
On the Complexity of Free Monoid Morphisms

Klaus-Jörn Lange and Pierre McKenzie�

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
{lange,mckenzie}@informatik.uni-tuebingen.de

Abstract. We locate the complexities of evaluating, of inverting, and
of testing membership in the image of, morphisms h : Σ∗ → ∆∗. By
and large, we show these problems complete for classes within NL. Then
we develop new properties of finite codes and of finite sets of words,
which yield image membership subproblems that are closely tied to the
unambiguous space classes found between L and NL.

1 Introduction

Free monoid morphisms h : Σ∗ → ∆∗, for finite alphabets Σ and ∆, are an
important concept in the theory of formal languages (e.g. [6,11]), and they are
relevant to complexity theory. Indeed, it is well known (e.g. [7]) that NP =
Closure(≤AC0

m , HOMn.e.) ⊂ Closure(≤AC0

m , HOM) = R.E., where ≤AC0

m denotes
many-one AC0-reducibility, HOM (resp. HOMn.e.) is the set of morphisms
(resp. nonerasing morphisms), and Closure denotes the smallest class of lan-
guages containing a finite nontrivial language and closed under the relations
specified. Morphisms and their inverses also play a role in studying regular lan-
guages and “small” complexity classes: regular language varieties are closed un-
der inverse morphisms [6], and the replacement of morphisms by “polynomial
length M -programs”, in the definition of recognition by a finite monoid M , al-
lows automata to capture many subclasses of NC1 [3,5,13].

Here we consider the complexity of evaluating inverse morphisms and mor-
phisms h : Σ∗ → ∆∗. Specifically, we consider the simple problem eval of
computing the image of a word v under h, the problem range of determining
whether a word w ∈ h(Σ∗), and the problem inv of computing an element
of h−1(w) given w ∈ h(Σ∗). We examine the fixed setting, in which the mor-
phism is input-independent, and the variable setting, in which the morphism is
defined as part of the input.

The general framework of our results is summarized in the following fig-
ure. In the fixed case, the eval problem characterizes the relation between the
classes NC0, AC0 and TC0, and the problems range and inv are closely re-
lated to the class NC1. Membership of inv in NC1 is then to be contrasted with
H̊astad’s result that there exists a fixed NC0-computable function whose associ-
ated inversion problem is P-complete [10]. We also observe that
Closure(≤AC0

T , HOM−1) = TC0, where HOM−1 denotes inverse morphisms,
� On sabbatical leave from the Université de Montréal until August 1998.

K.-Y. Chwa and O. H. Ibarra (Eds.): ISAAC’98, LNCS 1533, pp. 247–255, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

248 Klaus-Jörn Lange and Pierre McKenzie

yielding yet another characterization of this important subclass of NC1. In the
variable case, the problem eval remains in TC0 while the range and inv prob-
lems capture complexity classes between L and NL.

Problem Fixed setting Variable setting

evaluation
isometric: NC0

nonisom.: TC0-complete
isometric: AC0

nonisom.: TC0-complete

range
any h: NC1

chosen h: NC1-complete [1]
h(Σ) prefix code: L-complete
unrestricted h: NL-complete

inversion NC1 (Functional-L)NL

Here we do not distinguish between a circuit-based language class and its
functional counterpart. A morphism h : Σ∗ → ∆∗ is isometric iff h applied to

each a ∈ Σ yields a word of the same length.

An important part of our results, motivated by recent interest in classes interme-
diate between L and NL [2,12,14], is the investigation of the problem range in
the variable case. Restricting the underlying morphism affects the complexity
of the range problem, e.g. the range problem for prefix codes is in L and is
complete for this class. Now, one might expect that imposing the code property
on h(Σ) should render the range problem complete for an unambiguous logspace
class. However the resulting problem remains NL-complete. We therefore de-
velop properties of codes and of sets of words, in particular the stratification
property (see Section 4.2), which yield range subproblems of complexity iden-
tical to the complexity of the graph accessibility problems introduced to study
unambiguous logspace classes (see Section 2). In particular, we show that the
problem range in which h(Σ) is a stratified code is many-one equivalent to the
GAP problem Lstu capturing StUSPACE(logn), and that a variant of range in
which h(Σ) is a stratified left partial code is RUSPACE(logn)-complete. This is
particularly interesting since RUSPACE(logn) was only recently found to have
a complete problem [12].

Due to space restrictions many of our constructions cannot be given in detail.
In particular, the proofs of corollary 3 and theorems 4, 7, 8, 9, and 10 have to
be postponed to a full version of this paper.

2 Preliminaries

2.1 Complexity Theory

We assume familiarity with basic complexity theory. In particular, recall NC0 ⊂
AC0 ⊂ TC0 ⊆ NC1 ⊆ L ⊆ StUSPACE(logn) ⊆ RUSPACE(logn) ⊆ UL ⊆
NL ⊆ P ⊆ NP, where UL is the set of languages accepted by logspace Turing
machines which are nondeterministic with at most one accepting computation,
RUSPACE(logn) is defined like UL with the stronger condition that, on any
input, at most one path should exist from the initial configuration to any ac-
cessible configuration y, and StUSPACE(logn) is defined like UL with yet the

On the Complexity of Free Monoid Morphisms 249

stronger condition that, between any pair of configurations (x, y), at most one
path should exist from x to y [12]. Furthermore, Functional-L, also denoted FL,
is the functional counterpart of L, i.e. the set of functions computable by de-
terministic Turing machines and FLNL is the set of functions computable by a
deterministic Turing machine M having access to an NL-oracle.

In the usual way, DLOGTIME uniformity of a circuit family refers to the
ability for a Turing machine equipped with an index tape allowing direct access
to its input to recognize in time O(log n) the extended connectivity language of
a circuit. For precise details on circuit descriptions, see [4].

Just as GAP is NL-complete and outdegree-one GAP is L-complete [9], the
obvious GAP problems Lstu, Lru, and Lu, which are respec-
tively StUSPACE(logn)-hard, RUSPACE(logn)-hard, and UL-hard, were intro-
duced for topologically sorted graphs
in [2,12]. Lru is RUSPACE(logn)-complete [12] while Lstu is not known to belong
to StUSPACE(logn). Using the closure under complement of NL Lu is already
NL-complete.

We will make use of the reducibilities ≤AC0

m and ≤AC0

T , which refer to many-
one and Turing AC0 reducibilities respectively.

2.2 Problem Definitions

Fix a morphism h : Σ∗ → ∆∗ for finite alphabets Σ and ∆, with Σ assumed
ordered. In the fixed setting, the three problems of interest in this note are:

eval(h) Given v ∈ Σ∗, compute h(v). The decision problem has b ∈ Σ and
j ∈ N as further inputs, and asks whether b is the jth symbol in h(v).

range(h) Given w ∈ ∆∗, determine whether w ∈ h(Σ∗).
inv(h) Given w ∈ ∆∗, express w as h(ai1)h(ai2) · · ·h(aik

)w′ such that, first,
|w′| is minimal, and second, v := ai1ai2 · · · aik

is lexicographically minimal
with respect to the ordering of Σ. The decision problem is obtained by adding
j ∈ N as an input parameter, and asking for the jth bit in the representation
of w.

In the variable setting, the three problems of interest are eval, range, and
inv, defined as above, except that the alphabets Σ and ∆, and the morphism h,
now form part of the input.

Fix a finite alphabet Γ . Let v = a1a2 · · ·an, ai ∈ Γ, n ≥ 0. The length of v is
written |v|, and #a(v) represents the number of occurrences of a ∈ Γ in v. For
0 ≤ i ≤ j ≤ n, we define ivj as ai+1 · · ·aj . In particular, i−1vi is ai if i ≥ 1.

We encode our problems, in both the fixed and the variable settings, as
binary strings. In the fixed setting, a word v over an alphabet Γ is encoded
as a sequence of equal length “bytes”, each representing a letter in Γ . By the
predicate Qa(v, i), a ∈ Γ , v ∈ Γ ∗, we mean that i−1vi is a (with Qa(v, i) false
when i > |v|). In the variable setting, we write Qa(v, i) as Q(a, v, i) in view of the
input-dependent alphabet Σ. Any encoding which allows computing Q(a, v, i)
in AC0 suffices.

250 Klaus-Jörn Lange and Pierre McKenzie

To encode a morphism h : Σ∗ → ∆∗ (only required in the variable setting),
it suffices that the predicate associated with h, denoted H(b, a, j), where b ∈ ∆,
a ∈ Σ, and j ≥ 0, meaning that j−1h(a)j is b, be AC0-computable. For
h : Σ∗ → ∆∗, we define max(h) as max{|h(a)| : a ∈ Σ}. The predicate H(b, a, j)
extends to H(b, v, j) for v ∈ Σ∗ in the obvious way, and computing this extension
is the object of the eval problem. We define H(b, v, j) to be false if j > |h(v)|.

3 Fixed Case

Throughout this section we fix h : Σ∗ → ∆∗. We write the associated predicate
H(b, v, j), b ∈ ∆, v ∈ Σ∗, j ∈ N as Hb(v, j), in view of the fixed alphabet Σ.

3.1 Evaluation

The complexity of evaluating h is low, but it depends in an interesting way on
whether h is isometric, i.e. whether the length of any h(w) only depends on |w|.

Proposition 1. eval(h) ∈ Functional-NC0 if h is isometric.

Proof. Let h be isometric and let c = |h(a)| (= max(h)) for any a ∈ Σ. Then,
for v ∈ Σ∗, b ∈ ∆, and j ∈ N , we have Hb(v, j) ⇔ (∃a ∈ Σ)[Qa(v, j/c�) ∧
Hb(a, j mod c)]. Since Σ is fixed, the existential quantification over a can be done
in NC0. Hence, for each j, 1 ≤ j ≤ c·|v|, there is an NC0 subcircuit Cj computing
the jth symbol in h(v). The circuit for eval(h) is a parallel arrangement of
these Cj , 1 ≤ j ≤ c · |v|. Uniformity will be argued in a full version of this paper.

It follows that, when h is isometric, the decision problem eval(h) ∈ AC0.
Interestingly, the converse also holds: if h is not isometric, then eval(h) /∈
Functional-AC0 and the decision problem eval(h) /∈ AC0, as follows from:

Theorem 1. If h is non-isometric, then the decision problem eval(h) is TC0-
hard under ≤AC0

T .

Proof. Since h is not isometric, there exist a, b ∈ Σ, s, t ∈ N , such that |h(a)| = s
and |h(b)| = s + t with t > 0. We claim that MAJORITY, i.e. the language of
all words v over the alphabet {a, b} having |v|/2 ≤ #b(v), ≤AC0

T -reduces to com-
puting the length of h(v). This implies that the extended predicate Hb(v, j),
v ∈ Σ∗, is TC0-hard, because |h(v)| is trivially expressed as the largest j,
1 ≤ j ≤ |v| · max(h), such that

∨
b∈Σ Hb(v, j). And computing the extended

predicate Hb(v, j) is precisely the decision problem eval(h).
To prove the claim that MAJORITY reduces to computing |h(v)|, note that

|v|/2 ≤ #b(v) iff s · |v|+ t · |v|/2 ≤ s · |v|+ t ·#b(v). Now the left hand side of the
latter equality can be computed in AC0 because s and t are constants. As to the
right hand side, it is precisely |h(v)| = s ·#a(v)+(s+t) ·#b(v) = s · |v|+t ·#b(v).
Hence one can test |v|/2 ≤ #b(v) in AC0, once an oracle gate provides the value
of |h(v)|. Hence MAJORITY ≤AC0

T -reduces to computing |h(v)|.

On the Complexity of Free Monoid Morphisms 251

Corollary 1. The decision problem eval(h) is in AC0 iff h is isometric.

On the other hand, it can be shown that even a variable morphism can always
be evaluated in TC0, see subsection 4.1. Hence, the reduction from MAJORITY
to eval(h) exhibited in Theorem 1 can in fact be reversed:

Theorem 2. For each morphism h, the decision problem eval(h) ∈ TC0.

Corollary 2. If h is a non-isometric morphism, then the decision problem
eval(h) is TC0-complete under ≤AC0

T .

Corollary 3. TC0 = Closure(≤AC0

T , HOM−1).

3.2 Range Membership

We now turn to the problem of testing whether a word w ∈ ∆∗ belongs to h(Σ∗).
Since Σ∗ is regular and the regular languages are closed under morphisms, h(Σ∗)
is regular. Hence range(h) ∈ NC1. On the other hand, Schützenberger in 1965
constructed the following family of finite biprefix codes over the binary alpha-
bet {a, b}: Cn := {an, an−1ba, an−2b, ban−1} ∪ {aiban−i−1 | 1 ≤ i ≤ n − 3}.
Schützenberger [16] proved that, for each n, the symmetric group Sn divides
(i.e. is an epimorphic image of a submonoid of) the syntactic monoid of the
Kleene closure C∗

n of Cn. Using Theorem IX.1.5 of [17] we get the following
result. Again, details are left to to a full version of this paper.

Theorem 3. For every morphism h, range(h) ∈ NC1. Furthermore, there ex-
ists a morphism h such that range(h) is NC1-complete under ≤AC0

m .

3.3 Inversion

Recall the definition of problem inv(h). By using inv(h) to determine whether
|w′| > 0, the decision problem range(h) reduces to the decision problem inv(h),
under ≤AC0

m if an obvious encoding is chosen. Hence there is an h such that the
decision problem inv(h) is NC1-hard (by Theorem 3). Our goal in this section is
to show that inv(h) is in Functional-NC1, which holds, clearly, iff the decision
problem inv(h) is in NC1.

Suppose that a word w ∈ h(Σ∗). Then if h(Σ) were a code, i.e. if it had
the property that any word in h(Σ∗) is uniquely expressible as a sequence of
elements from h(Σ), then computing h−1(w) would simply require computing
all the positions i, 1 ≤ i ≤ |w|, at which w splits into w = αβ with α, β ∈ h(Σ∗).
This set of positions would uniquely break w up into words from h(Σ). Since
these positions can be computed in NC1 because h(Σ∗) is a regular language,
this strategy would solve such instances of inv(h) in NC1. Interestingly, we can
combine this strategy with a greedy approach and solve the general case in
which h(Σ) is not a code. For lack of space we have omitted the proof of the
next theorem.

Theorem 4. For every morphism h, inv(h) is in Functional-NC1.

252 Klaus-Jörn Lange and Pierre McKenzie

4 Variable Case

4.1 Evaluation

The fixed case construction for eval(h) carries over to the variable case eval.
We must compute the predicateH(b, v, j), i.e. determine whether the jth symbol
in h(v) is b. In the following let π(v) be the Parikh vector of a word v and Mh

the growth matrix of the morphism h, i.e. (Mh)ik is the number of bk symbols
in h(ai). Then, H(b, v, j) holds iff there exists i ∈ N and a ∈ Σ such that
π(0vi−1)Mh1 < j ≤ π(0vi)Mh1 and Q(a, v, i) and h(a)j−(π(0vi−1)Mh1) = b.
Now the computation of Mh out of h and the computations of π(0vi−1)Mh1
and π(0vi)Mh1 out of v can be done in TC0. Indeed, the integers involved
in these computations are small, i.e. their absolute values are polynomial in
the input size, and arithmetic with such integers can even be carried out in
AC0 [4, Lemma 10.5]. But the computation of the Parikh vectors needs counting
and is TC0-hard. Hence computingH(b, v, j) is TC0-hard and eval ∈ Functional-
TC0, which we record as:

Theorem 5. The decision problem eval is TC0–complete w.r.t. ≤AC0

T .

We note that eval restricted to isometric morphisms is in AC0.

4.2 Range Membership

Our problem range is precisely the Concatenation Knapsack Problem considered
by Jenner [8], who showed that:

Theorem 6. (Jenner) range is NL–complete.

Recall that a nonempty set C ⊂ ∆∗ is a code if C freely generates C∗, and
that C is a prefix code if C has the prefix property, i.e. if no word in C has a
proper prefix in C. Define prefixcoderange to be the range problem restricted
to input morphisms h : Σ∗ → ∆∗ such that h(Σ) is a prefix code. The easy proof
of the following will be given in a full version of this paper.

Theorem 7. prefixcoderange is L–complete.

In view of Theorems 6 and 7, it is natural to ask for properties of h(Σ)
allowing the range problem to capture concepts between L and NL like symme-
try or unambiguity. For instance, one might reasonably expect codes to capture
unambiguity, and thus the obvious problem coderange to be complete for one
of the unambiguous space classes between L and NL. But the mere problem of
testing for the code property is NL-hard as shown by Rytter [15]. In the follow-
ing subsection, we introduce a more elaborate approach which is able to capture
unambiguity.

On the Complexity of Free Monoid Morphisms 253

4.2.1 Stratified Sets of Words and Morphisms

Definition 1. a) Let C ⊆ ∆∗ be arbitrary. Define a relation ρC ⊆ ∆ × ∆ as
a ρC b iff some word in C contains ab as a subword.

b) C is said to be stratified if ρC forms a unique maximal acyclic
chain a1 ρC a2 ρC · · · ρC an; in that case, the word σ(C) := a1a2 · · · an ∈ ∆∗

is called the stratification of C. (Example: The set {a, b, ab, bc} ⊂ {a, b, c}∗ is
stratified, while {a, b}, {ab, ba} and {ab, ac} are not.)

Let C ⊂ ∆∗ be stratified, where we assume from now on that such a stratified
set makes use of all the letters in ∆. Clearly, any word x ∈ C is a subword
of σ(C). Then, any word w ∈ ∆∗ is uniquely expressible as w = α1α2 . . . αk,
where each αi is a maximal common subword of w and σ(C).

Proposition 2. Let C ⊂ ∆∗ be a stratified set.
a) For any w ∈ ∆∗, w ∈ C∗ iff its canonical decomposition w = α1α2 . . . αk

into maximal subwords common with σ(C) satisfies αi ∈ C∗ for each i.
b) C is a code iff each subword of its stratification σ(C) is expressible in at

most one way as a concatenation of words from C.

Testing whether a finite set C ⊂ ∆∗ is stratified is L-complete. On the
other hand, although stratification may seem like an overwhelming restriction,
stratifiedrange, i.e. the range problem for stratified h(Σ), is NL-hard:

Theorem 8. stratifiedrange is NL-complete.

Proof. To see that stratifiedrange is in NL, we first test deterministically in
log space whether C is stratified. Then we use the fact that range ∈ NL. The
construction used to show NL-hardness is strongly inspired by a proof in [7] but
has to be omitted because of lack of space.

Hence, like coderange, but for a different reason, stratifiedrange is NL-
complete and thus does not appear to capture an unambiguous logspace class.
It is stratifiedcoderange, namely the problem range restricted to the case
of a stratified code h(Σ), which bears a tight relationship to StUSPACE(logn).
Again, we have to postpone the proof of the following theorem to a full version
of this paper.

Theorem 9. stratifiedcoderange and Lstu are many-one logspace equivalent.

Hence stratifiedcoderange is StUSPACE(logn)-hard, and although we are un-
able to claim a complete problem for StUSPACE(logn), we have come very
close, since even the StUSPACE(logn)-hard language Lstu, specifically tailored
to capture StUSPACE(logn), is only known to be in RUSPACE(logn) [12]. On
the other hand, we can claim a complete problem for the unambiguous class
RUSPACE(logn), as follows.

Proposition 2 states that the code property of a stratified set C translates
into the unique expressibility of every expressible subword of the stratification

254 Klaus-Jörn Lange and Pierre McKenzie

of C as an element of C∗. Let us relax this condition and define a stratified set C
to be a left partial code if no prefix of σ(C) can be expressed in two ways as an
element of C∗. Furthermore, we let lpcstratification be the special case of the
leftpartialcoderange problem in which we are only asked to determine whether
σ(h(Σ)) ∈ h(Σ∗), i.e. lpcstratification is the language of all morphisms h :
Σ∗ → ∆∗ such that h(Σ) is a left partial code and the stratification of h(Σ) is
in h(Σ∗). Then

Theorem 10. lpcstratification is RUSPACE(logn)-complete.

Proof sketch. The construction used in Theorems 8 and 9 in effect proves that
lpcstratification and Lru are many-one logspace equivalent. Here Lru is the
language of graphs having a path from source to target, but required to possess
the unique path property only from the source to any accessible node. This is
precisely the property which corresponds to the action of canonically expressing
the stratification of a left partial code. We then appeal to the main result of [12],
namely that Lru is RUSPACE(logn)-complete.

4.3 Inversion

The class (Functional-L)NL can be defined equivalently as the set of functions
computed by single valued NL–transducers. We have:

Theorem 11. Problem inv is in (Functional-L)NL.

Proof. To solve inv, we use the algorithm and the automaton constructed in
Theorem 4. Here, instead of first producing ŵ, we start the deterministic logspace
simulation of the automaton. Whenever the simulation would require reading a
letter from ŵ, we appeal to an NL-oracle to test whether the current input
position breaks w up into a prefix and a suffix in h(Σ∗) (an NL-oracle can test
this by Theorem 6). This concludes the proof.

We remark that the deterministic version of inv, namely the restriction of
inv in which h is a prefix code, belongs to Functional-L.

Since computing the inv function allows answering the range question, we
have NL ⊆ Linv, and by the previous theorem NL = Linv. This implies that
FLNL = FLinv, i.e. that the inv function is Turing-complete for FLNL.

References

1. E. Allender, V. Arvind, and M. Mahajan, Arithmetic Complexity, Kleene Closure,
and Formal Power Series, DIMACS TechṘep. 97-61, September 1997. 248

2. E. Allender and K.-J. Lange, StUSPACE(log n) ⊆ DSPACE(log2 n/ log log n),
Proc. of the 7th ISAAC, Springer LNCS vol. 1178, pp. 193–202, 1996. 248, 249

3. D. A. M. Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. System Sci., 38:150–164, 1987.
247

On the Complexity of Free Monoid Morphisms 255

4. D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41:274–306, 1990. 249, 252

5. D. Barrington and D. Thérien, Finite Monoids and the Fine Structure of NC1,
J. of the ACM, 35(4):941-952, 1988. 247

6. S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol. B, (1976).
247

7. P. Flajolet and J. Steyaert, Complexity of classes of languages and operators,
Rap. de Recherche 92 de l’IRIA Laboria, novembre 1974. 247, 253

8. B. Jenner, Knapsack problems for NL, Information Processing Letters 54 (1995),
pp. 169-174. 252

9. N. Jones. Space-bounded reducibility among combinatorial problems. Journal of
Computer and System Sciences, 11:68–85, 1975. 249

10. J. H̊astad, Computational Limitations for Small-Depth Circuits, PhD Thesis,
M.I.T., ACM Doctoral Dissertation Awards, MIT Press (1987). 247

11. T. Harju and J. Karhumäki, Morphisms, in Handbook of Formal Languages,
ed. G. Rozenberg and A. Salomaa, Springer, 1997. 247

12. K.-J. Lange, An unambiguous class possessing a complete set, Proc. 14th Annual
Symp. on Theoret. Aspects of Computer Science, Springer LNCS vol. 1200, pp. 339–
350, 1997. 248, 249, 253, 254

13. P. McKenzie, P. Péladeau and D. Thérien, NC1: The Automata-Theoretic View-
point, Computational Complexity 1:330-359, 1991. 247

14. K. Reinhardt and E. Allender, Making nondeterminism unambiguous, Proc. of the
38th IEEE FOCS , pp. 244–253, 1997. 248

15. W. Rytter, The space complexity of the unique decipherability problem, Informa-
tion Processing Letters 23 (1986), pp. 1–3. 252

16. M. Schützenberger, On finite monoids having only trivial subgroups, Information
and Control 8, 190–194, 1965. 251

17. H. Straubing, Finite automata, formal logic, and circuit complexity, Birkhäuser,
Boston, 1994. 251

	Introduction
	Preliminaries
	Complexity Theory
	Problem Definitions

	Fixed Case
	Evaluation
	Range Membership
	Inversion

	Variable Case
	Evaluation
	Range Membership
	Inversion

	References

