# Non-Smooth, Non-Finite, and Non-Convex Optimization Deep Learning Summer School

#### Mark Schmidt

University of British Columbia

August 2015

### Complex-Step Derivative

Using complex number to compute directional derivatives:

• The usual finite-difference approximation of derivative:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

• Has  $O(h^2)$  error from Taylor expansion,

$$f(x + h) = f(x) + hf'(x) + O(h^2),$$

• But h can't be too small: cancellation in f(x + h) - f(x).

# Complex-Step Derivative

Using complex number to compute directional derivatives:

• The usual finite-difference approximation of derivative:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

• Has  $O(h^2)$  error from Taylor expansion,

$$f(x + h) = f(x) + hf'(x) + O(h^2),$$

But h can't be too small: cancellation in f(x + h) - f(x).
For analytic functions, the complex-step derivative uses:

$$f(x + ih) = f(x) + ihf'(x) + O(h^2),$$

that also gives function and derivative to accuracy  $O(h^2)$ :

real
$$(f(x+ih)) = f(x) + O(h^2), \quad \frac{imag(f(x+ih))}{h} = f'(x) + O(h^2),$$

# Complex-Step Derivative

Using complex number to compute directional derivatives:

• The usual finite-difference approximation of derivative:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

• Has  $O(h^2)$  error from Taylor expansion,

$$f(x + h) = f(x) + hf'(x) + O(h^2),$$

But h can't be too small: cancellation in f(x + h) - f(x).
For analytic functions, the complex-step derivative uses:

$$f(x + ih) = f(x) + ihf'(x) + O(h^2),$$

that also gives function and derivative to accuracy  $O(h^2)$ :

$$real(f(x+ih)) = f(x) + O(h^2), \quad \frac{imag(f(x+ih))}{h} = f'(x) + O(h^2),$$

but no cancellation so use tiny h (e.g.,  $10^{-150}$  in minFunc). • First appearance is apparently Squire & Trapp [1998].

#### "Subgradients" of Non-Convex functions

• Sub-gradient *d* of function *f* at *x* has

$$f(y) \geq f(x) + d^{T}(y - x),$$

for all y and x.

• Sub-gradients always exist for reasonable convex functions.

### "Subgradients" of Non-Convex functions

• Sub-gradient *d* of function *f* at *x* has

$$f(y) \geq f(x) + d^{T}(y - x),$$

for all y and x.

- Sub-gradients always exist for reasonable convex functions.
- Clarke subgradient or generalized gradient d of f at x

$$f(y) \ge f(x) + d^{T}(y-x) - \sigma ||y-x||^{2},$$

for some  $\sigma > 0$  and all y near x [Clarke, 1975].

• Exist for reasonable non-convex functions.

Loose Ends

#### Non-Smooth

#### Non-Finite

Non-Convex

Convergence Rate of Stochastic Gradient with Constant Step Size By definition of ik and f.

Mark Schmidt University of British Columbia

#### September 5, 2014

#### Abstract

We show that the basic stochastic gradient method applied to a strongly-convex differentiable function with a constant step-size achieves a linear convergence rate (in function value and iterates) up to a constant proportional the step-size (under standard assumptions on the gradient).

#### 1 Overview and Assumptions

We want to minimize  $f(x) = \mathbb{E}[f_i(x)]$ , where the expectation is taken with respect to *i*. The most common case is minimizing a finite sum,

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \quad (1.1)$$

as in problems like least squares and logistic regression. With use the iteration

$$x^{k+1} = x^k - \alpha f'_{ik}(x^k),$$

where  $i_k$  is sampled uniformly (and step-size  $\alpha$  is the step-size). We will assume that f' is *L*-Lipschitz, f is  $\mu$ -strongly convex,  $||f'_i(x)|| \leq C$  for all x and i, that the minimizer is  $x^*$ , and  $0 < \alpha < 1/2\mu$ . We will show that

$$\mathbb{E}[f(x^k) - f(x^*)] \le (1 - 2\alpha\mu)^k (f(x^0) - f(x^*)) + O(\alpha),$$
  
 $\mathbb{E}[||x^k - x^*||^2] \le (1 - 2\alpha\mu)^k ||x^0 - x^*||^2 + O(\alpha),$ 

meaning that the function values and iterates converge linearly up to some error level proportional to  $\alpha$ . For the special case of (1.1), Proposition 3.4 in the paper of Nedic and Bertsekas ('Convergence Rates of incremental Subgradient Algorithms', 2000) gives a similar argument/result but here we also consider the function value and we work with the expectation to get rid of the dependence on n.

#### 2 Useful inequalitites

By L-Lipschitz of f', for all x and y we have

$$f(y) \le f(x) + f'(x)^T(y - x) + \frac{L}{2}||y - x||^2$$
.

By  $\mu$ -strong-convexity of f, for all x and y we have

$$f(y) \ge f(x) + f'(x)^T(y - x) + \frac{\mu}{2} ||y - x||^2$$
.

Minimizing both sides in terms of y, by setting  $y = x - \frac{1}{\mu}f'(x)$  on the right hand side and using the definition of  $x^*$  on the left hand side,

$$f(x^*) \ge f(x) - \frac{1}{\mu} ||f'(x)||^2 + \frac{1}{2\mu} ||f'(x)||^2 = f(x) - \frac{1}{2\mu} ||f'(x)||^2$$
.

Also by strong-convexity,

$$f'(x)^T(x - x^*) = (f'(x) - f'(x^*))^T(x - x^*) \ge \mu ||x - x^*||^2.$$

Recall the limit of the geometric series,

$$\begin{split} \dot{x}^{k+1} & \leq f(x^k) + f'(x^k)^T(x^{k+1} - x^k) + \frac{k}{2} \| \dot{x}^{k+1} - x^k \|^2 \qquad (x - x^k, y - x^{k+1} \mbox{ in $L$ Laplatiz inequality}) \\ & - f(x^k) - \alpha f'(x^k)^T f_k(x^k) + \frac{k^2}{2} \| f_k(x^k) \|^2 \qquad (\text{eliminate } (x^{k+1} - x^k) \mbox{ using definition of } x^{k+1}) \\ & \leq f(x^k) - \alpha f'(x)^T f_k(x^k) + \frac{k^2 k^2}{2}. \qquad (\text{use } \| f_k(x^k) \| \leq C) \end{split}$$

 $\mathbb{E}[f'_{i_1}(x^k)] = f'(x^k).$ 

 $\sum_{i=1}^{\infty} r^{i} = \frac{1}{1-r}, \text{ for } |r| < 1.$ 

$$\begin{split} \mathbb{E}[f(x^{k+1}) - f(x^*)] &\leq f(x^k) - f(x^*) - af'(x^k)\mathbb{E}[f_0(x^{k+1}) + \frac{(k^k)^2}{2} & (\text{take expectation WRT} i_{k+1} \text{ absents} f(x^*)] \\ &\leq f(x^k) - f(x^*) - af[f'(x^k)]\|^2 + \frac{ka^k (2^k)}{2} & (\text{ssm} \ \mathbb{E}[f_0(x^k)] - f(x^*)] - ef(x^k)]\|^2 \\ &\leq f(x^k) - f(x^*) - 2aag(f(x^k) - f(x^*)) - \frac{ka^k (2^k)}{2} & (\text{ssm} \ \mathbb{E}[f_0(x^k)]\|^2 \geq f(x^k) - f(x^*)] \\ &- (1 - 2aag(f(x^k) - f(x^*)) - \frac{ka^k (2^k)}{2}. \end{split}$$

$$\begin{split} \mathbb{E}[f(x^k) - f(x^*)] &\leq (1 - 2\alpha \eta)^k (f(x^k) - f(x^*)) \approx \sum_{i=1}^{n} (1 - 2\alpha \eta)^i \frac{f(x^k) C_i^2}{2} & (apb) \text{ recursively, take total expectation)} \\ &\leq (1 - 2\alpha \eta)^k (f(x^k) - f(x^*)) \approx \sum_{i=1}^{n} (1 - 2\alpha \eta)^i \frac{f(x^k) C_i^2}{2} & (axta terms are positive because  $\alpha < 1/2\eta) \\ &= (1 - 2\alpha \eta)^k (f(x^k) - f(x^*)) \approx \frac{f(x^k) C_i^2}{4\theta_i}. & (axe that \sum_{i=1}^{n} (1 - 2\alpha \eta)^i - 1/2\eta) \end{split}$$$

#### 4 Iterates

$$\begin{split} \| \boldsymbol{x}^{k+1} - \boldsymbol{x}^{k} \|^{2} &= \| (\boldsymbol{x}^{k} - a_{f_{k}}(\boldsymbol{x})) - \boldsymbol{x}^{k} \|^{2} & (\text{infinites of } \boldsymbol{x}^{k+1}) \\ &- \| \boldsymbol{x}^{k} - \boldsymbol{x} \|^{2} &= 2a_{f_{k}}(\boldsymbol{x})^{2} (\boldsymbol{x} - \boldsymbol{x}) + \boldsymbol{x}^{2} \| f_{k}(\boldsymbol{x}^{k}) \|^{2} & (\text{group } (\boldsymbol{x}^{k} - \boldsymbol{x}), \text{equal}) \\ &\leq \| \boldsymbol{x}^{k} - \boldsymbol{x} \|^{2} = 2a_{f_{k}}(\boldsymbol{x})^{2} (\boldsymbol{x}^{k} - \boldsymbol{x}) + \boldsymbol{x}^{2} \boldsymbol{C}^{2} & (\text{use } \| f_{k}(\boldsymbol{x}^{k}) \| \leq C) \\ & \mathbb{E} \| \boldsymbol{x}^{k+1} - \boldsymbol{x}^{k} \|^{2} \leq \| \boldsymbol{x}^{k} - \boldsymbol{x} \|^{2} = 2a_{f_{k}}(\boldsymbol{x})^{2} (\boldsymbol{x}^{k} - \boldsymbol{x}) + \boldsymbol{x}^{2} \boldsymbol{C}^{2} & (\text{use expectation WH} \boldsymbol{u}) \end{split}$$

$$\begin{aligned} \| x^{--x} \| &\| \ge \| x^{--x} \| \| = 2\alpha f(x^{--x}) \| x^{--x} + \alpha^{--x} \\ &\leq \| x^{--x} \| \|^{--2} \alpha \| \| x^{--x} \| \|^{-2} \alpha^{-2} \\ &= (1 - 2\alpha \mu) \| \| x^{k} - x^{*} \|^{2} + \alpha^{2} C^{2} \end{aligned} \qquad (\text{use } f'(x)^{T} (x - x^{*}) \ge \mu \| x - x^{*} \|^{2} + \alpha^{2} C^{2} \end{aligned}$$

$$\begin{split} \|\|x^k - x^*\|^2 &| \leq (1 - 2\alpha \mu)^k \|x^0 - x^*\|^2 + \sum_{i=0}^k (1 - 2\alpha \mu)^i \alpha^2 G^2 \qquad (apply recursively, take total expectation) \\ &\leq (1 - 2\alpha \mu)^k \|x^0 - x^*\|^2 + \frac{\alpha G^2}{2\mu}, \qquad (as before, use that \sum_{i=0}^k (1 - 2\alpha \mu)^i \leq 1/2\alpha \mu). \end{split}$$

# Stochastic Variance-Reduced Gradient

#### SVRG algorithm:

- Start with x<sub>0</sub>
- for s = 0, 1, 2...•  $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$ •  $x^0 = x_s$ • for t = 1, 2, ..., m• Randomly pick  $i_t \in \{1, 2, ..., N\}$ •  $x^t = x^{t-1} - \alpha_t (f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s).$ •  $x_{s+1} = x^t$  for random  $t \in \{1, 2, ..., m\}$ .

# Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x<sub>0</sub>
- for s = 0, 1, 2...•  $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$ •  $x^0 = x_s$ • for t = 1, 2, ..., m• Randomly pick  $i_t \in \{1, 2, ..., N\}$ •  $x^t = x^{t-1} - \alpha_t(f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s).$ •  $x_{s+1} = x^t$  for random  $t \in \{1, 2, ..., m\}$ .

Requires 2 gradients per iteration and occasional full passes, but only requires storing  $d_s$  and  $x_s$ .

# Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x<sub>0</sub>
- for s = 0, 1, 2...•  $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$ •  $x^0 = x_s$ • for t = 1, 2, ..., m• Randomly pick  $i_t \in \{1, 2, ..., N\}$ •  $x^t = x^{t-1} - \alpha_t(f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s).$ •  $x_{s+1} = x^t$  for random  $t \in \{1, 2, ..., m\}$ .

Requires 2 gradients per iteration and occasional full passes, but only requires storing  $d_s$  and  $x_s$ .

Practical issues similar to SAG (acceleration versions, automatic step-size/termination, handles sparsity/regularization, non-uniform sampling, mini-batches).

### Review of Part 1 and Motivation for Part 2

Part 1: low iteration cost and linear rate in restrictive setting:

- Objective is smooth.
- Objective is a finite sum.
- Objective is strongly-convex.

Part 2: ty to relax these assumptions.

Non-Smooth

Non-Finite

Non-Convex







3 Non-Finite



• Recall the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} L(x, a_{i}, b_{i}) + \lambda r(x)$$
  
data fitting term + regularizer

• Often, regularizer r is used to encourage sparsity pattern in x.

• Recall the regularized empirical risk minimization problem:

$$\min_{\mathbf{x}\in\mathbb{R}^{P}}rac{1}{N}\sum_{i=1}^{N}L(x,a_{i},b_{i})+\lambda r(x) \ \mathrm{data\ fitting\ term}\ +\ \mathrm{regularizer}$$

- Often, regularizer r is used to encourage sparsity pattern in x.
- For example,  $\ell_1$ -regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

• Regularizes and encourages sparsity in x

• Recall the regularized empirical risk minimization problem:

$$\min_{\mathbf{x}\in\mathbb{R}^{P}}rac{1}{N}\sum_{i=1}^{N}L(x,a_{i},b_{i})+\lambda r(x) \ \mathrm{data\ fitting\ term}\ +\ \mathrm{regularizer}$$

- Often, regularizer r is used to encourage sparsity pattern in x.
- For example,  $\ell_1$ -regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x
- The objective is non-differentiable when any  $x_i = 0$ .
- Subgradient methods are optimal (slow) black-box methods.

• Recall the regularized empirical risk minimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} L(x, a_{i}, b_{i}) + \lambda r(x)$$
  
data fitting term + regularizer

- Often, regularizer r is used to encourage sparsity pattern in x.
- For example,  $\ell_1$ -regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x
- The objective is non-differentiable when any  $x_i = 0$ .
- Subgradient methods are optimal (slow) black-box methods.
- Are there faster methods for specific non-smooth problems?

- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.

- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$x|\approx \sqrt{x^2+\nu}.$$



- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$x|\approx \sqrt{x^2+\nu}.$$



- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$|x| \approx \sqrt{x^2 + \nu}.$$

• Smooth approximation to the max function:

$$\max\{a, b\} \approx \log(\exp(a) + \exp(b))$$

• Smooth approximation to the hinge/ReLU loss:

$$\max\{0,x\} pprox \begin{cases} 0 & x \ge 1 \\ 1-x^2 & t < x < 1 \\ (1-t)^2 + 2(1-t)(t-x) & x \le t \end{cases}$$

- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$|x| \approx \sqrt{x^2 + \nu}.$$

• Smooth approximation to the max function:

$$\max\{a, b\} \approx \log(\exp(a) + \exp(b))$$

• Smooth approximation to the hinge/ReLU loss:

$$\max\{0,x\} pprox \begin{cases} 0 & x \ge 1 \ 1-x^2 & t < x < 1 \ (1-t)^2 + 2(1-t)(t-x) & x \le t \end{cases}$$

• Generic smoothing strategy: strongly-convex regularization of convex conjugate [Nesterov, 2005].

### Discussion of Smoothing Approach

- Nesterov [2005] shows that:
  - Gradient method on smoothed problem has  $O(1/\sqrt{t})$  subgradient rate.
  - Accelerated gradient method has faster O(1/t) rate.

# Discussion of Smoothing Approach

- Nesterov [2005] shows that:
  - Gradient method on smoothed problem has  $O(1/\sqrt{t})$  subgradient rate.
  - Accelerated gradient method has faster O(1/t) rate.
- No results showing improvement in stochastic case.
- In practice:
  - Slowly decrease level of smoothing (often difficult to tune).
  - Use faster algorithms like L-BFGS, SAG, or SVRG.

# Discussion of Smoothing Approach

- Nesterov [2005] shows that:
  - Gradient method on smoothed problem has  $O(1/\sqrt{t})$  subgradient rate.
  - Accelerated gradient method has faster O(1/t) rate.
- No results showing improvement in stochastic case.
- In practice:
  - Slowly decrease level of smoothing (often difficult to tune).
  - Use faster algorithms like L-BFGS, SAG, or SVRG.
- You can get the O(1/t) rate for  $\min_x \max\{f_i(x)\}$  for  $f_i$  convex and smooth using *mirror-prox* method [Nemirovski, 2004].
  - See also Chambolle & Pock [2010].

#### Converting to Constrained Optimization

• Re-write non-smooth problem as constrained problem.

# Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem

 $\min_{x} f(x) + \lambda \|x\|_1,$ 

# Converting to Constrained Optimization

• Re-write non-smooth problem as constrained problem.

ľ

• The problem

$$\min_{x} f(x) + \lambda \|x\|_{1},$$

is equivalent to the problem

$$\min_{x^+ \ge 0, x^- \ge 0} \quad f(x^+ - x^-) + \lambda \sum_i (x_i^+ + x_i^-),$$

# Converting to Constrained Optimization

• Re-write non-smooth problem as constrained problem.

I

• The problem

$$\min_{x} f(x) + \lambda \|x\|_1,$$

is equivalent to the problem

$$\min_{x^+ \ge 0, x^- \ge 0} \quad f(x^+ - x^-) + \lambda \sum_i (x_i^+ + x_i^-),$$

or the problems

$$\min_{-y \le x \le y} f(x) + \lambda \sum_{i} y_{i}, \quad \min_{\|x\|_{1} \le \gamma} f(x) + \lambda \gamma$$

# Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem

$$\min_{x} f(x) + \lambda \|x\|_1,$$

is equivalent to the problem

$$\min_{x^+ \ge 0, x^- \ge 0} \quad f(x^+ - x^-) + \lambda \sum_i (x_i^+ + x_i^-),$$

or the problems

$$\min_{-y \le x \le y} f(x) + \lambda \sum_{i} y_{i}, \quad \min_{\|x\|_{1} \le \gamma} f(x) + \lambda \gamma$$

• These are smooth objective with 'simple' constraints.

$$\min_{x\in\mathcal{C}}f(x).$$

#### **Optimization with Simple Constraints**

• Recall: gradient descent minimizes quadratic approximation:

$$x^{t+1} = \operatorname*{argmin}_{y} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

### Optimization with Simple Constraints

• Recall: gradient descent minimizes quadratic approximation:

$$x^{t+1} = \underset{y}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Consider minimizing subject to simple constraints:

$$x^{t+1} = \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

## Optimization with Simple Constraints

• Recall: gradient descent minimizes quadratic approximation:

$$x^{t+1} = \underset{y}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Consider minimizing subject to simple constraints:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Called projected gradient algorithm:

$$\begin{aligned} x_t^{GD} &= x^t - \alpha_t \nabla f(x^t), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ \|y - x_t^{GD}\| \right\}, \end{aligned}$$

Non-Finite

Non-Convex



Non-Finite

Non-Convex






#### Gradient Projection



#### Discussion of Projected Gradient

• Projected gradient has same rate as gradient method!

#### Discussion of Projected Gradient

- Projected gradient has same rate as gradient method!
- Can do many of the same tricks (i.e. line-search, acceleration, Barzilai-Borwein, SAG, SVRG).

#### Discussion of Projected Gradient

- Projected gradient has same rate as gradient method!
- Can do many of the same tricks (i.e. line-search, acceleration, Barzilai-Borwein, SAG, SVRG).
- Projected Newton needs expensive projection under  $\|\cdot\|_{H_t}$ :
  - Two-metric projection methods are efficient Newton-like strategy for bound constraints.
  - Inexact Newton methods allow Newton-like like strategy for optimizing costly functions with simple constraints.

## Projection Onto Simple Sets

Projections onto simple sets:

- Bound constraints  $(l \le x \le u)$
- Small number of linear equalities/inequalities.
   (a<sup>T</sup>x = b or a<sup>T</sup>x ≤ b)
- Norm-balls and norm-cones  $(||x|| \le \tau \text{ or } ||x|| \le x_0).$
- Probability simplex ( $x \ge 0, \sum_i x_i = 1$ ).
- Intersection of disjoint simple sets.

We can solve large instances of problems with these constraints.

## Projection Onto Simple Sets

Projections onto simple sets:

- Bound constraints  $(l \le x \le u)$
- Small number of linear equalities/inequalities.
   (a<sup>T</sup>x = b or a<sup>T</sup>x ≤ b)
- Norm-balls and norm-cones  $(||x|| \le \tau \text{ or } ||x|| \le x_0).$
- Probability simplex ( $x \ge 0, \sum_i x_i = 1$ ).
- Intersection of disjoint simple sets.

We can solve large instances of problems with these constraints.

Intersection of non-disjoint simple sets: Dykstra's algorithm.

#### Proximal-Gradient Method

#### • Proximal-gradient generalizes projected-gradient for

 $\min_{x} f(x) + r(x),$ 

where f is smooth but r is a general convex function.

.

#### Proximal-Gradient Method

#### • Proximal-gradient generalizes projected-gradient for

 $\min_{x} f(x) + r(x),$ 

where f is smooth but r is a general convex function.

• Consider the update:

$$x^{t+1} = \underset{y}{\operatorname{argmin}} \left\{ f(x^{t}) + \nabla f(x^{t})^{T} (y - x^{t}) + \frac{1}{2\alpha} \|y - x^{t}\|^{2} + r(y) \right\}$$

## Proximal-Gradient Method

#### • Proximal-gradient generalizes projected-gradient for

$$\min_{x} f(x) + r(x),$$

where f is smooth but r is a general convex function.

• Consider the update:

х

$$x^{t+1} = \underset{y}{\operatorname{argmin}} \left\{ f(x^{t}) + \nabla f(x^{t})^{T} (y - x^{t}) + \frac{1}{2\alpha} \|y - x^{t}\|^{2} + r(y) \right\}$$

• Applies proximity operator of r to gradient descent on f:

$$\begin{aligned} x_t^{GD} &= x^t - \alpha_t \nabla f(x_t), \\ t^{t+1} &= \operatorname*{argmin}_{y} \left\{ \frac{1}{2} \|y - x_t^{GD}\|^2 + \alpha r(y) \right\}, \end{aligned}$$

• Convergence rates are still the same as for minimizing f.

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname{argmin}_{x \in \mathbb{R}^{P}} \frac{1}{2} \|x - y\|^{2} + r(x).$$

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname{argmin}_{x \in \mathbb{R}^{P}} \frac{1}{2} \|x - y\|^{2} + r(x).$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^{t+1} = \text{softThresh}_{\alpha\lambda}[x^t - \alpha \nabla f(x^t)].$$

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname{argmin}_{x \in \mathbb{R}^{P}} \frac{1}{2} \|x - y\|^{2} + r(x).$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^{t+1} = \text{softThresh}_{\alpha\lambda}[x^t - \alpha \nabla f(x^t)].$$

• Example with  $\lambda = 1$ : Input Threshold Soft-Threshold  $\begin{bmatrix} 0.6715 \\ -1.2075 \\ 0.7172 \\ 1.6302 \\ 0.4889 \end{bmatrix}$ 

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname{argmin}_{x \in \mathbb{R}^{P}} \frac{1}{2} \|x - y\|^{2} + r(x).$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^{t+1} = \mathsf{softThresh}_{\alpha\lambda}[x^t - \alpha \nabla f(x^t)].$$



• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname{argmin}_{x \in \mathbb{R}^{P}} \frac{1}{2} \|x - y\|^{2} + r(x).$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^{t+1} = \mathsf{softThresh}_{\alpha\lambda}[x^t - \alpha 
abla f(x^t)].$$



Non-Finite

Non-Convex

#### Exact Proximal-Gradient Methods

• For what problems can we apply these methods?

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
  - L1-Regularization.
  - **2** Group  $\ell_1$ -Regularization.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
  - L1-Regularization.
  - **2** Group  $\ell_1$ -Regularization.
  - Solution State State
  - Small number of linear constraint.
  - Probability constraints.
  - A few other simple regularizers/constraints.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
  - L1-Regularization.
  - **2** Group  $\ell_1$ -Regularization.
  - Solution States Solution Control States S
  - Small number of linear constraint.
  - Probability constraints.
  - A few other simple regularizers/constraints.
- Can solve these non-smooth/constrained problems as fast as smooth/unconstrained problems!

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
  - L1-Regularization.
  - **2** Group  $\ell_1$ -Regularization.
  - Solution States Solution Control States S
  - Small number of linear constraint.
  - Probability constraints.
  - A few other simple regularizers/constraints.
- Can solve these non-smooth/constrained problems as fast as smooth/unconstrained problems!
- We can again do many of the same tricks (line-search, acceleration, Barzilai-Borwein, two-metric subgradient-projection, inexact proximal operators, inexact proximal Newton, SAG, SVRG).

• Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

• Alternate between prox-like operators with respect to f and r.

• Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \quad \Leftrightarrow \quad \min_{x = Ay} f(x) + r(y),$$

• Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \quad \Leftrightarrow \quad \min_{x=Ay} f(x) + r(y),$$

$$\min_{x} f(x) + r(Bx) \quad \Leftrightarrow \quad \min_{y=Bx} f(x) + r(y).$$

• Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \quad \Leftrightarrow \quad \min_{x=Ay} f(x) + r(y),$$

$$\min_{x} f(x) + r(Bx) \quad \Leftrightarrow \quad \min_{y=Bx} f(x) + r(y).$$

• If prox can not be computed exactly: Linearized ADMM.

#### Frank-Wolfe Method

• In some cases the projected gradient step

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\},$$

may be hard to compute.

#### Frank-Wolfe Method

• In some cases the projected gradient step

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\},$$

may be hard to compute.

• Frank-Wolfe method simply uses:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) \right\},\$$

requires compact C, takes convex combination of  $x^t$  and  $x^{t+1}$ .

 O(1/t) rate for smooth convex objectives, some linear convergence results for strongly-convex [Jaggi, 2013].

Non-Finite

Non-Convex

## Summary

- No black-box method can beat subgradient methods
- For most objectives, you can beat subgradient methods.

# Summary

- No black-box method can beat subgradient methods
- For most objectives, you can beat subgradient methods.
- You just need a long list of tricks:
  - Smoothing.
  - Chambolle-Pock.
  - Projected-gradient.
  - Two-metric projection.
  - Proximal-gradient.
  - Proximal-Newton.
  - ADMM
  - Frank-Wolfe.
  - Mirror descent.
  - Incremental surrogate optimization.
  - Solving smooth dual.

Non-Smooth

Non-Finite

Non-Convex











• Consider smooth/strongly-convex stochastic objectives,

 $\min_{x\in\mathbb{R}^D}\mathbb{E}[f_i(x)],$ 

including the generalization error in machine learning.

• Consider smooth/strongly-convex stochastic objectives,

 $\min_{x\in\mathbb{R}^D}\mathbb{E}[f_i(x)],$ 

including the generalization error in machine learning.

• Error  $\epsilon$  has two parts [Bottou & Bousquet, 2007]:

 $\epsilon = (\text{optimization error}) + (\text{estimation error}).$ 

(for generalization error, also have model error)

• Consider smooth/strongly-convex stochastic objectives,

 $\min_{x\in\mathbb{R}^D}\mathbb{E}[f_i(x)],$ 

including the generalization error in machine learning.

• Error  $\epsilon$  has two parts [Bottou & Bousquet, 2007]:

 $\epsilon = (\text{optimization error}) + (\text{estimation error}).$ 

(for generalization error, also have model error)

- Consider two strategies:
  - Generate *t* samples, then minimize exactly (ERM):
    - Optimization error = 0.
    - Estimation error =  $\tilde{O}(1/t)$ .

• Consider smooth/strongly-convex stochastic objectives,

 $\min_{x\in\mathbb{R}^D}\mathbb{E}[f_i(x)],$ 

including the generalization error in machine learning.

• Error  $\epsilon$  has two parts [Bottou & Bousquet, 2007]:

 $\epsilon = (\text{optimization error}) + (\text{estimation error}).$ 

(for generalization error, also have model error)

- Consider two strategies:
  - Generate *t* samples, then minimize exactly (ERM):
    - Optimization error = 0.
    - Estimation error =  $\tilde{O}(1/t)$ .
  - Or just applying stochastic gradient as we go:
    - Optimization error = O(1/t).
    - Estimation error =  $\tilde{O}(1/t)$ .

• So just go through your data once with stochastic gradient?

- So just go through your data once with stochastic gradient?
- "overwhelming empirical evidence shows that for almost all actual data, the ERM *is* better. However, we have no understanding of why this happens"

[Srebro & Sridharan, 2011]

- So just go through your data once with stochastic gradient?
- "overwhelming empirical evidence shows that for almost all actual data, the ERM *is* better. However, we have no understanding of why this happens"

[Srebro & Sridharan, 2011]

- Constants matter in learning:
  - SG optimal in terms of sample size.
  - But not other quantities: L,  $\mu$ ,  $x^0$ .
  - We care about multiplying test error by 2!

- So just go through your data once with stochastic gradient?
- "overwhelming empirical evidence shows that for almost all actual data, the ERM *is* better. However, we have no understanding of why this happens"

- Constants matter in learning:
  - SG optimal in terms of sample size.
  - But not other quantities: L,  $\mu$ ,  $x^0$ .
  - We care about multiplying test error by 2!
- Growing-batch deterministic methods [Byrd et al., 2011].
- Or take t iterations of SAG on fixed N < t samples.
  - Optimization accuracy decreases to  $O(\rho^t)$ .
  - Estimation accuracy increases to  $\tilde{O}(1/N)$ .

<sup>[</sup>Srebro & Sridharan, 2011]
## Stochastic vs. Deterministic for Stochastic Objectives

- So just go through your data once with stochastic gradient?
- "overwhelming empirical evidence shows that for almost all actual data, the ERM *is* better. However, we have no understanding of why this happens"

- Constants matter in learning:
  - SG optimal in terms of sample size.
  - But not other quantities: L,  $\mu$ ,  $x^0$ .
  - We care about multiplying test error by 2!
- Growing-batch deterministic methods [Byrd et al., 2011].
- Or take t iterations of SAG on fixed N < t samples.
  - Optimization accuracy decreases to  $O(\rho^t)$ .
  - Estimation accuracy increases to  $\tilde{O}(1/N)$ .
- SAG obtains better bounds for difficult optimization problems.

<sup>[</sup>Srebro & Sridharan, 2011]

Non-Convex

## Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

• Start with  $x_0$  and initial sample size N

Non-Convex

## Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

• Start with  $x_0$  and initial sample size N

• for 
$$s = 0, 1, 2...$$

• 
$$d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$$
 for N fresh samples.  
•  $x^0 = x_s$ 

Non-Convex

## Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

- Start with  $x_0$  and initial sample size N
- for s = 0, 1, 2...•  $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$  for N fresh samples. •  $x^0 = x_s$ • for t = 1, 2, ... m
  - Randomly pick 1 fresh sample.
  - $x^{t} = x^{t-1} \alpha_{t}(f_{i_{t}}'(x^{t-1}) f_{i_{t}}'(x_{s}) + d_{s}).$
  - $x_{s+1} = x^t$  for random  $t \in \{1, 2, \ldots, m\}$ .
  - Increase samples size N.

Non-Convex

## Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

- Start with  $x_0$  and initial sample size N
- for s = 0, 1, 2...•  $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$  for N fresh samples. •  $x^0 = x_s$ • for t = 1, 2, ... m• Randomly pick 1 fresh sample.
  - $x^{t} = x^{t-1} \alpha_t (f'_{i_t}(x^{t-1}) f'_{i_t}(x_s) + d_s).$
  - $x_{s+1} = x^t$  for random  $t \in \{1, 2, \dots, m\}$ .
  - Increase samples size N.
- Streaming SVRG is optimal in non-asymptotic regime.
- Same variance as ERM (only true for avg(SG) asymptotically).
- Second-order methods are not necessary.

## Constant-Step SG under Strong Assumptions

• We can beat O(1/t) under stronger assumptions.

## Constant-Step SG under Strong Assumptions

- We can beat O(1/t) under stronger assumptions.
- E.g., Schmidt & Le Roux [2013],

 $\|f_i'(x)\|\leq B\|f'(x)\|.$ 

• Crazy assumption: assumes  $x^*$  minimizes  $f_i$ .

## Constant-Step SG under Strong Assumptions

- We can beat O(1/t) under stronger assumptions.
- E.g., Schmidt & Le Roux [2013],

 $\|f_i'(x)\|\leq B\|f'(x)\|.$ 

- Crazy assumption: assumes  $x^*$  minimizes  $f_i$ .
- With  $\alpha_t = \frac{1}{LB^2}$ , stochastic gradient has

$$\mathbb{E}[f(x^t)] - f(x^*) \leq \left(1 - \frac{\mu}{LB^2}\right)^t [f(x^0) - f(x^*)].$$

• If you expect to over-fit, maybe constant  $\alpha_t$  is enough?

Non-Convex

## **Online Convex Optimization**

• What if data is not IID?

- What if data is not IID?
- Addressed by online convex optimization (OCO) framework:

[Zinkevich, 2003]

• At time t, make a prediction  $x^t$ .

- What if data is not IID?
- Addressed by online convex optimization (OCO) framework:

[Zinkevich, 2003]

- At time t, make a prediction  $x^t$ .
- Receive arbitrary convex loss  $f_t$ .
- OCO analyzes regret,

$$\sum_{k=1}^t f_t(x^t) - f_t(x^*),$$

comparing vs. best fixed  $x^*$  for any sequence  $\{f_t\}$ .

- What if data is not IID?
- Addressed by online convex optimization (OCO) framework:

[Zinkevich, 2003]

- At time t, make a prediction  $x^t$ .
- Receive arbitrary convex loss  $f_t$ .
- OCO analyzes regret,

$$\sum_{k=1}^t f_t(x^t) - f_t(x^*),$$

comparing vs. best fixed  $x^*$  for any sequence  $\{f_t\}$ .

- SG-style methods achieve optimal  $O(\sqrt{t})$  regret.
- Strongly-convex losses:  $O(\log(t))$  regret [Hazan et al., 2006].

- What if data is not IID?
- Addressed by online convex optimization (OCO) framework:

[Zinkevich, 2003]

- At time t, make a prediction  $x^t$ .
- Receive arbitrary convex loss  $f_t$ .
- OCO analyzes regret,

$$\sum_{k=1}^t f_t(x^t) - f_t(x^*),$$

comparing vs. best fixed  $x^*$  for any sequence  $\{f_t\}$ .

- SG-style methods achieve optimal  $O(\sqrt{t})$  regret.
- Strongly-convex losses:  $O(\log(t))$  regret [Hazan et al., 2006].
- Variants exist see features first [Cesa-Bianchi et al., 1993.
- Bandit setting: no gradients.

Non-Smooth

Non-Finite

Non-Convex





- 2 Non-Smooth
- 3 Non-Finite



- Apply method with good properties for convex functions.
- First phase is getting near minimizer.
- Second phase applies rates from convex optimization.

- Apply method with good properties for convex functions.
- First phase is getting near minimizer.
- Second phase applies rates from convex optimization.
- But how long does the first phase take?

- Apply method with good properties for convex functions.
- First phase is getting near minimizer.
- Second phase applies rates from convex optimization.
- But how long does the first phase take?
- Global non-convex optimization:
  - Search for global min for general function class.
  - E.g., search over a sucessively-refined grid.
  - Optimal rate for Lipschitz functions is  $O(1/\epsilon^{1/D})$ .

- Apply method with good properties for convex functions.
- First phase is getting near minimizer.
- Second phase applies rates from convex optimization.
- But how long does the first phase take?
- Global non-convex optimization:
  - Search for global min for general function class.
  - E.g., search over a sucessively-refined grid.
  - Optimal rate for Lipschitz functions is  $O(1/\epsilon^{1/D})$ .
  - Can only solve low-dimensional problems.
- We'll go over recent local, global, and hybrid results..

### • Linear convergence proofs usually assume strong-convexity

$$f(y) \ge f(x) + \langle 
abla f(x), y - x 
angle + rac{\mu}{2} \|y - x\|^2.$$

• Linear convergence proofs usually assume strong-convexity

$$f(y) \geq f(x) + \langle 
abla f(x), y - x 
angle + rac{\mu}{2} \|y - x\|^2.$$

• Which implies the inequality often used in the proofs,

 $\|\nabla f(x)\|^2 \ge 2\mu [f(x) - f^*].$ 

• Linear convergence proofs usually assume strong-convexity

$$f(y) \geq f(x) + \langle 
abla f(x), y - x 
angle + rac{\mu}{2} \|y - x\|^2.$$

• Which implies the inequality often used in the proofs,

 $\|\nabla f(x)\|^2 \ge 2\mu [f(x) - f^*].$ 

- A bunch of weaker assumptions imply this inequality,
  - Essentially strong-convexity.
  - Optimal strong-convexity.
  - Restricted secant inequality.
  - Etc.

• Linear convergence proofs usually assume strong-convexity

$$f(y) \geq f(x) + \langle 
abla f(x), y - x 
angle + rac{\mu}{2} \|y - x\|^2$$

• Which implies the inequality often used in the proofs,

 $\|\nabla f(x)\|^2 \ge 2\mu [f(x) - f^*].$ 

- A bunch of weaker assumptions imply this inequality,
  - Essentially strong-convexity.
  - Optimal strong-convexity.
  - Restricted secant inequality.
  - Etc.
- Strong property: Just assume the inequality holds.
  - Special case of Łojasiewicz [1963] inequality.
  - Also introduced in Polyak [1963].
  - Weaker than all the above conditions.
  - Does not imply solution is unique.
    - Holds for f(Ax) with f strongly-convex and  $rank(A) \ge 1$ .
  - Does not imply convexity.

## Global Linear Convergence with the Strong Property

Function satisfying the strong-convexity property:



(unique optimum, convex, growing faster than linear)

# Global Linear Convergence with the Strong Property

Function satisfying the strong-convexity property:



(unique optimum, convex, growing faster than linear)

Function satisfying the strong property:



- Linear convergence rate for this non-convex function.
- Second phase of local solvers is larger than we thought.

## General Global Non-Convex Rates?

• For strongly-convex smooth functions, we have

$$\|\nabla f(x^t)\|^2 = O(\rho^t), \quad f(x^t) - f(x^*) = O(\rho^t), \quad \|x_t - x_*\| = O(\rho^t).$$

• For convex smooth functions, we have

$$\|\nabla f(x^t)\|^2 = O(1/t), \quad f(x^t) - f(x^*) = O(1/t).$$

## General Global Non-Convex Rates?

• For strongly-convex smooth functions, we have

$$\|\nabla f(x^t)\|^2 = O(\rho^t), \quad f(x^t) - f(x^*) = O(\rho^t), \quad \|x_t - x_*\| = O(\rho^t).$$

• For convex smooth functions, we have

$$\|\nabla f(x^t)\|^2 = O(1/t), \quad f(x^t) - f(x^*) = O(1/t).$$

• For non-convex smooth functions, we have

$$\min_{k} \|\nabla f(x^{k})\|^{2} = O(1/t).$$

[Ghadimi & Lan, 2013].

## Escaping Saddle Points

• Ghadimi & Lan type of rates could be good or bad news:

- No dimension dependence (way faster than grid-search).
- But gives up on optimality (e.g., approximate saddle points).

## Escaping Saddle Points

- Ghadimi & Lan type of rates could be good or bad news:
  - No dimension dependence (way faster than grid-search).
  - But gives up on optimality (e.g., approximate saddle points).
- Escaping from saddle points:
  - Classical: trust-region methods allow negative eigenvalues.
  - Modify eigenvalues in Newton's method [Dauphin et al., 2014].
  - Add random noise to stochastic gradient [Ge et al., 2015].

## Escaping Saddle Points

- Ghadimi & Lan type of rates could be good or bad news:
  - No dimension dependence (way faster than grid-search).
  - But gives up on optimality (e.g., approximate saddle points).
- Escaping from saddle points:
  - Classical: trust-region methods allow negative eigenvalues.
  - Modify eigenvalues in Newton's method [Dauphin et al., 2014].
  - Add random noise to stochastic gradient [Ge et al., 2015].
  - Cubic regularization of Newton [Nesterov & Polyak, 2006],

$$x^{k+1} = \min_{d} \left\{ f(x^k) + \langle \nabla f(x^k), d \rangle + \frac{1}{2} d^T \nabla^2 f(x^k) d + \frac{L}{6} \|d\|^3 \right\},$$

if within ball of saddle point then next step:

- Moves outside of ball.
- Has lower objective than saddle-point.

Non-Convex

## Globally-Optimal Methods for Matrix Problems

## Globally-Optimal Methods for Matrix Problems

• Classic: principal component analysis (PCA)

 $\max_{W^T W=I} \|X^T W\|_F^2,$ 

and rank-constrained version. Shamir [2015] gives SAG/SVRG rates for PCA.

## Globally-Optimal Methods for Matrix Problems

• Classic: principal component analysis (PCA)

$$\max_{W^T W=I} \|X^T W\|_F^2,$$

and rank-constrained version. Shamir [2015] gives SAG/SVRG rates for PCA.

• Burer & Monteiro [2004] consider SDP re-parameterization

$$\min_{\{X|X\succeq 0, \operatorname{rank}(X)\leq k\}} f(X) \Rightarrow \min_{V} f(VV^{T}),$$

and show does not introduce spurious local minimum.

## Globally-Optimal Methods for Matrix Problems

• Classic: principal component analysis (PCA)

$$\max_{W^T W=I} \|X^T W\|_F^2,$$

and rank-constrained version. Shamir [2015] gives SAG/SVRG rates for PCA.

• Burer & Monteiro [2004] consider SDP re-parameterization

$$\min_{\{X|X \succeq 0, \operatorname{rank}(X) \le k\}} f(X) \Rightarrow \min_{V} f(VV^{T}),$$

and show does not introduce spurious local minimum.

• De Sa et al. [2015]: For class of non-convex problems of the form

$$\min_{Y} \mathbb{E}[\|A - VV^{T}\|_{F}^{2}].$$

random initialization leads to global optimum.

## Globally-Optimal Methods for Matrix Problems

• Classic: principal component analysis (PCA)

$$\max_{W^T W=I} \|X^T W\|_F^2,$$

and rank-constrained version. Shamir [2015] gives SAG/SVRG rates for PCA.

• Burer & Monteiro [2004] consider SDP re-parameterization

$$\min_{\{X|X\succeq 0, \operatorname{rank}(X)\leq k\}} f(X) \Rightarrow \min_{V} f(VV^{T}),$$

and show does not introduce spurious local minimum.

• De Sa et al. [2015]: For class of non-convex problems of the form

$$\min_{Y} \mathbb{E}[\|A - VV^{T}\|_{F}^{2}].$$

#### random initialization leads to global optimum.

- Under certain assumptions, can solve UV<sup>T</sup> dictionary learning and phase retrieval problems [Agarwal et al., 2014, Candes et al., 2015].
- Certain latent variable problems like training HMMs can be solved via SVD and tensor-decomposition methods [Hsu et al., 2012, Anankumar et al, 2014].

## Convex Relaxations/Representations

- Convex relaxations approximate non-convex with convex:
  - Convex relaxations exist for neural nets.
    - [Bengio et al., 2005, Aslan et al., 2015].
  - But may solve restricted problem or be a bad approximation.
Non-Convex

## Convex Relaxations/Representations

- Convex relaxations approximate non-convex with convex:
  - Convex relaxations exist for neural nets.
    - [Bengio et al., 2005, Aslan et al., 2015].
  - But may solve restricted problem or be a bad approximation.
- Can solve convex dual:
  - Strong-duality holds for some non-convex problems.
  - Sometimes dual has nicer properties.
  - Efficiently representation/calculation of neural network dual?

Non-Convex

## Convex Relaxations/Representations

- Convex relaxations approximate non-convex with convex:
  - Convex relaxations exist for neural nets.
    - [Bengio et al., 2005, Aslan et al., 2015].
  - But may solve restricted problem or be a bad approximation.
- Can solve convex dual:
  - Strong-duality holds for some non-convex problems.
  - Sometimes dual has nicer properties.
  - Efficiently representation/calculation of neural network dual?
- Exact convex re-formulations of non-convex problems:
  - Laserre [2001].
  - But the size may be enormous.

Non-Convex

#### General Non-Convex Rates

Grid-search is optimal, but can be beaten:

- Convergence rate of Bayesian optimization [Bull, 2011]:
  - Slower than grid-search with low level of smoothness.
  - Faster than grid-search with high level of smoothness:
    - Improves error from  $O(1/t^{1/d})$  to  $O(1/t^{v/d})$ .

#### General Non-Convex Rates

Grid-search is optimal, but can be beaten:

- Convergence rate of Bayesian optimization [Bull, 2011]:
  - Slower than grid-search with low level of smoothness.
  - Faster than grid-search with high level of smoothness:
    - Improves error from  $O(1/t^{1/d})$  to  $O(1/t^{v/d})$ .
- Regret bounds for Bayesian optimization:
  - Exponential scaling with dimensionality [Srinivas et al., 2010].
  - Better under additive assumption [Kandasamy et al., 2015].

## General Non-Convex Rates

Grid-search is optimal, but can be beaten:

- Convergence rate of Bayesian optimization [Bull, 2011]:
  - Slower than grid-search with low level of smoothness.
  - Faster than grid-search with high level of smoothness:
    - Improves error from  $O(1/t^{1/d})$  to  $O(1/t^{v/d})$ .
- Regret bounds for Bayesian optimization:
  - Exponential scaling with dimensionality [Srinivas et al., 2010].
  - Better under additive assumption [Kandasamy et al., 2015].
- Other known faster-than-grid-search rates:
  - Simulated annealing under complicated non-singular assumption [Tikhomirov, 2010].
  - Particle filtering can improve under certain conditions [Crisan & Doucet, 2002].
  - Graduated Non-Convexity for  $\sigma$ -nice functions [Hazan et al., 2014].

Non-Finite

Non-Convex

# Summary

Summary:

- Part 1: Can solve constrained/non-smooth efficiently with a variety of tricks (two-metric, proximal-gradient, dual, etc.).
- Part 2: SG is optimal for learning, but constants matter and finite-sum methods are leading to improved results.
- Part 3: We are starting to be able to understand non-convex problems, but there is a lot of work to do.