For a N-circuit C and b € N | there holds b € I(C) if and only if all input gates from which
there exists a path to the output gate have label b. This can be checked by an co-NL-algorithm.
However, co-NL = NL.

Lower bounds. We reduce the NL-complete graph accessibility problem GAP for directed
acyclic graphs to the problems MC(U) and MC(N). Let G = (V, E) be a directed acyclic graph
and s,t € V be the source and target vertices, resp. Without loss of generality assume every
vertex has indegree 0 or 2 and that s has indegree 0. Now convert G into a (U)-circuit C' by
labelling every vertex with indegree 2 by U, the source vertex s by 0 and all other vertices with
indegree 0 by 1. We obtain

(G,s,t) € GAP < thereis a pathin G from s tot < 0€ I(C) < (C,0) € MC(U).

Furthermore, convert G into a (N)-circuit C’ by labelling every vertex with indegree 2 by N,
the source vertex s by 0 and all other vertices with indegree 0 by 1. We obtain

(G, s,t) € GAP < there is no path in G from s tot & 1€ I(C) & (C,1) € MC(N).
Consequently, GAP <log MC(N). However, because of NL = co-NL we have GAP <% GAP. O
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Theorem 9.2 The problems MF(N,+, xX) and MF(+, x) are in DLOGCFL.

Proof. For a (N,+, x)-formula F, no number computed in a gate of F' can be greater than
2/FI. Hence, by the Chinese Remainder Theorem,

beI(F) < Va(a < |F| — b= I(F) modulo a).
Now “b = I(F) modulo a” can be tested for all a < |F'| one after the other. The current a can be

stored in logarithmic space, and the pushdown is used to evaluate the formula F' in a depth-first
manner. O

Theorem 9.3 The problems MF(U,Nn,”), MF(U,N), MF(U), MF(n), MF(N,+), MF(N, x),
MF(4) and MF(x) are L-complete under AC°-reducibility.

Proof. Hardness. Any one of the associative binary operations U, N, + and X is able to simulate
the boolean V operation once an appropriate representation for the truth values is chosen. For
example, representing o(true) = () and o(false) = {0} allows N to simulate V since a V b is true
iff o(a) No(b) = 0, and a V b is false iff o(a) N o(b) = {0}. Hence, to prove all eight hardness
claims, it suffices to prove that evaluating a boolean formula (in our encoding, as a possibly
disconnected outdegree-one circuit) with V as the only operation is L-hard. But this is clear,
and is explicitly stated under NC!-reducibility in [BM95] (where the formulas involve both V
and A, but A is used only to enforce the [BM95] requirement that every formula be connected).
The more restrictive AC’-reducibility is attained by the usual refinements.

Upper bounds. 1t suffices to prove that MF(U,N,~), MF(N,+) and MF(N, x) are in L.

One way to solve MF(U, N, ™) is to reduce in logspace the problem to that of evaluating a boolean
(V, A, m)-formula, then transforming in logspace (as mentioned in [BM95, P. 444]) the connected
part of this boolean formula into infix notation, and finally evaluating the infix boolean formula
in logspace [Ly77] (or in NC! C L using Buss’s algorithm [Bu87]). To see the first step, namely
reducing a (U,N,” )-formula F with b € N to a boolean (V, A, =)-formula F”, let F' have exactly
the same structure as F', with every input in F' labelled b (resp. having label # b) giving rise in
F’ to an input labelled 1 (resp. 0), and with every U-gate in F' (resp. N-gate, —-gate) giving rise
to a V-gate in F' (resp. A-gate, —-gate). Then for every gate g, (b€ I(g9) in F) & (I(g) =1 1in
F'). Hence be I(F) & I(F') =1.

The case MF(N, +) is reduced in logspace to EQ(+) as in Lemma 8.1. The EQ(+) instance now
involves two {+ }-formulas. Evaluating a {+ }-formula can be done in logspace by identifying (in
L) the inputs that contribute to the output, and forming the iterated sum of those inputs in
TC® C L.

The case MF(N, x) is handled in the same way, except that the final step now involves evaluating
an iterated product, and this can be done in TC? C I, by [ABH01, CDL]. O

The L-hardness of the MF problems considered in this section owe to our choice of formula enco-
ding. At such low complexity levels, a more appropriate choice is infix notation; then MF(U,N,™)
becomes NC!-complete by equivalence with the Boolean formula value problem [Bu87], and some
of the other restrictions considered in Theorem 9.3 drop down into yet smaller classes.
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10 Conclusion

Table I summarizes the known complexity status of the membership problems for arithmetic
circuits over subsets of N. Several open questions are apparent from the table, most notably the
intriguing question of finding an upper bound on the complexity of MC(U,N,™ , 4+, X) or proving
the problem undecidable.

We observe that the problems MC(x) and MC(+), complete for NL and for C_L respectively,
offer an interesting new perspective on these two classes. If one could reduce MC(+) to MC(x),
then it would follow that NL = C_L.

Finally, some cases of interest were left out of our analysis, namely those in which comple-
mentation is the only set operation. Klaus Reinhardt (private communication) has shown that
MF(~,+, x) is already powerful enough to express a weak form of Goldbach’s conjecture. He
also extended our techniques to prove that MC(—, x), MC(~,+), MF(~, x) and MF(~,+) are
PSPACE-complete, and he observed that MC( ™) is L-complete.

Acknowledgements. We are grateful to Eric Allender for his help with the upper bound in
Theorem 8.5, to Heribert Vollmer, Christian Glafler, Daniel Meister, Stephen Travers, and Hans-
Georg Breunig for very useful discussions, and to anonymous referees for valuable suggestions,
including the need to correct our choice of formula encoding and to clarify its ramifications.

O lov%rc 1t()((?lznd up%g (gl)md Th. lo%\v/I.Fb(gl)l)nd up%.Flg((?lgnd Th.
Uu,nN,~, +, x [INEXPTIME ? 6.4 | PSPACE ? 5.4
Uu,n, 4+, x |NEXPTIME |NEXPTIME | 6.2 NP NP 4.4
U, +, x| PSPACE PSPACE |2.3 NP NP 4.4
n, +, X P co-R 8.3 L DLOGCFL | 9.2

+, X P P 7.1 L DLOGCFL | 9.2
u,n,, + PSPACE PSPACE |5.4| PSPACE | PSPACE |2.3
u,n, + PSPACE PSPACE |5.4 NP NP 4.4
U, + NP NP 4.4 NP NP 2.3
n, + C-L C_L 8.2 L L 9.3

+ C-L C_L 8.2 L L 9.3
u,n, =, X PSPACE PSPACE |5.4| PSPACE | PSPACE |54
un, x PSPACE PSPACE |5.4 NP NP 4.4
U, X NP NP 4.4 NP NP 4.4
n, X C_L P 8.4 L L 9.3

X NL NL 8.5 L L 9.3
u,n,” P P 7.2 L L 9.3
U,N P P 7.2 L L 9.3
U NL NL 9.1 L L 9.3
N NL NL 9.1 L L 9.3

TABLE I: State of the art. The results on MF(U, +), MF(U,N,”,+) as
well as on MC(U, 4, x) were already known from the literature, please
refer to the relevant sections for the appropriate credit. Lower bounds
of course refer to hardness results.
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