
Deep	 NLP	 Applica-ons	
and	

Dynamic	 Memory	 Networks	

Richard	 Socher	
richard@metamind.io	

Why	 focus	 deep	 research	 on	 NLP?	

•  Image	 classifica,on	 increasingly	 commodi,zed	
•  Vision	 is	 more	 than	 classifica,on	 but	 it’s	 central	

•  Demo:	 h;ps://www.metamind.io/vision/train	

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 2	

Overview	

•  Fun	 deep	 NLP	 applica,ons:	
•  Character	 RNNs	 on	 text	 and	 code	
•  Image	 –	 Sentence	 mapping	
•  Engagement	
•  Ques,on	 Answering	

•  Ask	 me	 Anything:	 Dynamic	 Memory	 Networks	 for	 NLP	

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 3	

Character	 RNNs	 on	 text	 and	 code	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 4	

h;p://karpathy.github.io/2015/05/21/rnn-‐effec,veness/	

Character	 RNNs	 on	 text	 and	 code	

•  Haven’t	 yet	 produced	 useful	 results	 on	 real	 datasets	

•  Shows	 that	 RNNs	 can	 memorize	 sequences	 and	 keep	 memory	
(mostly	 LSTMs)	

•  Most	 interes,ng	 results	 simply	 train	 on	 dataset	 and	 sample	
from	 it	 a`erwards	 (first	 shown	 by	 Sutskever	 et	 al.	 2011:	
Genera,ng	 Text	 with	 Recurrent	 Neural	 Networks)	

•  Results	 from	 an	 LSTM	 (karpathy.github.io)	 à	 	

	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 5	

Shakespeare	

PANDARUS:	 	
Alas,	 I	 think	 he	 shall	 be	 come	 approached	 and	 the	 day	
When	 li;le	 srain	 would	 be	 a;ain'd	 into	 being	 never	 fed,	 	
And	 who	 is	 but	 a	 chain	 and	 subjects	 of	 his	 death,	 	
I	 should	 not	 sleep.	 	
	
Second	 Senator:	 	
They	 are	 away	 this	 miseries,	 produced	 upon	 my	 soul,	 	
Breaking	 and	 strongly	 should	 be	 buried,	 when	 I	 perish	 	
The	 earth	 and	 thoughts	 of	 many	 states.	 	
	
DUKE	 VINCENTIO:	 	
Well,	 your	 wit	 is	 in	 the	 care	 of	 side	 and	 that.	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 6	

Wikipedia	

Naturalism	 and	 decision	 for	 the	 majority	 of	 Arab	 countries'	
capitalide	 was	 grounded	 by	 the	 Irish	 language	 by	 [[John	 Clair]],	 [[An	
Imperial	 Japanese	 Revolt]],	 associated	 with	 Guangzham's	
sovereignty.	 His	 generals	 were	 the	 powerful	 ruler	 of	 the	 Portugal	 in	
the	 [[Protestant	 Immineners]],	 which	 could	 be	 said	 to	 be	 directly	 in	
Cantonese	 Communica,on,	 which	 followed	 a	 ceremony	 and	 set	
inspired	 prison,	 training.	 The	 emperor	 travelled	 back	 to	 [[An,och,	
Perth,	 October	 25|21]]	 to	 note,	 the	 Kingdom	 of	 Costa	 Rica,	
unsuccessful	 fashioned	 the	 [[Thrales]],	 [[Cynth's	 Dajoard]],	 known	
in	 western	 [[Scotland]],	 near	 Italy	 to	 the	 conquest	 of	 India	 with	 the	
conflict.	 	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 7	

Latex	 (had	 to	 be	 fixed	 manually)	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 8	

Code!	 (Linux	 source	 code)	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 9	

Ques-on	 Answering:	 Quiz	 Bowl	 Compe--on	

•  Iyyer	 et	 al.	 2014:	 A	 Neural	 Network	 for	 Factoid	 Ques,on	
Answering	 over	 Paragraphs	

•  QUESTION:	
He	 le`	 unfinished	 a	 novel	 whose	 ,tle	 character	 forges	 his	
father's	 signature	 to	 get	 out	 of	 school	 and	 avoids	 the	 dra`	 by	
feigning	 desire	 to	 join.	 A	 more	 famous	 work	 by	 this	 author	 tells	
of	 the	 rise	 and	 fall	 of	 the	 composer	 Adrian	 Leverkühn.	 Another	
of	 his	 novels	 features	 the	 jesuit	 Naptha	 and	 his	 opponent	
Se;embrini,	 while	 his	 most	 famous	 work	 depicts	 the	 aging	
writer	 Gustav	 von	 Aschenbach.	 Name	 this	 German	 author	 of	 The	
Magic	 Mountain	 and	 Death	 in	 Venice.	 	

Ques-on	 Answering:	 Quiz	 Bowl	 Compe--on	

•  QUESTION:	
He	 le`	 unfinished	 a	 novel	 whose	 ,tle	 character	 forges	 his	
father's	 signature	 to	 get	 out	 of	 school	 and	 avoids	 the	 dra`	 by	
feigning	 desire	 to	 join.	 A	 more	 famous	 work	 by	 this	 author	 tells	
of	 the	 rise	 and	 fall	 of	 the	 composer	 Adrian	 Leverkühn.	 Another	
of	 his	 novels	 features	 the	 jesuit	 Naptha	 and	 his	 opponent	
Se;embrini,	 while	 his	 most	 famous	 work	 depicts	 the	 aging	
writer	 Gustav	 von	 Aschenbach.	 Name	 this	 German	 author	 of	 The	
Magic	 Mountain	 and	 Death	 in	 Venice.	 	

•  ANSWER:	 Thomas	 Mann	 	

Recursive	 Neural	 Networks	
•  Follow	 dependency	 structure	

Pushing	 Facts	 into	 En-ty	 Vectors	

Qanta	 Model	 Can	 Defeat	 Human	 Players	

History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.

Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the di↵erence between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki

indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar

Literature	 Ques-ons	 are	 Hard!	

History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.

Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the di↵erence between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki

indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar

Visual	 Grounding	
•  Idea:	 Map	 sentences	 and	 images	 into	 a	 joint	 space	

•  Socher	 et	 al.	 2013:	 	
Grounded	 Composi,onal	 Seman,cs	 for	 Finding	 and	
Describing	 Images	 with	 Sentences	
	

Discussion:	 Composi-onal	 Structure	
•  Recursive	 Neural	 Networks	 so	 far	 	
used	 cons,tuency	 trees	 	
which	 results	 in	 more	 syntac,cally	 	
influenced	 representa,ons	

•  Instead:	 Use	 dependency	 trees	 which	 capture	 more	 	
seman,c	 structure	

Convolu-onal	 Neural	 Network	 for	 Images	

•  CNN	 trained	 on	 ImageNet	 (Le	 et	 al.	 2013)	
•  RNN	 trained	 to	 give	 large	 inner	 products	 	
between	 sentence	 and	 image	 vectors:	

Results	

ü

ü

ü

ü

ü

û	

û	

û	
û	

û	
û	
û	

Results	

ü
û	
û	
û	

ü

û	
û	

û	

Image	 Search	 Mean	
Rank	

Random	 52.1	

Bag	 of	 Words	 14.6	

CT-‐RNN	 16.1	

Recurrent	 Neural	 Network	 19.2	

Kernelized	 Canonical	 Correla,on	 Analysis	 15.9	

DT-‐RNN	 12.5	

Describing	 Images	 Mean	
Rank	

Random	 92.1	

Bag	 of	 Words	 21.1	

CT-‐RNN	 23.9	

Recurrent	 Neural	 Network	 27.1	

Kernelized	 Canonical	 Correla,on	 Analysis	 18.0	

DT-‐RNN	 16.9	

Live	 Demo	

8/10/15	 Richard	 Socher	 Lecture	 1,	 Slide	 21	

Engagement	
Demo	

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 22	

Image	 –	 Sentence	 Genera-on	 (!)	

•  Several	 models	 came	 out	 simultaneously	 in	 2015	 that	 follow	 up	
•  Replace	 recursive	 neural	 network	 with	 LSTM	 and	 instead	 of	 only	

finding	 vectors	 they	 generate	 the	 descrip,on	
•  Mostly	 memorized	 training	 	

sequences	 (becomes	 similar	 again)	

•  Donahue	 et	 al.	 2015:	 Long-‐term	 	 à	
Recurrent	 Convolu,onal	 Networks	 	
for	 Visual	 Recogni,on	 and	 Descrip,on	

•  Karpathy	 and	 Fei-‐Fei	 2015:	 Deep	 	
Visual-‐Seman,c	 Alignments	 for	 	
Genera,ng	 Image	 Descrip,ons	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 23	

Image	 –	 Sentence	 Genera-on	 (!)	

Dynamic	 Memory	 Networks	

Richard	 Socher	
richard@metamind.io	

A	 new	 paradigm	

All	 NLP	 tasks	 can	
	 be	 reduced	 to	 	

ques,on	 answering	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 26	

QA	

•  Ques,on	 answering	 tackles	 complex	 ques,ons	 over	 lots	 of	 text	 	
• Where	 was	 Obama's	 wife	 born?	

•  Machine	 transla,on	 	
• What	 is	 the	 transla,on	 into	 French?	

•  Sequence	 modeling	 tasks	 like	 named	 en,ty	 recogni,on	 (NER)	 	
• What	 are	 the	 named	 en,ty	 tags	 in	 this	 sentence?	

•  Classifica,on	 problems	 like	 sen,ment	 analysis	 	
• What	 is	 the	 sen,ment?	

•  Even	 mul,-‐sentence	 joint	 classifica,on	 problems	 like	
coreference	 resolu,on	 	
• Who	 does	 "their"	 refer	 to?	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 27	

Reduc-on	 to	 QA	 	

Interes,ng	 	
but	 	

useless	
?	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 28	

Yes,	 un-l	 a	 model	 makes	 it	 useful	

Dynamic	 memory	 	
Network	 	

•  DMN,	 a	 neural	 network	 based	 model	 in	 which	 any	 QA	 task	 can	
be	 trained	 using	 input-‐ques,on-‐answer	 triplets.	

•  Related	 to	 	
•  Memory	 Networks,	 Weston	 et	 al.	 2014	
•  Neural	 Turing	 Machines,	 Graves	 et	 al.	 2014	
•  Teaching	 Machines	 to	 Read	 and	 Comprehend,	 Hermann	 et	 al.	 2015	 	

•  as	 introduced	 by	 Phil	 yesterday	 but	 more	 general	

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 29	

QA	 +	 DMN	

Ask	 Me	 Anything:	
Dynamic	 Memory	 Networks	

for	 NLP	
	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 30	

Joint	 Work	 with	 MetaMind	 intern	 team	

•  Ankit	 Kumar	
•  Ozan	 Irsoy	
•  Mohit	 Iyyer	
•  Peter	 Ondruska	
•  James	 Bradbury	
•  Ishaan	 Gulrajani	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 31	

Example	 Input,	 Ques-on,	 Answer	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 32	

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2

The	 DMN	

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 33	

The	 Modules:	 Input	

•  Responsible	 for	 compu,ng	 representa,ons	 of	 (audio,	 visual	 or)	
textual	 inputs	 such	 that	 they	 can	 be	 retrieved	 when	 needed	
later.	 	

•  Assume	 a	 temporal	 sequence	 indexable	 by	 a	 ,me	 stamp.	 	
•  For	 wri;en	 language	 we	 have	 a	 sequence	 of	 words	 (v1,…,vTw)	 	
•  Both	 unsupervised	 and	 supervised	 learning	 	
•  Context-‐independent	 and	 context-‐dependent	 hidden	 states	
•  Word	 vectors	 from	 Glove	 model	 Pennington	 et	 al.	 (2014)	

à	 Stored	 in	 seman,c	 memory	 module	

•  RNN	 computa,on	 for	 context	 states	 à	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 34	

Reminder:	 Gated	 Recurrent	 Units	 in	 RNN	

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 35	

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3

For	 DMN	 input	 sequence:	 	

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3

The	 Modules:	 Ques-on	

•  Simple	 GRU	 over	 ques,on	 word	 vectors	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 36	

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)

4

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

The	 Modules:	 Episodic	 Memory!	

•  Combines	 the	 previous	 three	 modules'	 outputs	 in	 order	 to	
reason	 over	 them	 and	 give	 the	 resul,ng	 knowledge	 to	 the	
answer	 module.	 	

•  Dynamically	 retrieves	 the	 necessary	 informa,on	 over	 the	
sequence	 of	 words	 or	 sentences.	 	

•  If	 necessary	 to	 retrieve	 addi,onal	 facts	 à	 iterate	 over	 inputs	 	
•  Needed	 for	 transi,ve	 inference	 (TI)	

•  The	 hippocampus,	 the	 seat	 of	 episodic	 memory	 in	 humans,	 is	
ac,ve	 during	 this	 kind	 of	 inference	 and	 disrup,on	 of	 the	
hippocampus	 impairs	 TI	
	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 37	

Gates	 over	 input	 sentences	

•  For	 each	 sentence	 in	 input:	

•  Summarize	 important	 facts	 in	 episode	 vector:	

•  Done	 if	 only	 one	 pass	 over	 data	 was	 needed	 to	 answer	 ques,on	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 38	

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)

4
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

Episodes	

•  What	 about:	 (from	 Facebook	 babI	 dataset)	

	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 39	

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2

Episodes	

•  Iterate	 over	 mul,ple	 episodes	

•  Compute	 new	 gates	 (second	 episode)	 with	 previous	 memory	
vector:	

•  GRU	 over	 memories:	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 40	

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

The	 Modules:	 Answer	

•  Simple	 GRU	 to	 produces	 an	 output	 at	 each	 of	 its	 ,me	 steps.	
•  Allow	 to	 predict	 EOS	 token	 and	 stop	

8/9/15	 Richard	 Socher	 Lecture	 1,	 Slide	 41	

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

Pudng	 it	 all	 together	

•  Training	 via	 cross-‐entropy	 errors	 and	 backpropaga,on	

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 42	

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Tasks	 with	 results	 above	 or	 near	 state	 of	 the	 art	

Type	 Dataset	

QA	 babI - Facebook	

Sequence	 POS	

Classification	 Sentiment	

Sequence	 NER	

MT	 English-French

Coref	 Guha	 et	 al.	 2015

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 43	

Details:	 QA	 on	 babI,	 POS	 and	 Sen-ment	
4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).

7

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 44	

4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).

7

4.3 Text Classification: Sentiment Analysis

Stanford Sentiment Treebank (SST) [2] is a popular dataset for sentiment classification. It provides
phrase-level fine-grained labels, and comes with a train/dev/test split. We present results on two
formats: fine-grained root prediction, where all full sentences (root nodes) of the test set are to
be classified as either very negative, negative, neutral, positive, or very positive, and binary root
prediction, where all non-neutral full sentences of the test set are to be classified as either positive
or negative. To train the model on the fine-grained task, we use all phrase-level labels. To train on
the binary task, we use all non-neutral phrase-level labels.

Task MV-RNN RNTN DCNN PVec CNN-MC DRNN CT-LSTM DMN

Binary 82.9 85.4 86.8 87.8 88.1 86.6 88.0 88.3
Fine-grained 44.4 45.7 48.5 48.7 47.4 49.8 51.0 50.3

Table 3: Test accuracies on SST [2]. Key: MV-RNN: Socher et al., 2013. RNTN: Socher et al.,
2013. DCNN: Blunsom et al., 2014. PVec: Le and Mikolov, 2014. CNN-MC: Kim, 2014. DRNN:
Irsoy and Cardie, 2014. CT-LSTM: Tai et al., 2015. All results as reported in [35]

For sentiment analysis, our gate function G needs only the first 3 components c,m, q of the function
z as defined in Eq. 3. The DMN achieves state-of-the-art accuracy on the binary classification task,
as well as near state-of-the-art on the fine-grained classification task.

Our DMN was trained with GRU sequence models and no tree structure. It is easy to replace the
GRU sequence model with any of the models listed above, as well as incorporate tree structure to
the retrieval process. These experiments were not run, and we consider them future work.

Preliminary Results: Machine Translation

Figure 4: Machine translation
training progress in terms of
log-perplexity.

We are also training the DMN for machine translation, comparing it
to the sequence-to-sequence LSTM model presented by Sutskever
et al. [16]. The sequence-to-sequence model is a special case of the
DMN in which only one memory at the end of the input sentence
is formed. Initial experiments on the smaller WMT13 English-to-
French News Commentary dataset used in Kalchbrenner [36] show
promising results. As seen in 4.3, the DMN is learning at a similar
pace to an implementation of the Seq-to-Seq LSTM model. For the
Seq-to-Seq LSTM, we use the hyperparameters listed in [16].

5 Conclusion

We believe the DMN is a potentially general model for a variety of NLP applications. The entire
model can be trained end-to-end with one, albeit complex, objective function. The model uses
some ideas from neuroscience such as semantic and episodic memories known to be required for
complex types of reasoning. Future work will explore additional tasks, larger multi-task models and
multimodal inputs and questions.

Acknowledgements

We thank Sam Gershman for useful discussions.

References
[1] A. Passos, V. Kumar, and A. McCallum. Lexicon infused phrase embeddings for named entity resolution.

In Conference on Computational Natural Language Learning. Association for Computational Linguistics,
June 2014.

[2] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In EMNLP, 2013.

8

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 45	

Summary	

•  All	 (?)	 NLP	 tasks	 can	 be	 reduced	 to	 ques,on	 answering	

•  The	 DMN	 can	 very	 accurately	 train	 with	 	
input-‐ques,on-‐answer	 triplets	

•  Next	 steps:	 One	 very	 large	 mul,task	 DMN	

8/11/15	 Richard	 Socher	 Lecture	 1,	 Slide	 46	

