
The Algebraic Theory of Parikh Automata

Michaël Cadilhac1, Andreas Krebs2, and Pierre McKenzie1,?

1 DIRO at U. de Montréal and Chaire Digiteo ENS Cachan-École Polytechnique
{cadilhac, mckenzie}@iro.umontreal.ca

2 WSI at U. Tübingen
mail@krebs.net

Abstract. The Parikh automaton model equips a finite automaton with
integer registers and imposes a semilinear constraint on the set of their fi-
nal settings. Here the theory of typed monoids is used to characterize the
language classes that arise algebraically. Complexity bounds are derived,
such as containment of the unambiguous Parikh automata languages in
NC1. Noting that DetAPA languages are positive supports of rational
Z-series, DetAPA are further shown stronger than Parikh automata on
unary langages. This suggests unary DetAPA languages as candidates
for separating the two better known variants of uniform NC1.

Introduction

The Parikh automaton model was introduced in [19]. It amounts to a nonde-
terministic finite automaton equipped with registers tallying up the number of
occurrences of each transition along an accepting run. Such a run is then deemed
successful iff the tuple of final register settings falls within a fixed semilinear set.
An affine variant of the model in which transitions further induce an affine
transformation on the registers was considered in [10]. An unambiguous variant
of the model was considered in [11]. Tree Parikh automata and other variants
were considered in [18].

Recall the tight connection between AC0, ACC0 and NC1 and aperiodic
monoids, solvable monoids and nonsolvable monoids respectively [2,3]. This con-
nection was refined and studied in depth (see [24] for a lovely account), but the
class TC0 ⊆ NC1 was left out of the picture because the MAJ gate in circuits
could not be translated into the operation of a finite algebraic structure. Typed
monoids were introduced in [20] as a means of capturing TC0 meaningfully in
the algebraic framework.

In both the classical and the typed monoid framework, a compelling notion
of a natural class of monoids is that of a variety. In both frameworks, different
monoid varieties capture different classes of languages as inverse homomorphic
images of an accepting subset of the monoid [13,6]. The internal structure of
NC1 hinges on whether different monoid varieties still capture different classes
of languages when the classical notion of a homomorphism is appropriately gen-
eralized to capture as above complexity classes such as ACC0, TC0 and NC1.

? Supported by NSERC of Canada and Digiteo.

Our contribution is an algebraic characterization of the language classes de-
fined by the deterministic and unambiguous variants of the Parikh automaton
(called CA, for “constrained automaton”) and the affine Parikh automaton. We
show:

– the class LDetCA of languages accepted by deterministic CA is the set of
languages recognized by typed monoids from Z+ oM, i.e., by wreath products
of the monoid of integers with some finite monoid; the least typed monoid
variety generated by Z+ oM also captures LDetCA

– the class LUnCA of languages accepted by unambiguous CA is the set of
languages recognized by typed monoids from Z+�M, i.e., by block products
of the monoid of integers with some finite monoid; the least typed monoid
variety generated by Z+�M also captures LUnCA

– the classes LDetAPA and LUnAPA, of languages accepted by deterministic
and by unambiguous affine Parikh automata respectively (where an affine
Parikh automaton generalizes the constrained automaton by allowing each
transition to perform an affine transformation on the automaton registers),
are the Boolean closure of the positive supports of rational series over the
integers.

The first two characterizations above add legitimacy to the theory of typed
monoids, and they suggest further relevance of that theory to our understanding
of NC1. It follows from the characterization of LUnCA that LUnCA ⊆ NC1, a
fact which is not immediately obvious from the operation of an unambiguous
constrained automaton.

The Boolean closure of the class of positive supports of rational series over
the integers, hence LDetAPA = LUnAPA, can be viewed as a very tightly uniform
version of the (DLOGTIME-uniform) class PNC1, introduced in [12] as the log
depth analog of the poly time and log space classes PP and PL [16]. Fulfilling
NC1 ⊆ PNC1 ⊆ L, PNC1 is robust, pointedly characterized using iterated prod-
ucts of constant dimension integer matrices, but also characterized using paths in
bounded width graphs, proof trees in log depth circuits, accepting paths in non-
deterministic finite automata or evaluation of a log depth {+,×}-formula [12].
An elaborate structural complexity evolved around PNC1 with the work of [21].
We note that using formal power series as a tool to investigate counting classes
below L was already suggested in [1], but with emphasis there on the complexity
of performing operations such as inversion and root extraction on such series.

1 Preliminaries

Monoids, integers, vectors. A monoid is a set M with an associative operation,
usually denoted multiplicatively (x, y) 7→ xy, and an identity element denoted
1. For S ⊆ M , we write S∗ for the monoid generated by S, i.e., the smallest
submonoid of M containing S. A (monoid) morphism from M to N is a map
preserving product and identity. Moreover, if M = Σ∗ for some alphabet Σ (i.e.,
Σ is a finite set of symbols), then h need only be defined on the elements of Σ.

We write N, Z, Z+, Z−0 for the sets of nonnegative integers, integers, positive
integers, and nonpositive integers respectively. Vectors in Nd are noted in bold,
e.g., v whose elements are v1, v2, . . . , vd. We write ei ∈ {0, 1}d for the vector
having a 1 only in position i, and 0 for the all-zero vector. We view Nd as the
additive monoid (Nd,+), with + the component-wise addition and 0 the identity
element. We letMZ(k), for k ≥ 1, be the monoid of square matrices of dimension
k × k with values in Z and with the operation mapping (M1,M2) to M2M1. In
particular, a morphism h : {a, b}∗ →MZ(k) is such that h(ab) = h(b).h(a) with
. the usual matrix multiplication. We write Ψi for the projection on the i-th
component, Ψi(a1, a2, . . . , ai, . . .) = ai.

Semilinear sets, Parikh image. A subset C of Nd is linear if there exist c ∈ Nd
and a finite P ⊆ Nd such that C = c+P ∗. The subset C is said to be semilinear
if it is equal to a finite union of linear sets: {4n + 56 | n > 0} is semilinear
while {2n | n > 0} is not. We will often use the fact that the semilinear sets are
those sets of natural numbers definable in first-order logic with addition [17].
Let Σ = {a1, a2, . . . , an} be an (ordered) alphabet and 1 be the empty word.
The Parikh image is the morphism Pkh : Σ∗ → Nn defined by Pkh(ai) = ei,
for 1 ≤ i ≤ n — in particular, we have that Pkh(1) = 0. For w ∈ Σ∗, with
Pkh(w) = x and ai ∈ Σ, we write |w|ai for xi. The Parikh image of a language
L is defined as Pkh(L) = {Pkh(w) | w ∈ L}. The name of this morphism stems
from Parikh’s theorem [22], stating that for L context-free, Pkh(L) is semilinear;
outside language theory, it is also referred to as the commutative image.

Affine functions. A function f : Nd → Nd is a (total and positive) affine function
of dimension d if there exist a matrix M ∈ Nd×d and v ∈ Nd such that for any
x ∈ Nd, f(x) = Mx+v. We abusively write f = (M,v). We let Fd be the monoid
of such functions under the operation � defined by (f � g)(x) = g(f(x)), where
the identity element is the identity function, i.e., (Id ,0) with Id the identity
matrix of dimension d.

Automata. An automaton is a quintuple A = (Q,Σ, δ, q0, F) where Q is a finite
set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is a set of transitions, q0 ∈ Q is the
initial state, and F ⊆ Q is a set of final states. For a transition t = (q, a, q′) ∈ δ,
define From(t) = q and To(t) = q′. We define LabelA : δ∗ → Σ∗ as the morphism
given by LabelA(t) = a, with, in particular, LabelA(1) = 1, and write Label when
A is clear from the context. The set of accepting paths of A, i.e., the set of words
over δ describing paths starting from q0 and ending in F , is written Run(A).
The language of the automaton is L(A) = LabelA(Run(A)). An automaton is
unambiguous if for all w ∈ L(A) there is a unique π ∈ Run(A) with Label(π) = w.

A constrained automaton (CA) [10] is a pair (A,C) where A is an automa-
ton with d transitions and C ⊆ Nd is semilinear. Its language is L(A,C) =
LabelA({π ∈ Run(A) | Pkh(π) ∈ C}). The CA is said to be deterministic (DetCA)
if A is deterministic, and unambiguous (UnCA) if A is unambiguous. We write
LCA, LDetCA, and LUnCA for the classes of languages recognized by CA, DetCA,
and UnCA, respectively.

An affine Parikh automaton (APA) [10] of dimension d is a triple (A,U,C)
where A is an automaton with transition set δ, U : δ∗ → Fd is a morphism,
and C ⊆ Nd is semilinear. Its language is L(A,U,C) = LabelA({π ∈ Run(A) |
[U(π)](0) ∈ C}). The APA is said to be deterministic (DetAPA) if A is deter-
ministic, and unambiguous (UnAPA) if A is unambiguous. We write LDetAPA

and LUnAPA for the classes of languages recognized by DetAPA and UnAPA,
respectively.

Transition monoid. Let A = (Q,Σ, δ, q0, F) be a complete deterministic automa-
ton. For a ∈ Σ, define fa : Q → Q by fa(q) = q′ iff (q, a, q′) ∈ δ. The transition
monoid M of A is the closure under composition of the set {fa | a ∈ Σ}. The
monoidM acts on Q naturally by q.m = m(q),m ∈M , q ∈ Q. Write η : Σ∗ →M
for the canonical surjective morphism associated, that is, the morphism defined
by η(a) = fa, a ∈ Σ. Then q.η(w) is the state reached by reading w ∈ Σ∗ from
the state q ∈ Q.

2 Normal forms of CA and APA

We present several technical lemmata on CA and APA that will help us in
devising concise proofs for the algebraic characterizations that follow. Their main
purpose is to simplify the constraint set, so that only sign checks on linear
combinations of variables are performed.

Recall (e.g., [14]) that for any semilinear set C ⊆ Zd, there is a Boolean

combination of expressions of the form:
∑d
i=1 αixi > c and

∑d
i=1 αixi ≡p c,

with αi, c ∈ Z and p > 1, which is true iff (x1, x2, . . . , xd) ∈ C. Note that the αi
may be zero. We define two notions which refine this point of view:

Definition 1. We say that a semilinear set C is modulo-free if it can be ex-
pressed as a Boolean combination of expressions of the form

∑
i αixi > c, for

αi ∈ Z. We say that C is basic if it can further be expressed as a positive Boolean
combination of expressions of the form

∑
i αixi > 0.

The first normal form concerns DetCA and UnCA:

Lemma 1. Every DetCA (resp. UnCA) has the same language L ⊆ Σ+ as
another DetCA (resp. UnCA) (A,C) with L(A) = Σ∗ and C a basic set.

We also note the following simple fact:

Lemma 2. For (A,C1 ∩ C2) a DetCA or an UnCA it holds that:

L(A,C1 ∩ C2) = L(A,C1) ∩ L(A,C2) .

The same holds for ∪.

We show more in the context of APA to allow the forthcoming proofs of
characterization to translate smoothly from CA to APA. In the following, we
consider that a matrix M ∈ MZ(k) is in a set C ⊆ Zk2 if the vector consisting
of the columns of M is in C.

Lemma 3. Let L ⊆ Σ+ be in LDetAPA. There is a morphism h : Σ∗ →MZ(k),

for some k, and a set Z ⊆ Zk2 expressible as a Boolean combination of expres-
sions xi > 0, such that L = h−1(Z).

Similarly, let L ⊆ Σ+ be in LUnAPA. There is an unambiguous automaton
A with transition set δ, a morphism h : δ∗ → MZ(k), for some k, and a set

Z ⊆ Zk2 expressible as a Boolean combination of expressions xi > 0, such that
L = LabelA(h−1(Z) ∩ Run(A)).

3 Capturing Parikh automata classes algebraically

In this section we characterize DetCA, UnCA, DetAPA, and UnAPA using the
theory of (finitely) typed monoids [20].

3.1 Typed monoids

In the following, we will use such notions as language recognition by a finite
monoid, varieties of languages, and pseudovarieties of finite monoids (see, e.g.,
[13]). In algebraic language theory, central tools for finite monoid composition
include the block and wreath products, the definitions of which we recall here,
before giving similar definitions in the theory of typed monoids.

Let M and N be finite monoids. To distinguish the operation of M and N ,
we denote the operation of M as + and its identity element as 0 (although this
operation is not necessarily commutative) and the operation of N implicitly and
its identity element as 1. A left action of N on M is a function mapping pairs
(n,m) ∈ N×M to nm ∈M and satisfying n(m1+m2) = nm1+nm2, n1(n2m) =
(n1n2)m, n0 = 0 and 1m = m. Right actions are defined symmetrically. If we
have both a right and a left action of N on M that further satisfy n1(mn2) =
(n1m)n2, we define the bilateral semidirect product M ∗∗N as the monoid with
elements in M × N and multiplication defined as (m1, n1)(m2, n2) = (m1n2 +
n1m2, n1n2). This operation is associative and (0, 1) acts as an identity for it.
Given only a left action, the unilateral semidirect product M ∗N is the bilateral
semidirect product M ∗∗N where the right action on M is trivial (mn = m).

Let M,N be two monoids. The wreath product of M and N , written M oN , is
defined as the unilateral semidirect product of MN and N , where the left action
of N on MN is given by (n · f)(n′) = f(n′n), for f : N →M and n, n′ ∈ N . The
block product of M and N , written M�N , is defined as the bilateral semidirect
product of MN×N and N , where the right (resp. left) action of N on MN×N

is given by (f · n)(n1, n2) = f(n1, nn2) (resp. (n · f)(n1, n2) = f(n1n, n2)), for
f : N ×N →M and n, n1, n2 ∈ N .

We now turn to the theory of typed monoids.

Definition 2 (Typed monoid [20]). A typed monoid is a pair (S,S) where
S is a finitely generated monoid and S is a finite Boolean algebra of subsets of
S whose elements are called types. We write (S, {S1,S2, . . . ,Sn}) for the typed
monoid (S,S) where S is generated by the Si’s. If n = 1, we simply write

(S,S1). For two typed monoids (M,M), (N,N), their direct product (S,S) =
(M,M)×(N,N) is defined by S = M×N , and S is the Boolean algebra generated
by {M×N | M ∈M and N ∈ N}. A typed monoid (S,S) recognizes a language
L if there are a morphism h : Σ∗ → S and a type S ∈ S such that L = h−1(S).
We write L((S,S)) for the class of languages, over any alphabet, recognized by
(S,S) and extend this notation naturally to classes of typed monoids.

We view a finite monoid M as the typed monoid (M, 2M), and write M
for the class of typed finite monoids; note that the usual notion of language
recognition then coincides with the one given here.

The usual wreath product (resp. block product) of M and N , i.e., the unilat-
eral (resp. bilateral) semidirect product of MN (resp. MN×N) and N , results,
in the infinite monoid case, in monoids with uncountably many elements, failing
to fall within the definition of typed monoid. Thus the block product was re-
stricted, in [20], to type-respecting functions, that is, functions that only depend
on the type of their arguments (multiplied by some constants). Here, we are not
concerned with this technicality as all our monoids N will be finite. Hence we
define:

Definition 3 (Typed block [20] and wreath products). Let (M,M) and
(N,N) be typed monoids. The block product (resp. wreath product) of (M,M)
and (N,N), written (M,M)�(N,N) (resp. (M,M)o(N,N)), is (M�N,S) (resp.
(M oN,S)) with S = {SM | M ∈M} where:

SM = {(f, n) ∈ S | f(1, 1) ∈M} (resp. SM = {(f, n) ∈ S | f(1) ∈M}) .

The appropriateness of typed monoids in the study of the algebraic properties
of nonregular languages is witnessed by the following Eilenberg-like theorem of
Behle, Krebs, and Reifferscheid:

Theorem 1 ([6]). Varieties of typed monoids and varieties of languages are in
a one-to-one correspondence, i.e., (1) Let V be a variety of languages and V
the smallest variety of typed monoids that recognizes all languages in V, then
L(V) = V; (2) Let V be a variety of typed monoids and W be the smallest
variety that recognizes all languages of L(V), then V = W.

Similar to the untyped algebraic theory of languages, if a typed monoid recog-
nizes a language, it also recognizes its complement. This implies that LCA, which
is not closed under complement, does not accept a typed monoid characteriza-
tion. We will thus focus on characterizing the deterministic and unambiguous
classes. Note that we will frequently focus on languages which do not contain
the empty word. This is a technical simplification which introduces no loss of
generality, as all our typed monoid classes recognize {1} and are closed under
union.

3.2 Capturing DetCA and UnCA

Let Z+ be the set of typed monoids {(Z,Z+)k | k ≥ 1}.

Theorem 2. L(Z+ oM) = LDetCA.

Proof. (LDetCA ⊆ L(Z+ oM)) We first show that L(Z+ oM) is closed under
union and intersection. Let L1, L2 ∈ L(Z+ oM) be two languages over Σ, that is,
for i = 1, 2, there exist a finite monoid Mi, an integer ki, a morphism hi : Σ

∗ →
Zki oMi, and a type Ti of (Z,Z+)ki such that Li = h−1i (Ti).

Consider the typed monoid (Z,Z+)k1+k2 o (M1×M2) ∈ Z+ oM. This monoid
recognizes both the intersection and union of L1 and L2 as follows. Define
h : Σ∗ → Zk1+k2 o (M1 × M2) by h(a) = (fa, (Ψ2(h1(a)), Ψ2(h2(a)))) where
a ∈ Σ and fa((m1,m2)) = ([Ψ1(h1(a))](m1), [Ψ1(h2(a))](m2)) ∈ Zk1+k2 . Now let
� ∈ {∪,∩}. We define T� = (T1×Zk2)�(Zk1×T2), and thus h−1(T�) = L1�L2.

Now let (A,C) be a DetCA with A = (Q,Σ, δ, q0, F), and suppose (by
Lemma 1) that F = Q and that the constraint set is expressed by a positive
Boolean combination of clauses of the form

∑
t∈δ αtxt > 0. Closure of L(Z+ oM)

under ∪ and ∩ together with Lemma 2 imply that it is enough to argue the case
in which C is defined by a single such clause.

Let M be the transition monoid of A, η : Σ∗ → M the canonical morphism
associated. We now define h : Σ∗ → Z oM as follows. Let τ : M × Σ → δ be
defined by τ(m, a) = (q0.m, a, q0.mη(a)). Then:

h(a) = (fa, η(a)), where fa(m) = ατ(m,a) .

Now let w = w1w2 · · ·wn ∈ Σ∗ and π = π1π2 · · ·πn where wi ∈ Σ and πi ∈ δ for
every 1 ≤ i ≤ n, such that π is the unique accepting path in A from q0 labeled
w. We have:

h(w) = (fw1 + η(w1) · fw2 + · · ·+ η(w1w2 · · ·wn−1) · fwn , η(w))

[Ψ1(h(w))](η(1)) = ατ(η(1),w1) +

n∑
i=2

ατ(η(w1···wi−1),wi) ,

note that q0.η(w1 · · ·wi−1) is From(πi) and thus τ(η(w1 · · ·wi−1), wi) = πi,
hence:

[Ψ1(h(w))](η(1)) =

n∑
i=1

απi =
∑
t∈δ

|π|t × αt .

Thus, Pkh(π) ∈ C iff [Ψ1(h(w))](η(1)) > 0. Hence with the type T = {(f,m) ∈
(Z,Z+) oM | f(η(1)) > 0}, which is indeed a type of (Z,Z+) oM , we have that
h−1(T) = L(A,C).

(L(Z+ oM) ⊆ LDetCA) Let L ⊆ Σ∗ be recognized by (Z,Z+)k oM using
a type T and a morphism h : Σ∗ → (Zk)M × M , and write for convenience
hi(w) = Ψi(h(w)), i = 1, 2. Let A be the automaton (M,Σ, δ, 1,M), where:

δ = {(m, a,m′) | m ∈M,a ∈ Σ and m′ = m.h2(a)} .

Now as LDetCA is closed under union and intersection, we may suppose that the
type T is of the following form:

T =

k∏
i=1

{(f,m) | f(1) ∈ Ti} ,

where each Ti ∈ {∅,Z−0 ,Z+,Z}. Define T = T1×T2×· · ·×Tk, and the semilinear
set C consisting of elements:

(xt1 , xt2 , . . . , xt|δ|) s.t.
∑
t∈δ

xt × [h1(Label(t))](From(t)) ∈ T .

We claim that the language of the DetCA (A,C) is L. Let w = w1w2 · · ·wn ∈
Σ∗. There is an (accepting) path in A labeled w going through the states 1 =
h2(1), h2(w1), h2(w1w2), . . . , h2(w1w2 · · ·wn). Thus the sum computed by the
semilinear set is h1(w1) +h2(w1) ·h1(w2) + · · ·+h2(w1w2 · · ·wn) ·h1(wn), taken
at the point 1. This is precisely [h1(w)](1), and thus checking whether it belongs
to T is equivalent to checking whether h(w) ∈ T . Hence L = L(A,C). ut

Now LDetCA is a variety of languages and we may naturally ask whether
the smallest variety containing Z+ oM, which recognizes only the languages of
LDetCA by Theorem 1, is closed under iterated wreath product. We note this is
not the case. Let U1 = ({0, 1},×), then:

Theorem 3. There is a language L /∈ LCA recognized by U1 o (Z,Z+) and by
(Z,Z+) o (Z,Z+).

We now turn to unambiguous CA:

Theorem 4. L(Z+�M) = LUnCA.

Proof. (LUnCA ⊆ L(Z+�M)) We first note that L(Z+�M) is closed under
union and intersection; this is the same proof as in Theorem 2 except that fa is
now defined as:

fa((m1,m2), (m′1,m
′
2)) = ([Ψ1(h1(a))](m1,m

′
1), [Ψ1(h2(a))](m2,m

′
2)) .

Next consider an UnCA (A,C) with A = (Q,Σ, δ, q0, F), and suppose (using
Lemma 1) that L(A) = Σ∗ and that the constraint set is expressed by a positive
Boolean combination of clauses of the form

∑
t∈δ αtxt > 0. Closure of L(Z+�M)

under ∪ and ∩ together with Lemma 2 imply that it is enough to argue the case
in which C is defined by a single such clause.

Let M be the transition monoid of the deterministic version of A, obtained
using the powerset construction. Let A′ be defined as A with all transitions
inverted (i.e., (p, a, q) is in A iff (q, a, p) is in A′). Let M ′ be the transition
monoid of the deterministic version of A′, using again the powerset construction,
and let M c be the monoid defined on the same elements as M ′ but with the
operation reversed (i.e., m1 ◦M ′ m2 in M ′ is m2 ◦Mc m1 in M c; this is still a

monoid as ◦Mc is still associative). We will show that L(A,C) is recognized by
(S,S) = (Z,Z+)�(M ×M c).

Write η and ηc for the canonical morphisms associated with M and M c; for
m ∈ M and R ⊆ Q, write R.m for the action of m on R, and likewise for M c.
We first note that for w ∈ Σ∗, {q0}.η(w) is the set of states of A that can be
reached in A reading w from q0, and, likewise, that F.ηc(w) is the set of states
in A from which reading w leads to a final state.

Now for m1 ∈ M , a ∈ Σ, and m2 ∈ M c, let τ(m1, a,m2) be the unique
transition in A from a state in {q0}.m1 to a state in F.m2 labeled a. We show
that τ is well-defined. Let w1, w2 such that η(w1) = m1 and ηc(w2) = m2; this
means that there are w1-labeled paths in A from q0 to any state in {q0}.m1,
and, likewise, w2-labeled paths in A from any state in F.m2 to a final state.
(Existence): as w1aw2 is in Σ∗ = L(A), there is a transition in A from a state in
{q0}.m1 to a state in F.m2 labeled a. (Uniqueness): if two transitions (p, a, p′)
and (q, a, q′) are such that p, q ∈ {q0}.m1 and p′, q′ ∈ F.m2, this means that there
are multiple accepting paths in A labeled w1aw2, contradicting the unambiguity
of A. We now define the morphism h : Σ∗ → S by:

h(a) = (fa, (η(a), ηc(a))), where

fa((m1,m2), (m′1,m
′
2)) = ατ(m1,a,m′2)

.

Now let w = w1w2 · · ·wn ∈ Σ∗, wi ∈ Σ for every 1 ≤ i ≤ n, and π be the unique
path in A from q0 to a final state labeled w. Then:

π = π1π2 · · ·πn where

πi = τ(η(w1w2 · · ·wi−1), wi, η
c(wi+1wi+2 · · ·wn)) ,

and thus:
[Ψ1(h(w))]((η(1), ηc(1))) =

∑
t∈δ

|π|t × αt .

Thus Pkh(π) ∈ C iff [Ψ1(h(w))]((η(1), ηc(1))) > 0. Hence with the type S =
{(f,m) ∈ S | f((η(1), ηc(1))) ∈ Z+}, which is indeed a type in S as Z+ is a type
of (Z,Z+), we have that h−1(S) = L(A,C).

(L(Z+�M) ⊆ LUnCA) Let L ⊆ Σ∗ be recognized by (Z,Z+)k�M using
a type T and a morphism h : Σ∗ → ZM×M × M , and write for convenience
hi(w) = Ψi(h(w)), i = 1, 2. For any (s1, s2) ∈ M × M , Let A(s1, s2) be the
automaton (M ×M,Σ, δ, (s1, s2),M × {1}) where:

δ ={((m1,m2), a, (m′1,m
′
2)) |

m′1 = m1h2(a) and h2(a)m′2 = m2 ∈M and a ∈ Σ} .

Note that w ∈ L(A(s1, s2)) implies h2(w) = s2. We argue that A(s1, s2) is
unambiguous for any (s1, s2) ∈M ×M . We show that for any w ∈ Σ∗ and any
(s1, s2) ∈ M ×M , w is the label of at most one accepting path in A(s1, s2), by
induction on |w|. If w = 1, then every A(s1, s2) has at most one accepting path
labeled w. Now let w = a · v for v ∈ Σ∗. Suppose w ∈ L(A(s1, s2)). This implies

that h2(w) = s2. The states that can be reached from (s1, h2(w)) reading a are all
of the form (s1h2(a),m), m ∈ M . Now v should be accepted by the automaton
A where the initial state is set to one of these states; thus there is only one
state fitting, (s1h2(a), h2(v)). By induction hypothesis, there is only one path
in A(s1h2(a), h2(v)) recognizing v, thus there is only one path in A(s1, h2(w))
recognizing w. This shows that for any s1, s2, A(s1, s2) is unambiguous.

Now, with e = (1, 1), and as LUnCA is closed under union and intersection,
we may suppose that the type T is of the following form:

T =

k∏
i=1

{(f,m) | f(e, e) ∈ Ti} ,

where each Ti ∈ {∅,Z−0 ,Z+,Z}. Define T = T1×T2×· · ·×Tk, and the semilinear
set C consisting of elements:

(xt1 , xt2 , . . . , xt|δ|) s.t.
∑
t∈δ

xt × [h1(Label(t))](Ψ1(From(t)), Ψ2(To(t))) ∈ T .

We show that
⋃
m∈M L(A(1,m), C) is L. Let w = w1w2 · · ·wn ∈ Σ∗. There

is a unique accepting path in A(1, h2(w)) (and in no other A(1,m)) labeled
w, and it is going successively through the states (h2(1), h2(w)) = (1, h2(w)),
(h2(w1), h2(w2 · · ·wn)), . . . , (h2(w), 1) = (h2(w), h2(1)). For this path, the sum
computed by the semilinear set is:

n∑
i=1

h2(w1 · · ·wi−1) · h1(wi) · h2(wi+1 · · ·wn) ,

at the point (1, 1). This is precisely [h1(w)](1, 1), and checking whether it is in
T amounts to checking whether h(w) ∈ T , thus L =

⋃
m∈M L(A(1,m), C). ut

We derive an interesting property of the logical characterization and cir-
cuit complexity of UnCA. Let MSO[<] be the monadic second-order logic with
< as the unique numerical predicate, and FO+G[<] be the first-order logic
with group quantifiers and < as the unique numerical predicate. Both logics
express exactly the regular languages (these are respectively the classical re-
sults of Büchi [8] and Barrington, Immerman, Straubing [4]). Now define the

extended majority quantifier M̂aj, introduced in [5], as: w |= M̂aj x 〈ϕi〉i=1,...,m

iff
∑|w|
j=1 |{i | wx=j |= ϕi}| − |{i | wx=j 2 ϕi}| > 0. Then:

Corollary 1. A language is in LUnCA iff it can be expressed as a Boolean com-
bination of formulas of the form:

M̂aj x 〈ϕi〉i=1,...,m

where each ϕi is an MSO[<] formula or an FO+G[<] formula. Hence, LUnCA (
NC1.

3.3 Capturing DetAPA and UnAPA

Write Z+(k) for the type set of (Z,Z+)k, that is, the sets expressible as a Boolean
combination of expressions of the form xi > 0. Let ZMat+ be the set of typed
monoids {(MZ(k),Z+(k × k)) | k ≥ 1}, then:

Theorem 5. L(ZMat+) = LDetAPA.

Proof. (LDetAPA ⊆ L(ZMat+)) This is a direct consequence of Lemma 3.
(L(ZMat+) ⊆ LDetAPA) Given k ≥ 1, a type Z of (Z,Z+)k×k, and a

morphism h : Σ∗ → MZ(k), we build a two-state DetAPA of dimension k2 for
h−1(Z). First, let h′ : Σ∗ →MZ(k2) be such that h′(a) is the Kronecker product
of the identity matrix of dimension k and h(a). Define e = (e1, e2, . . . , ek) where
each ei is of dimension k. Then for any word w, h(w) ∈ Z iff h′(w)e ∈ Z. Now
let A = ({r, s}, Σ, δ, r, {s}), with δ = {r, s}×Σ×{s}. Then let U : δ∗ → Fk2 for

q ∈ {r, s}, a ∈ Σ, and x ∈ Zk2 be defined by:

[U((q, a, s))](x) =

{
h′(a)e if q = r,

h′(a)x otherwise.

This implies that for w ∈ Σ+ and π its unique accepting path in A, it holds that
[U(π)](0) = h′(w)e. Thus L(A,U,Z) = h−1(Z). ut

Theorem 6. L(ZMat+�M) = LUnAPA.

Proof. LUnAPA ⊆ L(ZMat+�M) is the same as LUnCA ⊆ L(Z+�M) in Theo-
rem 4, thanks to Lemma 3.
L(ZMat+�M) ⊆ LUnAPA is the same as L(Z+�M) ⊆ LUnCA in Theorem 4

for the automaton part, and the same as Theorem 5 for the constraint set and
affine function parts. ut

Now, applying the same arguments as in [9, Lemma 5], we have that DetAPA
can simulate unambiguity, and thus LUnAPA = LDetAPA. This translates nicely
in the algebraic framework thanks to Theorem 1:

Theorem 7. The smallest variety containing ZMat+�M is equal to that con-
taining ZMat+.

4 Formal power series

In this section, we show that the languages of DetAPA are those expressible as a
Boolean combination of positive supports of Z-valued rational series. This helps
us derive a separation over the unary languages between LCA and LDetAPA —
the separation was known ([10, Proposition 28]), but not over unary languages.

Definition 4 (e.g., [7]). Functions from Σ∗ into Z are called (Z-)series. For
such a series r, it is customary to write (r, w) for r(w). We write supp+(r) for
the positive support of r, i.e., {w | (r, w) > 0}.

A linear representation of dimension k ≥ 1 is a triple (s, h,g) such that
s ∈ Zk is a row vector, g ∈ Zk is a column vector, and h : Σ∗ → Zk×k is a
monoid morphism, where the operation of the matrix monoid is the usual matrix
multiplication. It defines the series r = ||(s, h,g)|| with (r, w) = sh(w)g.

A series is said to be rational if it is defined by a linear representation. We
write Zrat〈〈Σ∗〉〉 for the set of rational series.

For a class C of languages, write BC(C) for the Boolean closure of C. Argu-
ments similar to those used in proving Theorem 5 allow us to show:

Theorem 8. Over any alphabet Σ, LDetAPA = BC(supp+(Zrat〈〈Σ∗〉〉)).

Proof. (LDetAPA ⊆ BC(supp+(Zrat〈〈Σ∗〉〉))) First note that there is a rational
series r such that supp+(r) = {1}. Let L be in LDetAPA; we may thus suppose
that 1 /∈ L. By the same token as in the proof of Theorem 5, there is a morphism
h : Σ∗ → MZ(k), for some k, a vector v ∈ {0, 1}k, and a type Z of (Z,Z+)k

such that:

L = {w | h(w)v ∈ Z} .

Further, similar to Lemma 2, L(A,U,C1 � C2) = L(A,U,C1) � L(A,U,C2),
for � ∈ {∪,∩} and any DetAPA (A,U,C1 � C2). Moreover, L(A,U,C) =
L(A,U,C)∩L(A). We may thus suppose that Z is reduced to Zi−1×Z+×Zk−i
for some i.

Now let h′ be the morphism from Σ∗ to Zk×k (with the usual matrix multi-

plication as operation), where h′(a) = (h(a))
T

, with a ∈ Σ and MT the trans-

pose of M . Note that h(a1a2) = h(a2)h(a1) = ((h(a1))
T

(h(a2))
T

)
T

, which is

(h′(a1a2))
T

; more generally, h(w) = (h′(w))
T

. Thus we have that vTh′(w) =

(h(w)v)
T

. Hence with s = vT and g the column vector ei, sh′(w)g > 0 iff
h(w)v ∈ Z.

Now the triple (s, h′,g) is a linear representation of a rational series which
associates w to sh′(w)g, and this concludes the proof.

(BC(supp+(Zrat〈〈Σ∗〉〉)) ⊆ LDetAPA) As LDetAPA is closed under union, com-
plement, and intersection, we need only show that supp+(Zrat〈〈Σ∗〉〉) ⊆ LDetAPA.

Let (s, h,g) be a linear representation of dimension k of a rational series r

over the alphabet Σ. Define h′ : Σ∗ → MZ(k) by letting h′(a) = (h(a))
T

, for

a ∈ Σ. Then for w ∈ Σ∗, h(w) = (h′(w))
T

. Now the rest of the proof is similar
to that of Theorem 5: define A = ({r, t}, Σ, δ, r, {r, t}), with δ = {r, t}×Σ×{t}.
Then let U : δ∗ → Fk for q ∈ {r, t}, a ∈ Σ, and x ∈ Zk, be defined by:

[U((q, a, t))](x) =

{
h′(a)s if q = r,

h′(a)x otherwise.

This implies that for w ∈ Σ∗ and π its unique accepting path in A, it holds that
[U(π)](0) = sh(w). Thus letting C = {x | xg > 0}, with x a row vector and g a
column vector, we have that L(A,U,C) = supp+(r). ut

Remark 1. The class of positive supports of Z-rational series is the class of
Q-stochastic languages (see, e.g., [23]). As we are interested in showing that
LDetAPA is not closed under concatenation, it is worth noting that Q-stochastic
languages are not closed under concatenation. We mention three proofs of this
fact. Two proofs [15,23] show that Q-stochastic languages are not closed un-
der concatenation with a finite language; such a concatenation is expressible
as a finite union of Q-stochastic languages, and is thus not directly applica-
ble to our case. A third proof [25] shows that the Q-stochastic language L =
{ai#(a+#)∗#ai | i ∈ N} is such that L ·{a,#}∗ is not Q-stochastic. We conjec-
ture that L · {a,#}∗ is neither in LDetAPA, but the proof given in [25] does not
apply directly to our case. Finally, we note that the fact that unary Q-stochastic
languages are not closed under union [23] implies, as any regular language is
Q-stochastic, that there are nonregular unary languages in LDetAPA.

Let #NC1 be the class of functions computed by DLOGTIME-uniform arith-
metic circuits of polynomial size and logarithmic depth and PNC1 be the class
of languages expressible as {w | f(w) > 0} for f ∈ #NC1 (see [12]). Note that
this class is included in L. As iterated matrix multiplication can be done in
#NC1 and PNC1 is closed under the Boolean operations, it is readily seen from
Theorem 8 that:

Corollary 2. LDetAPA ⊆ PNC1.

Conclusion

Connections between variants of the Parikh automaton and complexity classes
were investigated. In particular, natural characterizations of the language classes
defined by deterministic and unambiguous constrained automata, in the theory
of typed monoids, were obtained. We hope that these characterizations will sug-
gest refinements that may help to better understand classes such as PNC1 and
NC1.

We note in conclusion that the unary languages in LDetAPA, and indeed the
bounded languages in LDetAPA, can be shown to belong to the DLOGTIME-
DCL-uniform variant of NC1. Recall that the latter is not known to equal
what is commonly referred to as DLOGTIME-uniform NC1 (see [26, p. 162]), or
ALOGTIME. Yet we were unable to show that the unary languages in LDetAPA

belong to the latter. Do they?

References

1. Allender, E., Arvind, V., Mahajan, M.: Arithmetic complexity, Kleene closure, and
formal power series. Theory Comput. Syst. 36(4), 303–328 (2003)

2. Barrington, D.A.M.: Bounded-width polynomial size branching programs recognize
exactly those languages in NC1. J. Computer and System Sciences 38, 150–164
(1989)

3. Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. J.
Association of Computing Machinery 35, 941–952 (1988)

4. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. Syst. Sci 41(3), 274–306 (1990)

5. Behle, C., Krebs, A., Mercer, M.: Linear circuits, two-variable logic and weakly
blocked monoids. In: Mathematical Foundations of Computer Science. LNCS, vol.
4708, pp. 147–158. Springer-Verlag (2007)

6. Behle, C., Krebs, A., Reifferscheid, S.: Typed monoids - an Eilenberg-like theorem
for non regular languages. In: Algebraic Informatics. LNCS, vol. 6742, pp. 97–114.
Springer (2011)

7. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications.
Encyclopedia of Mathematics and its Applications, Cambridge University Press
(2010)

8. Büchi, J.R.: Weak second order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

9. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. In: Proc. 8th
Internat. Conference on Words. EPTCS, vol. 63, pp. 93–102 (2011)

10. Cadilhac, M., Finkel, A., McKenzie, P.: Affine Parikh automata. RAIRO - Theo-
retical Informatics and Applications 46(04), 511–545 (2012)

11. Cadilhac, M., Finkel, A., McKenzie, P.: Unambiguous constrained automata. In:
Developments in Language Theory. LNCS, vol. 7410, pp. 239–250. Springer Berlin
/ Heidelberg (2012)

12. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 com-
putation. J. Computer and System Sciences 57, 200–212 (1998)

13. Eilenberg, S.: Automata, Languages, and Machines, Volume B. Pure and Applied
Mathematics, Academic Press (1976)

14. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)
15. Fliess, M.: Propriétés booléennes des langages stochastiques. Mathematical Sys-

tems Theory 7(4), 353–359 (1974)
16. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Com-

puting 6, 675–695 (1977)
17. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pa-

cific J. Mathematics 16(2), 285–296 (1966)
18. Karianto, W.: Parikh automata with pushdown stack. Diploma thesis, RWTH

Aachen (2004)
19. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: 30th

Int. Coll. Automata, Languages and Programming. pp. 681–696 (2003)
20. Krebs, A., Lange, K.J., Reifferscheid, S.: Characterizing TC0 in terms of infinite

groups. Theory of Computing Systems 40(4), 303–325 (2007)

21. Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes around NC1 and L.
Theory Comput. Syst. 46(3), 499–522 (2010)

22. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
23. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.

Springer, New York (1978)
24. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.

Birkhäuser, Boston (1994)
25. Turakainen, P.: Some closure properties of the family of stochastic languages. In-

formation and Control 18(3), 253–256 (1971)
26. Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in

Theoretical Computer Science, Springer Verlag (1999)

