
EXTREMELY UNIFORM BRANCHING
PROGRAMS

Michaël Cadilhac(A) Andreas Krebs(B)

Pierre McKenzie(C)

(A)WSI at Universität Tübingen michael@cadilhac.name

(B)WSI at Universität Tübingen mail@krebs-net.de

(C)DIRO at U. de Montréal and Chaire Digiteo ENS Cachan-École Polytechnique
mckenzie@iro.umontreal.ca

Abstract

We propose a new descriptive complexity notion of uniformity for branching programs solv-
ing problems defined on structured data. We observe that FO[=]-uniform (n-way) branching
programs are unable to solve the tree evaluation problem studied by Cook, McKenzie, Wehr,
Braverman and Santhanam [8] because such programs possess a variant of their thriftiness
property. Similarly, FO[=]-uniform (n-way) branching programs are unable to solve the P-
complete GEN problem because such programs possess the incremental property studied by Gál,
Koucký and McKenzie [10].

1 Introduction

A curious phenomenon arises in the quest for lower bounds on models such as boolean circuits:
beyond the Shannon e↵ect [17, p. 87], referring to the fact that most functions within the
customary range of interest are hard but no specific hard function can be identified, one faces
what we might call the compactness e↵ect : within the range of interest, desirable lower bounds
on a family (Cn)n>0 of boolean circuits seem no easier to prove when a uniformity condition
that somehow binds together the Cn’s is imposed on the family (although see [14, 4, 15, 12]).

Uniformity refers to restrictions imposed on an infinite family of combinatorial objects serving
as a computing device to curb the ability of such a device to capture undecidable languages.
Many di↵erent uniformity notions have been proposed since Borodin [6] and Cook [9] first
characterized Turing machine-based complexity classes using logspace-uniform boolean circuit
families (see Vollmer’s book [16] for an extensive treatment of circuit uniformity issues or the
introductory section of the conference paper [4] for a brief historical account).

(A)The first and second authors are supported by the Deutsche Forschungsgemeinschaft.
(C)The work of this paper was done during a stay of the third author at the Universität Tübingen and is

supported by NSERC of Canada and Digiteo.

74 Michaël Cadilhac, Andreas Krebs, Pierre McKenzie

Branching programs are another combinatorial object that can serve to capture computation.
In their nonuniform guise, polynomial size branching programs are well known to capture
(nonuniform) logarithmic space. A wealth of restricted branching program variants have been
studied (see [18]).

This paper deals with uniform branching programs. Uniform branching programs were used in
statements of Barrington’s theorem [1, 2]. More generally, a branching program can be viewed
as a labelled graph, so that every uniformity notion invented for boolean circuits can be adapted
for branching programs. But in this paper we adopt a di↵erent viewpoint.

Our main contribution is to propose a uniformity notion adapted to computational problems
that involve some sort of underlying structure — specifically, array-valued variables where the
set of variables itself obeys a structure. Rather than flatten the instances of such a problem
by encoding them as strings (as is done in Turing machine complexity), we wish to decouple
the “variable access” aspect of solving such a problem from the “computation” aspect inherent
to the data itself. Our novel idea is to impose fine-grained uniformity to the variable access
mechanism of the computing device.

Consider for example a computational problem such as checking if the rank of k matrices
M1,M2, . . . ,Mk of size n ⇥ n and with values in {1, 2, . . . , n} are the same. Informally, the
decoupling between data access and computation is done by allowing the program to access the
entries of Mm with tuples (i, j). Compared to the usual binary representation one has no need
to compute the position (n2 ·(m−1)+ i ·n+j) ·dlog ne and evaluate the following log n bits, but
can directly address the (i, j)-th entry of a matrix. While such operations as multiplication and
addition of matrix entries may seem well within small complexity classes, the resources needed
to decode the input may make the problem unwillingly harder. Technically, we implement the
separation by letting inputs be mappings from an index set to integer values. Furthermore,
these index sets are themselves broken up into two parts: an array indexing part and a structural
part. In the example above, the structural part is the set of symbols {M1,M2, . . . ,Mk}, hence
instances assign matrices to the variables. Having the index sets distinguish between variable
access and array indexes allows applying uniformity constraints to only one of the two, hence
enabling a trade-o↵ in uniformity.

Specifically, we investigate the impact of applying, in our setting, the tight uniformity notions,
successfully developed in the context of circuit complexity, to the branching program model.
This uniformity revolves around first order logic with very weak predicates, but constrains
only the array indexing part, leaving the structural part nonuniform. See Section 3 for precise
definitions. By considering problems that are in part very uniform we hope to better understand
the core complexity of a problem rather than the complexity that comes from the encoding of
the input.

We conclude with two consequences of imposing such uniformity to n-way branching programs:
FO[=]-uniform branching programs, even when constant symbols are allowed in the logic, can
neither solve the tree evaluation problem from [8] nor the P-complete GEN problem [7, 13].

EXTREMELY UNIFORM BRANCHING PROGRAMS 75

2 Preliminaries

For n > 0, we write [n] for the set {1, 2, . . . , n}. Vectors are written in bold, i.e., sss = (s1, s2, . . .).
We will rely on first-order logic (FO) to express uniformity constraints. The use of logic is similar
to [5], except that we will divide the universe in two parts: one composed of numerical values,
that behaves as in the usual case, and one composed of objects (or structural values), for which
any predicate will be made available (see Section 3 for formal definitions).

We will want the inputs of the problems to be encoded in a very natural way: even in a uniform
complexity class, we still want to ensure that natural accessing operations can be performed.
We thus pair problems under study with the natural structure of their inputs, in a general way.

Consider the simple problem where the input is a number i 2 [n] together with a linear array `
of n values in [n], and the goal is to check if the i-th entry of the array ` is equal to 1. While this
is solved by most programming languages using a array access such as `[i] == 1, we suddenly
need addition and multiplication to do this if we have a binary encoded input. For instance, in
such an encoding where i is given before `, we need to test if the bits at position:

0

@

dlogne
X

k=1

BIT(k) · 2(k−1)

1

A+ dlog ne, . . . ,

0

@

dlogne
X

k=1

BIT(k) · 2(k−1)

1

A+ 2 · dlog ne− 2

are equal to 0 and the bit at position:

0

@

dlogne
X

k=1

BIT(k) · 2(k−1)

1

A+ 2 · dlog ne− 1

is equal to 1. These computations are rather obscuring the real essence of the problem. This
illustrates why such a simple problem cannot be computed in FO[<,+]-uniform AC0.

Since we want to consider more difficult problems but even stricter uniformities we need a
di↵erent way to encode the input. Consider the problem above again, we want our branching
program to be able to access both i and the entries of ` directly. Let S = {int, lst} be a set of
two objects. Then an instance corresponding to (i, `) is an assignment from [n]⇥S to [n], such
that (j, lst) is mapped to the j-th element of `, and (j, int) to the value of i (disregarding j).

Our more general framework allows for assignments from elements of [n]c ⇥ Sn, where c = 2
encodes matrices, for instance. Note that we also allow Sn to depend on n, allowing to encode
growing collections of objects.

Definition 2.1 (Index sets, instances, problems). Given a constant c ≥ 0 and a family
of finite sets (Sn)n>0, the sets of the form In = [n]c ⇥ Sn are called index sets. We will refer
to [n]c as the numerical part of In, and to Sn as the structural part. An instance on In is
then a mapping from In to [n], for some n > 0. Finally, a problem is a set of instances, i.e.,
it is a subset of

S

n>0[n]
In. Throughout the paper, we use the notations c, Sn, and In with the

understanding that we are referring to the defining elements of the index sets of a problem.

76 Michaël Cadilhac, Andreas Krebs, Pierre McKenzie

Example 2.2. • The sets Sn of Definition 2.1 can be arbitrarily complex, and as such can
be seen as finite oracles. We present three possibilities for index sets to represent languages
✓ ⌃

⇤, where the index sets are independent of the language represented. (1) Letting c = 1
and Sn = {>} for any n > 0, an instance is a function from [n] to [n], i.e., Sn can be
disregarded. For n large enough, we can encode the elements of ⌃ with elements of [n],
hence we can see an instance A as a function from [n] to ⌃, which describes the word
a1a2 . . . an such that ai = A(i). (2) Letting c = 0 and Sn = ⌃

n for any n > 0, a problem
can be seen as a function from ⌃

+ to N mapping words w to a value in [|w|]; restricting
this value to {1, 2}, such functions can be seen as characteristic functions of languages
✓ ⌃

+. (3) With c = 0 and Sn containing the n-th word of ⌃+, under some ordering, a
problem can be seen as a language ✓ ⌃

+ by considering that the n-th word of ⌃+ is in
the language i↵ there is an instance on In in the problem, whichever value it takes.

• If c = 1 and for every n, Sn is of size n, then the index sets can be seen as so-called
structures with numbers [11, p. 186], which are used in descriptive complexity to allow
counting without imposing a linear order on Sn.

• Let T h
d be the complete d-ary tree of height h. Let V h

d be the set of vertices of T h
d . Fix

h, d > 1. The tree evaluation problem TEh
d is defined with c = d, Sn = V h

d . Given
an instance A : In ! [n], we define the value of A on u 2 V h

d , written uA, inductively
by: if u is a leaf, then uA = A((1, . . . , 1), u), otherwise, if u has children v1, . . . , vd, then
uA = A((vA1 , . . . , v

A
d), u). Finally, TEh

d consists of such instances that give the value 1 to
the root of T h

d .

• The problem GEN is defined with c = 2, Sn = {>}. An instance is hence a function
([n] ⇥ [n]) ! [n], for some n. Then such a function f is in GEN i↵ n belongs to the
closure of {1} under f , i.e., n belongs to the smallest set E containing 1 and such that
i, j 2 E) f(i, j) 2 E. When considering GEN in the following, we will no longer
specify Sn.

Definition 2.3 (Branching programs). A deterministic n-way branching program B recog-
nizing a problem P ✓ [n]In, for some n > 0, is a directed rooted multigraph whose nodes are
called states. Every state is labeled with an element from In, called the query of the state, and
some states are additionally labeled as accepting. Every edge is labeled with an element from [n],
called the value of the edge. Every state accessible from the initial state has no more than one
outedge with a given value. An instance A on In activates, for each index qqq 2 In, every edge
valued A(qqq) out of every state querying qqq. A computation on an instance A is a directed path
consisting of edges activated by A that begins with the unique start state (the root) and either:
(1) is infinite and contains no accepting state, (2) is finite, contains no accepting state, and
ends in a state querying qqq with no outedge labeled A(qqq), (3) is finite and contains an accepting
state. In the first two cases, A /2 P , and in the third, A 2 P . The size of B is its number of
states.

EXTREMELY UNIFORM BRANCHING PROGRAMS 77

3 Uniform Branching Programs

Definition 3.1 (L-uniformity for a logic L). Let (Bn)n>0 be a family of branching pro-
grams such that Bn takes instances on In as input. For a logic L, the family is said to be
L-uniform if:

• there is a constant ` > 0 such that for each n > 0, there is a labeling in (In)
` of the states

of Bn, i.e., an injective mapping from the states of Bn to (In)
`. We will often identify a

state with its label;

• there are two functions init and fin such that for all n > 0:

init(n) 2 (In)
` and init(n) is the initial state of Bn ,

fin(n) ✓ (In)
` and fin(n) are the accepting states of Bn ;

• there is a predicate 'Q of L such that for all n > 0:

In |= 'Q(qqq, iii) , state qqq 2 (In)
` of Bn queries iii 2 In ;

• there is a predicate 'C of L such that for all n > 0:

In |= 'C(qqq, qqq
000, j) , 9 an edge valued j 2 [n] between states qqq and qqq000 of Bn .

Remark 3.2. As with FO[<]-uniform circuits [5], we allow the labeling to be polynomial in
the size of In. Note however that the size of an uniform branching program family depends on
the Sn’s of the index sets: in the general case, Bn can have a size up to |In|

`, and |Sn| could
grow arbitrarily. In this paper, however, those sets |Sn| will always be of constant size, hence
in our uniform setting, branching program families will be of polynomial size w.r.t. n.

It remains to specify the logics which will fully determine the uniformity conditions. The
universe of our logics consist of index sets for which we disregard c. Hence we will have a
numerical set, typically of the form [n] for some n > 0, and a structural part, i.e., the finite
sets Sn. We will say that a variable ranging over the former part is a numerical variable,
and over the latter part, a structural variable. In our context of uniformity, we will allow any
computation on the structural part of the input while imposing restrictions on the processing
abilities of the numerical part:

Definition 3.3 (FO[pred] logic). Let pred be a set of numerical predicates, i.e., of predicates
P mapping each n > 0 to a subset of [n]k for some k ≥ 0, which is deemed true of a vector
xxx 2 [n]k over the universe [n] if xxx 2 P (n). The logic FO[pred] consists of formulas built using
the predicates from the set pred on the numerical part and any predicate on the structural
part, combined with the logical connectors ^,_,¬, and using two existential quantifiers, 9numx
where x ranges over the numerical part and 9structs where s ranges over the structural part. In
particular, we write cst for the set of numerical constants.

Convention. We will use the same name for a variable in the logic and a valuation for it, when
it does not add confusion.

78 Michaël Cadilhac, Andreas Krebs, Pierre McKenzie

Example 3.4. Consider Sn as a set of 2n − 1 elements, and let tree(·, ·) be a predicate on
Sn such that (Sn, tree) is a complete directed tree for each n > 0. Let moreover prime be a
(structural, 0-ary) predicate indicating whether 2n − 1 is prime. Then the formula:

'(i) ⌘ (9structs19
structs29

structs3)[tree(s1, s2) ^ tree(s2, s3)] ^ (i = 4 ! prime)

is an FO[=, cst]formula, as the only numerical predicates used are = and the constant 4, such
that In |= '(i) is true if n ≥ 3 (as s1, s2, s3 describe a path of length 2 in the complete tree)
and, in case i = 4, 2n − 1 is prime.

4 Intrinsic Thriftiness of FO[=]-Uniform detBPs

In this section, we present general properties of FO[=]-uniform detBP families, that closely
resemble the incremental and thriftiness properties of [10] and [8], respectively. The underlying
common idea is that whenever a query is made on a given index (i.e., an element of an index
set) in a computation, then the numerical values in the index have been obtained as the result
of a query earlier in the computation:

Definition 4.1. A branching program B taking inputs from In is said to be thrifty modulo
M for a set M ✓ [n] if for every state querying ((i1, . . . , ic), s) and all paths (consistent or
inconsistent) from the initial state to that state, it holds that each of i1, . . . , ic appears as the
value of an edge in the path (we also say that the value has been discovered earlier), or is in
M . We say that B is thrifty if it is thrifty modulo {1}.

Remark 4.2. In the context of [10] and [8], both incrementality and thriftiness were defined
relative to a specific problem. For the GEN problem, which is the focus of [10], our notion and
that of incrementality match. In the tree evaluation problem, the focus of [8], there is a slight
discrepancy: the restriction of [8] is that for any instance A, any query to A(vvv, u) is such that
vvv is the correct vector of values for the children of node u; our notion allows queries of a node
function on values that are not that of its children. It is however not hard to apply the main
results of [8] in our context, as the proof of the forthcoming Theorem 5.3 shows.

Lemma 4.3. Let '(xxx, yyy, sss) be an FO[=] formula where xxx, yyy are tuples of numerical variables
and sss consists of structural variables. For any large enough n > 0, if for some values for xxx, sss
there is a unique value for yyy such that In |= '(xxx, yyy, sss), then the value of each element of yyy is
one of those in xxx.

Proof. Using the notation of the lemma, suppose for a contradiction that there is an i such
that yi is not one of the xj’s.

Now let m 2 [n] be a value di↵erent from any xj’s or yj’s. Such a value exists if n is large
enough. Let yyy000 be equal to yyy except at positions j with the same value as yi, where it is set to
m.

It is readily seen that there is no winning strategy for Spoiler in the EF-game for FO[=] on yyy
and yyy000, hence In |= '(xxx, yyy000, sss) also, a contradiction. 2

EXTREMELY UNIFORM BRANCHING PROGRAMS 79

Corollary 4.4. If (Bn)n>0 is a FO[=]-uniform family of detBPs, then for n > 0 large enough:

• In |= 'Q(qqq, iii) implies that the numerical part of iii appears in qqq;

• In |= 'C(qqq, qqq
000, j) implies that each numerical component of qqq000 either appears in qqq or is j.

Proposition 4.5. Let (Bn)n>0 be an FO[=]-uniform family of deterministic branching pro-
grams. For n > 0 large enough, Bn is thrifty modulo the label of its initial state.

Proof. Let n > 0 be large enough for Corollary 4.4 to apply. For a state qqq of Bn, we define
dist(qqq) to be the length of the longest path in Bn from the initial state to qqq, or ? if none exists.
We show by induction on dist(qqq) that for any path from the initial state to qqq in Bn, if L is the
set of labels on the edges of the path, it holds that (8i)[qi 2 [n] ! qi 2 L [init(n)].

Base case. If dist(qqq) = 0, then qqq is the initial state, labeled init(n).

Induction step. Suppose dist(qqq) = m > 0, and consider a path from the initial state of Bn to
qqq, whose second to last state is qqq000. Note that dist(qqq000) is at most m − 1, hence the induction
hypothesis applies to it. In particular, the components of qqq000 are values of the edges of the path
under consideration or in init(n). Now we have that In |= 'C(qqq

000, qqq, j) where j is the value of
the last edge of the path, and by Corollary 4.4, this implies that each numerical component of
qqq appears in qqq000 or is j. Hence for each i, qi appears on a value of an edge of the path, or in
init(n). This concludes the induction step.

We conclude that Bn is thrifty modulo init(n). For any state qqq accessible from the initial state,
the query at qqq is done, by Corollary 4.4, at indexes appearing in qqq. By the previous fact, these
indexes are those appearing on every path from the initial state to qqq, hence they have been
discovered earlier. 2

Moreover, it is easily seen that constants in the uniformity language do not extend the expres-
siveness of detBPs:

Proposition 4.6. For any FO[=, cst]-uniform family of detBPs, there exists an FO[=]-uniform
family of detBPs for the same problem.

Proof. Let (Bn)n>0 be an FO[=, cst]-uniform family of detBPs. Let C be the (ordered) set of
constants appearing in the defining formulas 'Q and 'C of (Bn)n>0. Extend the state labels of
the Bn’s by |C| additional copies of In, of which we only use the very first component. Rewrite
the formulas 'Q and 'C into Q and C, respectively, in such a way that instead of relying on
the constants of C, they use the extra components. Modify the init function of the family into
a function init0 mapping n 2 N to a tuple of (In)

`+|C| consisting of the concatenation of the
vector init(n) and the values for C with universe [n]. Do likewise for the function fin, ending
up with the function fin0. The detBP family described by init0, fin0, Q, C is an FO[=]-uniform
family of detBPs for the problem decided by (Bn)n>0, concluding the proof. 2

The following technical proposition gives sufficient conditions for a detBP family which is
thrifty modulo to be made thrifty. This applies to problems such as GEN and TEh

d for which a
constant number of numerical values can be skipped, i.e., for which a constant number of entries

80 Michaël Cadilhac, Andreas Krebs, Pierre McKenzie

in the input can be supposed to be known beforehand, without impacting the complexity of
the problem:

Proposition 4.7. Let (Bn)n>0 be a detBP family for a problem P where the index sets In =
[n]c ⇥ Sn are such that the Sn’s are constant. Suppose that for all n > 0, Bn is thrifty modulo
some set Mn [{1}, where 1 /2 Mn and the size of Mn is a constant m independent of n. Let
upn : [n − m] ! [n] be a family of injective mappings, which we naturally extend to tuples,
i.e., upn(i1, i2, . . . , ic) = (upn(i1), upn(i2), . . . , upn(ic)). For an instance A on In−m, define the
following instance on In:

upn(A) : (iii, s) 7!

8

>

<

>

:

1 if iii contains elements of Mn ,

1 if up−1
n (iii) is undefined,

upn(A(up
−1
n (iii), s)) otherwise.

If the upn family is such that A 2 P , up(A) 2 P , then there is a family (B0
n)n>0 of thrifty

detBPs for P where B0
n is of the size of Bn+m.

Proof. Fix an n > m. As the family solves P , in particular Bn decides up(A) 2 P for every
instance A on In−m. In all the computations of Bn on instances of the form up(A), any query
pertaining to an element in Mn will be valued 1. Hence define B0

n−m as the branching program
Bn where:

• For any state querying an index (iii, s) where (1) iii contains an element ofMn or (2) up−1
n (iii)

is undefined, the query is replaced by ((1, . . . , 1), s), and all outedges of the state are
rerouted to the destination of the one valued 1;

• All the other queries to indexes (iii, s) are changed to queries to indexes (up−1
n (iii), s);

• All edge values j are changed to up−1(j) if it is defined, or removed if it is not;

• The initial and final states are kept the same.

Clearly, B0
n−m solves P for all instances A on In−m. Moreover, Bn being thrifty modulo Mn,

B0
n−m is thrifty. 2

5 Consequences of FO[=]-Uniformity

Recall the definition of GEN from Example 2.2. When the n⇥n table describing GEN instances
is restricted to have a single nontrivial row (i.e., a row containing non-one entries), GEN is
known to be complete for Logspace [3]. Let GEN-1 be the problem specified by c = 1, Sn = {>}
and containing instances A : [n] ! [n] for which there is a k such that Ak(1) = n. Then:

Theorem 5.1. GEN-1 is in FO[=]-uniform detBP.

Proof. In GEN-1, it suffices to remember the latest value produced so far, hence the FO[=]-
uniform detBP family specified by:

• ` = 1, init(k) = 1, fin(k) = {k};

EXTREMELY UNIFORM BRANCHING PROGRAMS 81

• 'Q(q, i) ⌘ (q = i);

• 'C(q, q
0, i) ⌘ (q0 = i);

solves GEN-1. 2

Theorem 5.2. There is no FO[=, cst]-uniform family of detBPs for GEN.

Proof. For a contradiction, suppose that there exists an FO[=, cst]-uniform family of detBPs
for GEN. By Proposition 4.6, there is such a family (Bn)n>0 which is FO[=]-uniform.

Let n > 0 be large enough, so that, by Proposition 4.5, Bn is thrifty modulo the set Mn [{1}
of values in the label init(n) of its initial state — we suppose that 1 /2Mn. Note that |Mn| c,
and we may, for n large enough, add to Mn values di↵erent from 1 so that |Mn| = c. Order Mn

as m1 < m2 < . . . < mc. For i < n − c, let upn(i) be i + max{j | mj i}, where max ; = 0.
Additionally, we set upn(n − c) = n. For an instance A on In−c, that is, an array of size
(n− c)⇥ (n− c), and with the notation of Proposition 4.7, it holds that A is in GEN i↵ up(A)
is in GEN, as there is no element of Mn \ {n} in up(A).

By Proposition 4.7, there is a thrifty polysize family of detBPs for GEN. But this contradicts the
fact that incremental (i.e., thrifty in our terminology) branching programs require exponential
size to solve GEN [10, Cor. 4.12]. 2

Recall the definition of TEh
2 from Example 2.2.

Theorem 5.3. For h big enough, there is no FO[=, cst]-uniform family of detBPs for TEh
2 .

Proof. For a contradiction, suppose that there exists an FO[=, cst]-uniform family of detBPs
for TEh

2 , for some large h. By Proposition 4.6, there is such a family (Bn)n>0 which is FO[=]-
uniform. We now proceed as in Theorem 5.2 in order to apply Proposition 4.7. By Propo-
sition 4.5, for n big enough, Bn is thrifty modulo the set Mn [{1} of values in the label
init(n) of its initial state — we again suppose that 1 /2 Mn. Note that |Mn| c, and we
may, for n large enough, add values di↵erent than 1 into Mn so that |Mn| = c. Order Mn as
m1 < m2 < . . . < mc. For i n− c, let upn(i) be i+max{j | mj i}, where max ; = 0. With
the notation of Proposition 4.7, it holds that A is in TEh

2 i↵ up(A) is in TEh
2 , as there is no

element of Mn in up(A).

Our goal is to rely on a lower bound of [8]; to do so, we must convert a thrifty detBP family to
a family that has the stronger thriftiness property of [8]: a branching program may only query
A(vvv, u) if vvv is the correct vector of values for the children of node u.

Let N = 2h − 1, and fix an n > 0. We adapt the proof of Theorem 5 of [8] and show that there
exists a thrifty (in the sense of [8]) detBP family of size O(((Nn)c⇥2h)`) for TEh

2 , contradicting
the lower bound of nh of [8, Theorem 33], for n, h big enough.

Let A be an instance from In to [n]. We design from A an instance A0 from I(Nn+2) to [Nn+2]
that encodes the tree structure T h

2 into the index sets. To do so, let us view [Nn + 2] as the
set {1} [{hi, ui | i 2 [n]^ u 2 V h

2 } [{?}; recall that V h
2 is the set of vertices of the full binary

82 Michaël Cadilhac, Andreas Krebs, Pierre McKenzie

tree T h
2 . Now for u 2 V h

2 and i1, i2 2 [Nn+ 2] interpreted as previously, define:

A0((i1, i2), u) =

8

>

<

>

:

hA((j1, j2), u), ui if i1 = hj1, v1i ^ i2 = hj2, v2i ^ v1, v2 are the children of u

hA((1, 1), u), ui if i1 = i2 = 1 ^ u is a leaf

? otherwise.

Now BNn+2 solves such instances A0, and thriftiness indicates that the function is only queried
on values discovered earlier. Hence, each a query is either (1) about a leaf at position (1, 1),
or (2) about an inner function on the value of A on the two children of a node, or (3) about
unrelated indexes, in which case the answer is 1. We now construct a detBP B0

n from BNn+2.
First, we hardwire the queries of type 3 to the 1 output, i.e., we change the query to a dummy
leaf query at position (1, 1), and branch on all output values to the state in BNn+2 corresponding
to the output 1. Second, if a state queries a leaf at position (1, 1), then it does the same in
B0

n. Thirdly, a query to ((hj1, v1i, hj2, v2i), u) is replaced by a query to (j1, j2, u). Finally, edge
values of the form hj, ui are replaced by j.

The family (B0
n)n>0 thus obtained is a nonuniform thrifty detBP family in the sense of [8] for

TEh
2(k/N) of size smaller than hk. 2

6 Discussion

We have proposed a new notion of uniformity that allows imposing fine-grained restrictions on
the data access components of a computing device such as a family of branching programs.

This uniformity can be relaxed by the addition of more predicates to the logic. The framework
thus provides a way to gradually relax uniformity. For example, we have shown here that
FO[=]-uniform branching programs solving the tree evaluation problem are “thrifty” in the
sense of [8]. What properties would less uniform branching programs for the tree evaluation
possess? Would these pose more incisive lower bound challenges than thriftiness?

More generally, we have observed that FO[=]-uniform deterministic branching programs are
weaker than the thrifty or incremental detBPs from the literature. Those rather immediate
consequences of our definitions were merely intended as proofs of concept. But it seems rea-
sonable to expect further applications of this framework. For example, would applying it to
circuit complexity raise a need for manageable new circuit complexity arguments?

References

[1] D. A. M. BARRINGTON, Bounded-width polynomial size branching programs recognize exactly
those languages in NC1. Journal of Computer and System Sciences 38 (1989), 150–164.

[2] D. A. M. BARRINGTON, N. IMMERMAN, H. STRAUBING, On uniformity within NC1.
Journal of Computer and System Sciences 41 (1990) 3, 274–306.

EXTREMELY UNIFORM BRANCHING PROGRAMS 83

[3] D. A. M. BARRINGTON, P. MCKENZIE, Oracle branching programs and Logspace versus P.
Inf. Comput. 95 (1991) 1, 96–115.

[4] C. BEHLE, A. KREBS, K.-J. LANGE, P. MCKENZIE, The Lower Reaches of Circuit Unifor-
mity. In: MFCS . 2012, 590–602.

[5] C. BEHLE, K.-J. LANGE, FO[<]-Uniformity. In: Proc. 21st Annual IEEE Conference on Com-
putational Complexity (CCC’06). 2006, 183 – 189.

[6] A. BORODIN, On relating time and space to size and depth. SIAM Journal on Computing 6
(1977), 733–744.

[7] S. COOK, An Observation on Time-Storage Trade O↵. J. Comput. Syst. Sci. 9 (1974) 3, 308–316.

[8] S. COOK, P. MCKENZIE, D. WEHR, M. BRAVERMAN, R. SANTHANAM, Pebbles and
Branching Programs for Tree Evaluation. ACM TOCT 3 (2012) 2, 4.

[9] S. A. COOK, Deterministic CFL’s are accepted simultaneously in polynomial time and log squared
space. In: Proceedings 11th Theory of Computing . ACM Press, 1979, 338–345.

[10] A. GÁL, M. KOUCKÝ, P. MCKENZIE, Incremental Branching Programs. Theory Comput.
Syst. 43 (2008) 2, 159–184.

[11] N. IMMERMAN, Descriptive Complexity . Springer, 1999.

[12] H. JAHANJOU, E. MILES, E. VIOLA, Succinct and explicit circuits for sorting and connectivity.
Electronic Colloquium on Computational Complexity (ECCC) 21 (2014), 37.

[13] N. D. JONES, W. T. LAASER, Complete problems for deterministic polynomial time. Theoretical
Computer Science 3 (1976), 105–117.

[14] K. LUOSTO, Equicardinality on Linear Orders. In: 19th IEEE Symp. on Logic in Computer
Science. 2004, 458–465.

[15] R. SANTHANAM, R. WILLIAMS, On Medium-Uniformity and Circuit Lower Bounds. In: IEEE
Conference on Computational Complexity . 2013, 15–23.

[16] H. VOLLMER, Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical
Computer Science, Springer Verlag, 1999.

[17] I. WEGENER, The Complexity of Boolean Functions . Wiley-Teubner series in computer science,
B. G. Teubner & John Wiley, Stuttgart, 1987.

[18] I. WEGENER, Branching Programs and Binary Decision Diagrams . SIAM Monographs on Dis-
crete Mathematics and Applications, SIAM, Philadelphia, 2000.

