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Why	  focus	  deep	  research	  on	  NLP?	  

•  Image	  classifica,on	  increasingly	  commodi,zed	  
•  Vision	  is	  more	  than	  classifica,on	  but	  it’s	  central	  

•  Demo:	  h;ps://www.metamind.io/vision/train	  
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Overview	  

•  Fun	  deep	  NLP	  applica,ons:	  
•  Character	  RNNs	  on	  text	  and	  code	  
•  Image	  –	  Sentence	  mapping	  
•  Engagement	  
•  Ques,on	  Answering	  

•  Ask	  me	  Anything:	  Dynamic	  Memory	  Networks	  for	  NLP	  
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Character	  RNNs	  on	  text	  and	  code	  
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h;p://karpathy.github.io/2015/05/21/rnn-‐effec,veness/	  



Character	  RNNs	  on	  text	  and	  code	  

•  Haven’t	  yet	  produced	  useful	  results	  on	  real	  datasets	  

•  Shows	  that	  RNNs	  can	  memorize	  sequences	  and	  keep	  memory	  
(mostly	  LSTMs)	  

•  Most	  interes,ng	  results	  simply	  train	  on	  dataset	  and	  sample	  
from	  it	  a`erwards	  (first	  shown	  by	  Sutskever	  et	  al.	  2011:	  
Genera,ng	  Text	  with	  Recurrent	  Neural	  Networks)	  

•  Results	  from	  an	  LSTM	  (karpathy.github.io)	  à	  	  
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Shakespeare	  

PANDARUS:	  	  
Alas,	  I	  think	  he	  shall	  be	  come	  approached	  and	  the	  day	  
When	  li;le	  srain	  would	  be	  a;ain'd	  into	  being	  never	  fed,	  	  
And	  who	  is	  but	  a	  chain	  and	  subjects	  of	  his	  death,	  	  
I	  should	  not	  sleep.	  	  
	  
Second	  Senator:	  	  
They	  are	  away	  this	  miseries,	  produced	  upon	  my	  soul,	  	  
Breaking	  and	  strongly	  should	  be	  buried,	  when	  I	  perish	  	  
The	  earth	  and	  thoughts	  of	  many	  states.	  	  
	  
DUKE	  VINCENTIO:	  	  
Well,	  your	  wit	  is	  in	  the	  care	  of	  side	  and	  that.	  
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Wikipedia	  

Naturalism	  and	  decision	  for	  the	  majority	  of	  Arab	  countries'	  
capitalide	  was	  grounded	  by	  the	  Irish	  language	  by	  [[John	  Clair]],	  [[An	  
Imperial	  Japanese	  Revolt]],	  associated	  with	  Guangzham's	  
sovereignty.	  His	  generals	  were	  the	  powerful	  ruler	  of	  the	  Portugal	  in	  
the	  [[Protestant	  Immineners]],	  which	  could	  be	  said	  to	  be	  directly	  in	  
Cantonese	  Communica,on,	  which	  followed	  a	  ceremony	  and	  set	  
inspired	  prison,	  training.	  The	  emperor	  travelled	  back	  to	  [[An,och,	  
Perth,	  October	  25|21]]	  to	  note,	  the	  Kingdom	  of	  Costa	  Rica,	  
unsuccessful	  fashioned	  the	  [[Thrales]],	  [[Cynth's	  Dajoard]],	  known	  
in	  western	  [[Scotland]],	  near	  Italy	  to	  the	  conquest	  of	  India	  with	  the	  
conflict.	  	  
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Latex	  (had	  to	  be	  fixed	  manually)	  
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Code!	  (Linux	  source	  code)	  
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Ques-on	  Answering:	  Quiz	  Bowl	  Compe--on	  

•  Iyyer	  et	  al.	  2014:	  A	  Neural	  Network	  for	  Factoid	  Ques,on	  
Answering	  over	  Paragraphs	  

•  QUESTION:	  
He	  le`	  unfinished	  a	  novel	  whose	  ,tle	  character	  forges	  his	  
father's	  signature	  to	  get	  out	  of	  school	  and	  avoids	  the	  dra`	  by	  
feigning	  desire	  to	  join.	  A	  more	  famous	  work	  by	  this	  author	  tells	  
of	  the	  rise	  and	  fall	  of	  the	  composer	  Adrian	  Leverkühn.	  Another	  
of	  his	  novels	  features	  the	  jesuit	  Naptha	  and	  his	  opponent	  
Se;embrini,	  while	  his	  most	  famous	  work	  depicts	  the	  aging	  
writer	  Gustav	  von	  Aschenbach.	  Name	  this	  German	  author	  of	  The	  
Magic	  Mountain	  and	  Death	  in	  Venice.	  	  



Ques-on	  Answering:	  Quiz	  Bowl	  Compe--on	  

•  QUESTION:	  
He	  le`	  unfinished	  a	  novel	  whose	  ,tle	  character	  forges	  his	  
father's	  signature	  to	  get	  out	  of	  school	  and	  avoids	  the	  dra`	  by	  
feigning	  desire	  to	  join.	  A	  more	  famous	  work	  by	  this	  author	  tells	  
of	  the	  rise	  and	  fall	  of	  the	  composer	  Adrian	  Leverkühn.	  Another	  
of	  his	  novels	  features	  the	  jesuit	  Naptha	  and	  his	  opponent	  
Se;embrini,	  while	  his	  most	  famous	  work	  depicts	  the	  aging	  
writer	  Gustav	  von	  Aschenbach.	  Name	  this	  German	  author	  of	  The	  
Magic	  Mountain	  and	  Death	  in	  Venice.	  	  

•  ANSWER:	  Thomas	  Mann	  	  



Recursive	  Neural	  Networks	  
•  Follow	  dependency	  structure	  



Pushing	  Facts	  into	  En-ty	  Vectors	  



Qanta	  Model	  Can	  Defeat	  Human	  Players	  

History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.

Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the di↵erence between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki

indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar



Literature	  Ques-ons	  are	  Hard!	  

History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.

Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the di↵erence between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki

indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar



Visual	  Grounding	  
•  Idea:	  Map	  sentences	  and	  images	  into	  a	  joint	  space	  

•  Socher	  et	  al.	  2013:	  	  
Grounded	  Composi,onal	  Seman,cs	  for	  Finding	  and	  
Describing	  Images	  with	  Sentences	  
	  



Discussion:	  Composi-onal	  Structure	  
•  Recursive	  Neural	  Networks	  so	  far	  	  
used	  cons,tuency	  trees	  	  
which	  results	  in	  more	  syntac,cally	  	  
influenced	  representa,ons	  

•  Instead:	  Use	  dependency	  trees	  which	  capture	  more	  	  
seman,c	  structure	  



Convolu-onal	  Neural	  Network	  for	  Images	  

•  CNN	  trained	  on	  ImageNet	  (Le	  et	  al.	  2013)	  
•  RNN	  trained	  to	  give	  large	  inner	  products	  	  
between	  sentence	  and	  image	  vectors:	  
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Image	  Search	   Mean	  
Rank	  

Random	   52.1	  

Bag	  of	  Words	   14.6	  

CT-‐RNN	   16.1	  

Recurrent	  Neural	  Network	   19.2	  

Kernelized	  Canonical	  Correla,on	  Analysis	   15.9	  

DT-‐RNN	   12.5	  

Describing	  Images	   Mean	  
Rank	  

Random	   92.1	  

Bag	  of	  Words	   21.1	  

CT-‐RNN	   23.9	  

Recurrent	  Neural	  Network	   27.1	  

Kernelized	  Canonical	  Correla,on	  Analysis	   18.0	  

DT-‐RNN	   16.9	  



Live	  Demo	  
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Engagement	  
Demo	  
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Image	  –	  Sentence	  Genera-on	  (!)	  

•  Several	  models	  came	  out	  simultaneously	  in	  2015	  that	  follow	  up	  
•  Replace	  recursive	  neural	  network	  with	  LSTM	  and	  instead	  of	  only	  

finding	  vectors	  they	  generate	  the	  descrip,on	  
•  Mostly	  memorized	  training	  	  

sequences	  (becomes	  similar	  again)	  

•  Donahue	  et	  al.	  2015:	  Long-‐term	  	  à	  
Recurrent	  Convolu,onal	  Networks	  	  
for	  Visual	  Recogni,on	  and	  Descrip,on	  

•  Karpathy	  and	  Fei-‐Fei	  2015:	  Deep	  	  
Visual-‐Seman,c	  Alignments	  for	  	  
Genera,ng	  Image	  Descrip,ons	  
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Image	  –	  Sentence	  Genera-on	  (!)	  



Dynamic	  Memory	  Networks	  

Richard	  Socher	  
richard@metamind.io	  



A	  new	  paradigm	  

All	  NLP	  tasks	  can	  
	  be	  reduced	  to	  	  

ques,on	  answering	  
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QA	  

•  Ques,on	  answering	  tackles	  complex	  ques,ons	  over	  lots	  of	  text	  	  
• Where	  was	  Obama's	  wife	  born?	  

•  Machine	  transla,on	  	  
• What	  is	  the	  transla,on	  into	  French?	  

•  Sequence	  modeling	  tasks	  like	  named	  en,ty	  recogni,on	  (NER)	  	  
• What	  are	  the	  named	  en,ty	  tags	  in	  this	  sentence?	  

•  Classifica,on	  problems	  like	  sen,ment	  analysis	  	  
• What	  is	  the	  sen,ment?	  

•  Even	  mul,-‐sentence	  joint	  classifica,on	  problems	  like	  
coreference	  resolu,on	  	  
• Who	  does	  "their"	  refer	  to?	  
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Reduc-on	  to	  QA	  	  

Interes,ng	  	  
but	  	  

useless	  
?	  
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Yes,	  un-l	  a	  model	  makes	  it	  useful	  

Dynamic	  memory	  	  
Network	  	  

•  DMN,	  a	  neural	  network	  based	  model	  in	  which	  any	  QA	  task	  can	  
be	  trained	  using	  input-‐ques,on-‐answer	  triplets.	  

•  Related	  to	  	  
•  Memory	  Networks,	  Weston	  et	  al.	  2014	  
•  Neural	  Turing	  Machines,	  Graves	  et	  al.	  2014	  
•  Teaching	  Machines	  to	  Read	  and	  Comprehend,	  Hermann	  et	  al.	  2015	  	  

•  as	  introduced	  by	  Phil	  yesterday	  but	  more	  general	  
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QA	  +	  DMN	  

Ask	  Me	  Anything:	  
Dynamic	  Memory	  Networks	  

for	  NLP	  
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Joint	  Work	  with	  MetaMind	  intern	  team	  

•  Ankit	  Kumar	  
•  Ozan	  Irsoy	  
•  Mohit	  Iyyer	  
•  Peter	  Ondruska	  
•  James	  Bradbury	  
•  Ishaan	  Gulrajani	  
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Example	  Input,	  Ques-on,	  Answer	  
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I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
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•  Knowledge(
Basis(
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Input(Text(Sequence( Ques&on(

Episodic(Memory( Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to
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Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to
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The	  Modules:	  Input	  

•  Responsible	  for	  compu,ng	  representa,ons	  of	  (audio,	  visual	  or)	  
textual	  inputs	  such	  that	  they	  can	  be	  retrieved	  when	  needed	  
later.	  	  

•  Assume	  a	  temporal	  sequence	  indexable	  by	  a	  ,me	  stamp.	  	  
•  For	  wri;en	  language	  we	  have	  a	  sequence	  of	  words	  (v1,…,vTw)	  	  
•  Both	  unsupervised	  and	  supervised	  learning	  	  
•  Context-‐independent	  and	  context-‐dependent	  hidden	  states	  
•  Word	  vectors	  from	  Glove	  model	  Pennington	  et	  al.	  (2014)	  

à	  Stored	  in	  seman,c	  memory	  module	  

•  RNN	  computa,on	  for	  context	  states	  à	  
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Reminder:	  Gated	  Recurrent	  Units	  in	  RNN	  
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specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3
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specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3
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specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .
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•  Simple	  GRU	  over	  ques,on	  word	  vectors	  
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2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)
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The	  Modules:	  Episodic	  Memory!	  

•  Combines	  the	  previous	  three	  modules'	  outputs	  in	  order	  to	  
reason	  over	  them	  and	  give	  the	  resul,ng	  knowledge	  to	  the	  
answer	  module.	  	  

•  Dynamically	  retrieves	  the	  necessary	  informa,on	  over	  the	  
sequence	  of	  words	  or	  sentences.	  	  

•  If	  necessary	  to	  retrieve	  addi,onal	  facts	  à	  iterate	  over	  inputs	  	  
•  Needed	  for	  transi,ve	  inference	  (TI)	  

•  The	  hippocampus,	  the	  seat	  of	  episodic	  memory	  in	  humans,	  is	  
ac,ve	  during	  this	  kind	  of	  inference	  and	  disrup,on	  of	  the	  
hippocampus	  impairs	  TI	  
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Gates	  over	  input	  sentences	  

•  For	  each	  sentence	  in	  input:	  

•  Summarize	  important	  facts	  in	  episode	  vector:	  

•  Done	  if	  only	  one	  pass	  over	  data	  was	  needed	  to	  answer	  ques,on	  
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2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)
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Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t )st, (7)

where softmax(g

1

t ) =

exp(g1
t )PT

j=1 exp(g1
j )

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.
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3.1 Semantic Question Answering
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I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence( Ques&on(

Episodic(Memory( Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2
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Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:
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t )st, (7)

where softmax(g
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exp(g1
t )PT

j=1 exp(g1
j )

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering
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relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
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mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
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, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m
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The first hidden state of the answer sequence model is the last hidden state of the memory GRU
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= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:
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where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.
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as well as the question:

at = GRU([yt�1

, q], at�1
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where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W
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mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5



Pudng	  it	  all	  together	  

•  Training	  via	  cross-‐entropy	  errors	  and	  backpropaga,on	  

8/11/15	  Richard	  Socher	  Lecture	  1,	  Slide	  42	  

Answer module

Question Module

Semantic Memory
Module 

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is 
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4



Tasks	  with	  results	  above	  or	  near	  state	  of	  the	  art	  

Type	   Dataset	  

QA	   babI - Facebook	  

Sequence	   POS	  

Classification	   Sentiment	  

Sequence	   NER	  

MT	   English-French 

Coref	   Guha	  et	  al.	  2015 
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Details:	  QA	  on	  babI,	  POS	  and	  Sen-ment	  
4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).
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long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).
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4.3 Text Classification: Sentiment Analysis

Stanford Sentiment Treebank (SST) [2] is a popular dataset for sentiment classification. It provides
phrase-level fine-grained labels, and comes with a train/dev/test split. We present results on two
formats: fine-grained root prediction, where all full sentences (root nodes) of the test set are to
be classified as either very negative, negative, neutral, positive, or very positive, and binary root
prediction, where all non-neutral full sentences of the test set are to be classified as either positive
or negative. To train the model on the fine-grained task, we use all phrase-level labels. To train on
the binary task, we use all non-neutral phrase-level labels.

Task MV-RNN RNTN DCNN PVec CNN-MC DRNN CT-LSTM DMN

Binary 82.9 85.4 86.8 87.8 88.1 86.6 88.0 88.3
Fine-grained 44.4 45.7 48.5 48.7 47.4 49.8 51.0 50.3

Table 3: Test accuracies on SST [2]. Key: MV-RNN: Socher et al., 2013. RNTN: Socher et al.,
2013. DCNN: Blunsom et al., 2014. PVec: Le and Mikolov, 2014. CNN-MC: Kim, 2014. DRNN:
Irsoy and Cardie, 2014. CT-LSTM: Tai et al., 2015. All results as reported in [35]

For sentiment analysis, our gate function G needs only the first 3 components c,m, q of the function
z as defined in Eq. 3. The DMN achieves state-of-the-art accuracy on the binary classification task,
as well as near state-of-the-art on the fine-grained classification task.

Our DMN was trained with GRU sequence models and no tree structure. It is easy to replace the
GRU sequence model with any of the models listed above, as well as incorporate tree structure to
the retrieval process. These experiments were not run, and we consider them future work.

Preliminary Results: Machine Translation

Figure 4: Machine translation
training progress in terms of
log-perplexity.

We are also training the DMN for machine translation, comparing it
to the sequence-to-sequence LSTM model presented by Sutskever
et al. [16]. The sequence-to-sequence model is a special case of the
DMN in which only one memory at the end of the input sentence
is formed. Initial experiments on the smaller WMT13 English-to-
French News Commentary dataset used in Kalchbrenner [36] show
promising results. As seen in 4.3, the DMN is learning at a similar
pace to an implementation of the Seq-to-Seq LSTM model. For the
Seq-to-Seq LSTM, we use the hyperparameters listed in [16].

5 Conclusion

We believe the DMN is a potentially general model for a variety of NLP applications. The entire
model can be trained end-to-end with one, albeit complex, objective function. The model uses
some ideas from neuroscience such as semantic and episodic memories known to be required for
complex types of reasoning. Future work will explore additional tasks, larger multi-task models and
multimodal inputs and questions.
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Summary	  

•  All	  (?)	  NLP	  tasks	  can	  be	  reduced	  to	  ques,on	  answering	  

•  The	  DMN	  can	  very	  accurately	  train	  with	  	  
input-‐ques,on-‐answer	  triplets	  

•  Next	  steps:	  One	  very	  large	  mul,task	  DMN	  
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