Convolutional Networks

Honglak Lee

CSE division, EECS department University of Michigan, Ann Arbor

8/6/2015

Deep Learning Summer School @ Montreal

Unsupervised Convolutional Networks

Learning Feature Hierarchy

[Lee et al., NIPS 2007; Ranzato et al., 2007]

Learning Feature Hierarchy

Lee et al., NIPS 2007: DBN (Hinton et al., 2006) with additional sparseness constraint. [Related work: Bengio et al., 2006; Ranzato et al., 2007, and others.]

Learning object representations

• Learning objects and parts in images

- Large image patches contain interesting higherlevel structures.
 - E.g., object parts and full objects
- Challenge: high-dimensionality and spatial correlations

Related work: Convnets by LeCun et al., 1989

Convolutional architectures

- Weight sharing by "filtering" (convolution) [Lecun et al., 1989]
- "Max-pooling" Invariance Computational efficiency
- Convolutional Restricted Boltzmann machine.
- Unsupervised
- Probabilistic max-pooling
- Can be stacked to form convolutional DBN

Convolutional RBM (CRBM) [Lee et al., ICML 2009]

- Key properties:
 - RBM (probabilistic model)
 - Convolutional structure (weight sharing)
 - Constraint for max-pooling ("mutual exclusion")

Convolutional RBM (CRBM) [Lee et al., ICML 2009]

Inference: probabilistic max-pooling

Output of convolution W*V from below

Collapse 2ⁿ configurations into n+1 configurations.

Convolutional Deep Belief Networks (CDBN)

Bottom-up (greedy), layer-wise training
 Train one layer (convolutional RBM) at a time.

• Feedforward Inference (approximate)

Convolutional Deep Belief Networks (CDBN)

Unsupervised learning from natural images

Second layer bases contours, corners, arcs, surface boundaries

Unsupervised learning of object-parts

Applications:

- Classification (ICML 2009, NIPS 2009, ICCV 2011, ICML 2013)
- Verification (CVPR 2012)
- Image alignment (NIPS 2012)

Convolutional Sparse Coding

• Learning objective

$$\mathcal{L}(x, z, \mathcal{D}, W) = \frac{1}{2} ||x - \sum_{k=1}^{K} \mathcal{D}_k * z_k||_2^2 + \sum_{k=1}^{K} ||z_k - f(W^k * x)||_2^2 + |z|_1$$

Learned filters

First layer

Second layer

Kavukcuoglu et al. Learning convolutional feature hierarchies for visual recognition. NIPS 2010.

Deconvolutional Networks

- Learning objective:
- Learned filters:

10

8

10

$$\frac{\lambda}{2} \sum_{c=1}^{K_0} \|\sum_{k=1}^{K_1} z_k^i \oplus f_{k,c} - y_c^i\|_2^2 + \sum_{k=1}^{K_1} |z_k^i|^p$$

Zeiler et al. "Deconvolutional networks." CVPR 2010

Supervised Convolutional Networks

Example: Convolutional Neural Networks

- LeCun et al. 1989
- Neural network with specialized connectivity structure

Convolutional Neural Networks

Feature maps

21

- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised

INPUT

32x32

 Train convolutional filters by back-propagating classification error

Components of Each Layer

Filtering

Convolutional

- Dependencies are local
- Translation equivariance
- Tied filter weights (few params)
- Stride 1,2,... (faster, less mem.)

Feature Map

Non-Linearity

- Non-linearity
 - Per-element (independent)
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear
 - Simplifies backprop
 - Makes learning faster
 - Avoids saturation issues
 - \rightarrow Preferred option

Slide: R. Fergus 24

Pooling

- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML'10 for theoretical analysis

Normalization

- Contrast normalization (across feature maps)
 - Local mean = 0, local std. = 1, "Local" \rightarrow 7x7 Gaussian

- Equalizes the features maps

Feature Maps

Feature Maps After Contrast Normalization

Applications

- Handwritten text/digits
 - MNIST (0.17% error [Ciresan et al. 2011])
 - Arabic & Chinese [Ciresan et al. 2012]
 - Traffic sign recognition
 - 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

Application: ImageNet

[Deng et al. CVPR 2009]

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon Turk

Krizhevsky et al. [NIPS 2012]

- Same model as LeCun'98 but:
 - Bigger model (8 layers)
 - More data (10^6 vs 10^3 images)
 - GPU implementation (50x speedup over CPU)
 - Better regularization (DropOut)

- 7 hidden layers, 650,000 neurons, 60,000,000 parameters
- Trained on 2 GPUs for a week

ImageNet Classification 2012

- Krizhevsky et al. -- 16.4% error (top-5)
- Next best (non-convnet) 26.2% error

ImageNet Classification 2013 Results

• http://www.image-net.org/challenges/LSVRC/2013/results.php

ImageNet Classification 2014 Results

Classification error (ILSVRC 2014)

• Visualization of features (via t-SNE embedding)

Gist

DeCAF1

DeCAF6

ILSVRC-2012 validation set

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014

Domain adaptation task

	$\texttt{Amazon} \rightarrow \texttt{Webcam}$			
	SURF	DeCAF ₆	DeCAF ₇	
Logistic Reg. (S)	9.63 ± 1.4	48.58 ± 1.3	53.56 ± 1.5	
SVM (S)	11.05 ± 2.3	52.22 ± 1.7	53.90 ± 2.2	
Logistic Reg. (T)	24.33 ± 2.1	72.56 ± 2.1	74.19 ± 2.8	
SVM (T)	51.05 ± 2.0	78.26 ± 2.6	78.72 ± 2.3	
Logistic Reg. (ST)	19.89 ± 1.7	75.30 ± 2.0	76.32 ± 2.0	
SVM (ST)	23.19 ± 3.5	80.66 ± 2.3	79.12 ± 2.1	
Daume III (2007)	40.26 ± 1.1	$\textbf{82.14} \pm \textbf{1.9}$	81.65 ± 2.4	
Hoffman et al. (2013)	37.66 ± 2.2	80.06 ± 2.7	80.37 ± 2.0	
Gong et al. (2012)	39.80 ± 2.3	75.21 ± 1.2	77.55 ± 1.9	
Chopra et al. (2013)		58.85		

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014

Caltech 101 classification

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, ICML 2014

Feature generalization over multiple tasks

• Generalization over multiple tasks

Ali Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition, Arxiv 2014

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. ICLR 2014

Using very deep layers: VGG Network

• Main idea: use many small convolutions with deep layers

ConvNet Configuration							
А	A-LRN	В	C	D	E		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
input (224×224 RGB image)							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
	maxpool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
	•	max	pool	•			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
maxpool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	maxpool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
maxpool							
FC-4096							
FC-4096							
FC-1000							
soft-max							

Simouyan et al., Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

Going deeper: GoogLeNet

• Main idea: use multiple receptive fields + go deep

Szegedy et al. "Going deeper with convolutions." CVPR 2015

Going deeper: GoogLeNet

• Main idea: use multiple receptive fields + go deep

Szegedy et al. "Going deeper with convolutions." CVPR 2015

Experimental results on ILSVRC

Table 7: **Comparison with the state of the art in ILSVRC classification**. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.	.9
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

Simouyan et al., Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

Other vision applications

Object detection using multi-scale CNN

Initialization for convolutional network

Kavukcuoglu et al. Learning convolutional feature hierarchies for visual recognition. NIPS 2010.

Object detection using Convolutional Neural Networks

- Object detection systems based on the deep convolutional neural network (CNN) have recently made ground-breaking advances.
- The state-of-the-art: "Regions with CNN" (R-CNN)

R-CNN: *Regions with CNN features*

Girshick et al, "Region-based Convolutional Networks for Accurate Object Detection and Semantic Segmentation", PAMI, 2015.

CNN Object detection with Bayesian optimization

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction. Zhang, Sohn, Villegas, Pan, and Lee, CVPR 2015

CNN object detection with structured loss

• Linear classifier $g(x; w) = \operatorname{argmax}_{y \in \mathcal{Y}} f(x, y; w)$

$$f(x, y; w) = w^{\mathsf{T}} \tilde{\phi}(x, y)$$
CNN features
$$\tilde{\phi}(x, y) = \begin{cases} \phi(x, y), & l = +1\\ \mathbf{0}, & l = -1 \end{cases}$$

Minimizing the structured loss (Blaschko and Lampert, 2008)*

$$\widehat{\boldsymbol{w}} = \operatorname{argmax}_{\boldsymbol{w}} \sum_{i=1}^{M} \Delta(g(\boldsymbol{x}_i; \boldsymbol{w}), \boldsymbol{y}_i)$$
$$\Delta(\boldsymbol{y}, \boldsymbol{y}_i) = \begin{cases} 1 - \operatorname{IoU}(\boldsymbol{y}, \boldsymbol{y}_i), & \text{if } l = l_i = 1\\ 0, & \text{if } l = l_i = -1\\ 1, & \text{if } l \neq l_i \end{cases}$$

* Blaschko and Lampert, "Learning to localize objects with structured output regression", ECCV, 2008.

Other related work: LeCun et al. 1989; Taskar et al. 2005; Joachims et al. 2005; Veldaldi et al. 2014; Thomson et al. 2014; and many others

CNN object detection with structured loss

• The objective is hard to solve. Replace it with an upper-bound surrogate using structured SVM framework

$$\min_{W} \frac{1}{2} \| W \|^{2} + \frac{C}{M} \sum_{i=1}^{M} \xi_{i} \quad \text{, subject to}$$
$$W^{\mathsf{T}} \tilde{\phi}(x_{i}, y_{i}) \geq W^{\mathsf{T}} \tilde{\phi}(x_{i}, y) + \Delta(y, y_{i}) - \xi_{i}, \forall y \in \mathcal{Y}, \forall i$$
$$\xi_{i} \geq 0, \forall i$$

• The constraints can be re-written as:

$$\begin{array}{l} w^{\mathsf{T}}\phi(x_{i},y_{i}) \geq 1-\xi_{i}, & \forall i \in I_{\text{pos}}, \\ w^{\mathsf{T}}\phi(x_{i},y) \leq -1+\xi_{i}, & \forall y \in \mathcal{Y}, \forall i \in I_{neg}, \\ w^{\mathsf{T}}\phi(x_{i},y_{i}) \geq w^{T}\phi(x_{i},y) + \Delta^{\text{loc}}(y,y_{i}) - \xi_{i}, \\ & \forall y \in \mathcal{Y}, \forall i \in I_{\text{pos}}, \end{array} \right\}$$
 Recognition

where $\Delta^{\text{loc}}(y, y_i) = 1 - \text{IoU}(y, y_i)$.

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction. Zhang, Sohn, Villegas, Pan, and Lee, CVPR 2015

Image segmentation and parsing

Farabet et al., Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers, ICML 2012

Other Applications

• Tracking (Bazzani et. al. 2010, and many others)

• Pose estimation (Toshev et al. 2013, Jain et al., 2013, ...)

• Caption generation (Vinyals et al. 2015, Xu et al. 2015, ...)

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

Industry Deployment

- Used in Facebook, Google, Microsoft
- Image Recognition, Speech Recognition,
- Fast at test time

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR'14

Deep Visual-Semantic Embedding

Frome et al., NIPS 2013 54

Multiple output embeddings for zero-shot learning

Classification using compatibility function: $f(x; W) = \arg \max_{y \in \mathcal{Y}} F(x, y; W)$ = $\arg \max_{y \in \mathcal{Y}} \theta(x)^\top W \varphi(y)$

Combination of multiple output embeddings:

$$F(x, y; \{W\}_{1..K}) = \sum_{k} \alpha_k \theta(x)^\top W_k \varphi_k(y) \text{ s.t. } \sum_{k} \alpha_k = 1$$

Akata, Reed, Walter, Lee, & Schiele. Evaluation of Output Embeddings for Fine-Grained Image Classification. CVPR 2015. 56

Convolutional networks for other domains: speech

Convolutional RBM for time-series data

time

frequency

Spectrogram

time

CDBNs for speech

Trained on unlabeled TIMIT corpus

Learned first-layer bases

Comparison of bases to phonemes

Comparison of bases to gender ("ae" phoneme)

Application to speech recognition tasks

- Speaker identification
- Phoneme classification
- Gender classification

Use same set of learned features (computed from the same CDBN) for all three tasks.

Speaker Identification [NIPS 2009]

* 168 speakers, 10 sentences/speaker.

The CDBN features outperform the MFCC features especially when the number of training examples is small.

Phoneme Classification [NIPS 2009]

* Tested on the (standard) TIMIT core test set.

Gender Classification [NIPS 2009]

The CDBN features outperform the MFCC features.
The second layer CDBN features give better performance than the first layer CDBN features.

Convolutional neural networks for speech recognition

Abdel-Hamid, O., Mohamed, A. R., Jiang, H., & Penn, G. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In *ICASSP 2012*.

Convoultional networks for music recommendation

Image from: <u>http://benanne.github.io/2014/08/05/spotify-cnns.html</u> Related work: Van den Oord, Dieleman & Schrauwen. Deep content-based music recommendation. In NIPS 2013