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Abstract. Simpler proofs that DAuxPDA-TIME(polynomial) equals
LOG(DCFL) and that SAC1 equals LOG(CFL) are given which avoid Sud-
borough’s multi-head automata [Sud78]. The first characterization of
LOGDCFL in terms of polynomial proof-tree-size is obtained, using cir-
cuits built from the multiplex select gates of [FLR96]. The classes L and
NC1 are also characterized by such polynomial size circuits: “self-similar”
logarithmic depth captures L, and bounded width captures NC1.

1 Introduction

The class LOGCFL (an NL machine equipped with an auxiliary pushdown) oc-
cupies a central place in the landscape of parallel complexity classes. LOGCFL
sits between two interesting classes, NL and AC1: NL is often viewed as the
space analog of NP, and AC1 characterizes the problems solvable on a PRAM
in O(log n) time using a polynomial number of processors. As a class, LOGCFL
has attracted a lot of attention due to its seemingly “richer structure” than that
of NL. Sudburough [Sud78] showed that LOG(CFL) (logspace closure of CFL)
was in fact LOGCFL by using multi-head pushdown automata. Then, Ruzzo
[Ruz80] characterized LOGCFL alternating Turing machines. This was followed
by Venkateswaran’s surprising semi-unbounded circuits characterization [Ven91]:
this clean circuit characterization of LOGCFL stands in contrast to its somewhat
“messy” machine definitions. Then came a flurry of papers, for example showing
closure of LOGCFL under complementation [BCD+88], characterizing LOGCFL
in terms of groupoids [BLM93], linking it to depth reduction [Vin96,AJMV98],
and studying the descriptive complexity of LOGCFL [LMSV99].

At the same time, progress was made in understanding LOGDCFL. The initial
results of Sudburough ([Sud78], discussed below) were followed by Cook [Coo79]
who showed that LOGDCFL is contained in deterministic space O(log2 n). Dy-
mond and Ruzzo [DR86] drew an important equivalence between between
LOGDCFL and owner-write PRAM models. A variety of papers have since ex-
tended these results [FLR96,MRS93].

As mentioned, Sudburough proved that DAuxPDA-TIME(pol) ⊆ LOG(DCFL)
and that NAuxPDA-TIME(pol) ⊆ LOG(CFL) by reducing the numbers of heads
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[Iba73,Gal74] in the multi-head automata characterizing the pushdown classes
D(N)AuxPDA-TIME(pol) [Har72]. In the light of the many advancements since, it
is natural to wonder whether simpler proofs cannot be given. Indeed, we exhibit
simpler and more intuitive proofs here.

In Section 3 we show how a standard nondeterministic pushdown automa-
ton (with no auxiliary work tape) can evaluate a suitably represented semi-
unbounded circuit. This establishes SAC1 ⊆ LOG(CFL) in a direct way. As in
[Rei90], where alternating pushdown automata were considered, this direct route
from circuits to AuxPDAs exploits the fact that the work of a PDA with an aux-
iliary work tape can be separated into a logspace transduction followed by a pure
pushdown part.

In Section 4 we extend our strategy to circuits built from multiplex select
gates. These gates (defined precisely in Section 2) have as inputs a sequence of
data wire bundles and a single selection wire bundle whose setting identifies the
input data bundle to be passed on as gate output.

Multiplex select gates were introduced to better reflect the difficulty of speed-
ing up parallel computations [Rei97], and they turned up again in an inci-
sive characterization of the power of Dymond and Ruzzo’s owner-write PRAMs
[FLR96]. Here we observe that a natural notion of proof tree size exists for multi-
plex circuits. Using this notion and further observations, we simplify the harder
direction (common to [DR86] and [FLR96]) in the proof that CROW-PRAMs ef-
ficiently simulate AuxDPDAs. Coupled with an application of our strategy from
Section 3, this implies that LOGDCFL is characterized by polynomial size multi-
plex circuits having polynomial size proof trees. Proof tree size characterizations
are known for LOGCFL [Ruz80,Ven91], but this is the first such characterization
of LOGDCFL.

Multiplex select gates are thus intriguing: designing a circuit from such gates,
rather than from the more usual boolean gates, forces one to pay closer attention
to routing aspects which (amazingly) precisely capture the owner-write restric-
tion of a PRAM or the deterministic restriction of an AuxDPDA. So how does
this routing aspect mesh with further restrictions on circuit resources? We al-
ready know that log depth and poly size yields LOGDCFL. In Section 5, we
examine a restriction, called self-similarity, which allows log depth poly size cir-
cuits to capture the class L. Finally, we point out that bounded-width poly size
multiplex circuits characterize NC1: this follows from the known characterization
of NC1 by bounded-width poly size boolean circuits [Bar89], despite the fact that
a multiplex gate in a bounded-width circuit can a priori access all the circuit
inputs.

2 Preliminaries

We assume basic familiarity with complexity theory such as can be found in
recent texts on the subject. We recall that LOG(CFL) (resp. LOG(DCFL)) is
the class of languages logspace-reducible to a context-free (resp. deterministic
context-free) language. A PDA is a pushdown automaton and an AuxPDA is a
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machine with a work tape, which alone is subjected to space bounds. along with
an auxiliary pushdown. LOGCFL(resp. LOGDCFL) is the class of languages rec-
ognized by non-deterministic (resp deterministic) logspace auxiliary pushdown
automata with polynomial running time.
Definition [FLR96]. A multiplex circuit is a circuit in the usual sense, whose
only gates are multiplex select gates (see Figure 1). The inputs to a multiplex
select gate are grouped into a bundle of k ∈ O(log n) steering bits and 2k equal
size bundles of l ∈ O(log n) data bits; the gate output is a single bundle of l data
bits. One special gate in this circuit is the output gate, whose data bit bundles
have size 1. Other special gates are the input gates 1, 2, . . . , n, also considered to
have an output bundle of size 1. Bit bundles cannot be split or merged, that is,
if the output of a gate A is input to a gate B, then the complete output bundle
of A enters B as a indivisible and complete (steering or data) bundle; the only
exception to this rule is that bundles can be extended by any (logarithmic)
number of high order constant bits.
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Fig. 1. A multiplex select gate

On input x1x2 · · ·xn ∈ {0, 1}∗, the multiplex circuit input gates respectively
take on the values x1, x2, . . . , xn. Then each multiplex select gate having as in
Figure 1 a bundle g of k steering bits eventually determines its output value by
interpreting its steering bits as the binary encoding of a number j, 0 ≤ j < 2k,
and by passing on its jth input bundle as output. The circuit accepts x1x2 · · ·xn

iff the output gate outputs 1.
For the purposes of this abstract, we use logspace uniformity for multiplex

circuit families, although tighter uniformities work as well. Hence we say that a
multiplex circuit family is uniform iff its direct connection language is logspace-
computable, where the direct connection language consists of the sequence of
encodings of each gate in the circuit (a gate as in Figure 1 is described by its
number, and by the numbers of the gates g, d0, ...d2k−1 combined, as the case
may be, with high order constant bits).

The size and the depth of a multiplex circuit (or family) are defined in the
usual way. A multiplex circuit can be unraveled into a tree like any other circuit
(by duplicating nodes having outdegree greater than one, all the way down to,
and including, the input gates). Given a multiplex circuit C, a proof tree on input
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x is a pruning of the unraveled circuit which eliminates all the gates except the
root of T and, for each non-input gate g kept, both the gate computing the
steering bundle of g and the gate computing the data bundle selected by g. The
Prooftreesize of C is the maximum, over all inputs x of the appropriate size, of
the size of the proof tree on input x.

To define width for a multiplex circuit, we follow [Bar89] and assume that
the circuit is leveled, i.e. that each gate g, except 1, 2, . . . , n, can be assigned a
unique level given by the length of any one of its paths to the circuit output
gate1. The width of a leveled multiplex circuit is the maximal number of wires
connecting one level to the next. (Wires coming from an input of the circuit
are not counted, and this is a standard practice to allow for sub-linear widths)
The gate-width of a leveled multiplex circuit is the number of non-input gates in
its largest level2. Observe that the number of circuit input gates accessed by a
(gate-width-bounded or width-bounded gate) is not subject to the width bound;
in particular, any single gate could even access all the circuit inputs.
Definition: MDepthSize(d, s) is the class of languages recognized by a uniform
family of multiplex circuits having depth d and size s [FLR96]. Analogously,
MProoftreesize-Size(p, s), MGatewidth-Size(g, s), MWidth-Size(w, s) are defined
using proof tree size p, gate-width g and width w. Finally, SMDepthSize(d, s),
where the S stands for self-similar, is defined from leveled circuits having the
property that all gates across a level have the same sequence of data inputs,
meaning that dj for every 0 ≤ j < 2k is identical for every gate across the level.

Accordingly, Prooftreesize-Size(pol,pol) is defined using SAC-circuits, where
a prooftree for an input x in the language is an accepting subcircuit (certificate).

3 Simpler proof for LOG(CFL)

Lemma 1. Prooftreesize-Size(pol,pol) ⊆ LOG(CFL).

Proof: We must reduce, in logspace, an arbitrary Y ∈ Prooftreesize-Size(pol,pol)
to a language recognized by a standard NPDA. The main idea is to code each
gate and its connections in the SAC circuit for Y in a clever way. Concatenating
the descriptions of all the gates yields the encoding of the circuit. To get around
the restriction that the NPDA has a one-way input head, we concatenate a
polynomial number of copies of the circuit encoding, the polynomial being at
least the size of an accepting proof tree in the circuit. This will be the output of
the logspace transducer.

The code for a gate g is a tuple with (1) the label of g, (2) the label of g in
reverse (this is motivated later), (3) the type of g, and (4) the labels in reverse
of the gates that are inputs to g.
1 As in the case of boolean circuits, this assumption can be enforced at the expense of

inconsequential increases in size, since any wire bundle can be made to contribute to
the depth by replacing this bundle with a gate having this same bundle duplicated
as steering, multiple data, and output.

2 Width is usually defined in the context of bounded fan-in circuits, and no distinction
is necessary between width as defined here and gate-width in that case.
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Initially, the PDA starts by pushing the label corresponding to the output
gate. At any intermediate point, the top of the stack contains a gate (label);
we wish to assert that this gate evaluates to a 1. On the input tape, we move
the head forward until we are at a gate that matches the gate on top of stack.
The semantics of the gate type now takes over. If it is an input gate, the PDA
checks if its value is 1 and continues with the remaining gates (if any) on the
stack; if its value is 0 the PDA rejects and halts. If the gate is an AND gate, the
PDA places the two inputs to the AND gate on the stack, but since their labels
are reversed on the input tape, they are pushed in the correct order onto the
stack for future comparisons. If the gate is an OR gate, one of its inputs gates
is non-deterministically pushed onto the stack.

To finish, we need to explain the necessity of component (2), in the code for
a gate. In the previous paragraph, we did not explain how the PDA matches
the gate on the stack with one on the input tape. Of course, we can do this
with non-determinism: we can simply move the input head non-deterministically
until it is magically under the right gate label. But we would like to do this
deterministically as we use the idea for a later simulation. (And we all know
that non-deterministic bits are costly!) So we check if the gate under the input
head matches the gate on top of stack by popping identical bits. If the gates are
different, we will notice it at some point. Let the input head see pbq, qRbpR, . . .
and the PDA have pc . . . on its stack (where c is the complement of b). The
machine will now match p and detect a difference on bit b. Skip this bit on the
input tape and push the remaining bits of the label onto the stack; the input
tape now looks like qRbpR, . . . and the stack looks like qRc . . .. Now match the
input head and the stack until there is a difference, at which point we simply
push the remaining bits of the label onto the stack to recreate the original gate
label on the stack.

The language Lpolproof , which is accepted by the PDA is contextfree, where
we need not care about words which do not encode a circuit. Thus every language
in Prooftreesize-Size(pol,pol) can be reduced to Lpolproof by a logspace transducer
from input x using the uniformity for C|x|. ut
Corollary 1. SAC1 ⊆ LOG(CFL).

4 New characterization of LOGDCFL

Consider a proof tree in a multiplex circuit. For a gate in a proof tree only
two child gates have to be in the proof tree: the gate where the steering bundle
comes from, and the gate where the selected bundle comes from. Thus we get
the following:

Lemma 2. MDepth-Size(log,pol)⊆MProoftreesize-Size(pol,pol).

In the spirit of simplifying proofs, we can bypass the difficult direction in
[DR86,FLR96] showing DAuxPDA-TIME(pol) ⊆ CROWTI-PR(log,pol) by the fol-
lowing naive algorithm simulating a DAuxPDA with only polynomial proof tree
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size. The function works on extended surface configurations containing the state,
the top of the pushdown, the contents of the work tape, the position of the head
on the input tape, the time and the current height of the pushdown. We may
assume w.l.o.g. that every configuration either pushes or pops.

function GO(x) :=
if Configuration x pushes Push(x) 6= λ

if going to Configuration y
then z :=GO(y); return GO(POP(z,Push(x)))

else return x

POP(z,a) is the configuration following z if z is a popping configuration and
a is the symbol, which is popped from the pushdown.

The function outputs the last reachable surface configuration reached from
x, without popping deeper symbols from the pushdown. W.l.o.g. GO(x0) is the
end configuration. The translation of this function to a multiplex-select circuit
yields

Lemma 3. DAuxPDA-TIME(pol) ⊆MProoftreesize-Size(pol,pol)

Proof: A circuit calculating GO(x) using subcircuits for GO(y) and GO(POP(z, a))
is partially depicted on Figure 2. Each extended surface configuration and there-
fore each gate appears only once in a proof tree, which thus has polynomial size.

ut
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Fig. 2. Circuit used in proving Lemma 3

Lemma 4. MProoftreesize-Size(pol, pol) ⊆LOG(DCFL).

Proof: As in the proof of Lemma 1, we encode for every j-th data input of a
gate g

wg
j := (binj#g$gR#binR

j #fR
j #dR

j #)
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where binj is the binary encoding of j, fj is the fixed part of the j-th data input
and dj is the binary encoding of the gate to which the j-th data input bundle
is connected (dj is optional). For every gate g having a steering input from gate
sg, we encode

wg := (g$gR#sR
g )wg

1wg
2 ...wg

k

and let wV be the concatenation of all wg with g ∈ V . Let furthermore s be the
proof tree size of the circuit. The logspace transducer generates w := w2s

V (which
has polynomial length).

To evaluate a gate g, a pushdown automaton uses the same method as in
Lemma 1 to find the right (g$gR#sR

g ) and pushes gR#sR
g , which allows to eval-

uate the gate s, where the steering input came from and return with the value,
which now becomes binj over g, which is still on the pushdown. Again the same
method allows to find the right wg

j , where fR
j $dR

j is pushed, which allows to
evaluate the gate dj and regard (because of the distinction between $ and #) fj

concatenated with the returned value as the new value, which is to return. ut

5 Multiplex circuits for L and for NC1

Theorem 1. L = MGatewidth-Size(1, pol) = MWidth-Size(log, pol).

Proof: Since the output-bundle of a gate consists of a logarithmic number
of wires, it follows from the definition that MGatewidth-Size(1, pol) ⊆ MWidth-
Size(log, pol).

We get MWidth-Size(log, pol) ⊆ L by evaluating a circuit level by level in
polynomial time. Since only the outputs of the previous level have to be stored,
logarithmic space is sufficient.

To show L ⊆ MGatewidth-Size(1, pol) we have to construct for a logspace
machine a multiplex-select circuit, which consists of a single path of multiplex
select gates, where the output bundle of a gate is connected to the steering input
of the following gate. The value v of such a bundle encodes a surface configuration
containing the state, the contents of the work tape, the position of the head on
the input tape and on the lowest order bit the symbol (0 or 1) on the input
tape at the current head position. The first gate gets on the steering input the
start configuration. The v-th data input bundle of every (except the last) gate
contains an encoding of the following configurations on v where the lowest order
bit is connected to the corresponding bit on the input and all the other bits are
given as constants3. The last gate has 1’s on the data inputs whose numbers
encode accepting configurations and 0’s on the others. ut

Theorem 2. L = SMDepth-Size(log,pol).

3 This means that the uniformity condition for the circuit has to be able to verify a
single step of a logspace machine; the number of the input bit used is contained as
head position in the encoding of the configuration.
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Proof: ⊆: Let l be the rounded up logarithm of the running time and k be
the number of surface configurations. The first level consists of k gates of the
same kind as in the proof of theorem 1 having the number (c, 1) and getting
the configuration c as (a constant) steering input. Thus their output will be the
following configuration of c. The gates having the number (c, h) on level h with
1 < h ≤ l get the output of gate (c, h − 1) as steering input and the output of
gate (c′, h−1) as the c′-th data input, which means that the data input bundles
on the h-th level are always connected the same way. By induction on h it follows
that the output of gate number (c, h) will be the 2h-th configuration following
c. Thus the output of gate number (c0, l) contains the end configuration 4 and
is connected to the last gate, which, as in the proof of theorem 1 has 1’s on
the data inputs whose numbers encode accepting configurations and 0’s on the
others.

⊇: A logspace machine can evaluate a self-similar circuit in the following
way: To evaluate a gate, it first recursively evaluates the gate where the steering
input comes from; here it does not store the number of the gate but only the fact
(one bit) that it is evaluating the steering input for a gate of that level. When it
returns the value v for this steering input, it recursively evaluates the gate where
the v-th data input comes from; because of self-similarity this is the same for
all gates on this level thus the number of the exact gate is not necessary. Again
only the fact (one bit) that it is evaluating a data input is stored for that level,
telling the machine to return the value to the next level, if the value from the
previous level is returned. The machine accepts if the evaluation of the last gate
is 1 and rejects if it is 0. Since there is a logarithmic number of levels and the
value always has a logarithmic number of bits, logarithmic space is sufficient. ut

One difference between bounded-width (bounded-fan-in) boolean circuits and
bounded-width multiplex circuits is that any gate in the latter can access all the
circuit inputs. However, this extra ability of multiplex gates is useless within a
bounded-width circuit:

Theorem 3. MWidth-Size(constant,pol) = NC1.

Proof: ⊆: Consider a multiplex circuit C of bounded width w. The width bound
implies that the steering input bundle to any gate in C can only take a constant
number of different values. Even if there were n circuit inputs attached to the
data portion of this gate, only a constant number of them can be selected. These
selectable inputs can be identified at ”compile time”, and those not selectable
can be set to constants (while preserving the circuit uniformity). The result is
an equivalent multiplex circuit using at most a constant number of circuit inputs
per level. Each gate in this circuit has constant fan-in, omitting constant bits.
Now any constant fan-in gate (thus also a multiplex select gate) can be replaced
by a constant size NC subcircuit. Replacing all multiplex gates in this way yields
a bounded-width polynomial size boolean circuit in the sense of [Bar89, Section
5], who shows that such circuits characterize NC1.

4 W.l.o.g. the machine stays in its end configuration.
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⊇: A binary multiplex select gate5 (see Figure 1) simulates a NOT-gate if
d0 has the constant value 1 and d1 has the constant value 0, it simulates an
AND-gate if d0 has the constant value 0, and it simulates an OR-gate if d1 has
the constant value 1. Thus any NC circuit is simulated within the same resource
bounds by a multiplex circuit. In particular, the bounded-width polynomial size
circuits of [Bar89] are simulated by bounded-width polynomial size multiplex
circuits. ut

6 Conclusion

We have simplified proofs involving LOGCFL and LOGDCFL, and obtained new
characterizations of LOGDCFL, L, and NC1. We would like to characterize NL
in a similar way, by restricting SAC1 circuits. Now we observe that the SAC1

circuits obtained in a canonical way by encoding the NL-complete reachability
problem have the property that they are robust against a simplified NL evalu-
ation algorithm, which would of course make mistakes when evaluating general
SAC1-circuits. An open problem is whether this robustness property has a nice6

characterization.
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Holzer.
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MRS93. B. Monien, W. Rytter, and H. Schäpers. Fast recognition of deterministic
cfl’s with a smaller number of processors. Theoret. Comput. Sci., 116:421–
429, 1993. Corrigendum, 123:427, 1993.

Rei90. K. Reinhardt. Hierarchies over the context-free languages. In J. Dassow and
J. Kelemen, editors, Proceedings of the 6th International Meeting of Young
Computer Scientists, number 464 in LNCS, pages 214–224. Springer-Verlag,
1990.

Rei97. K. Reinhardt. Strict sequential P–completeness. In R. Reischuk, editor,
Proceedings of the 14th STACS, number 1200 in LNCS, pages 329-338,
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